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12 2 HOW TO PERFORM CALCULIX CALCULATIONS IN PARALLEL

1 Introduction.

This is a description of CalculiX CrunchiX. If you have any problems using
the program, this document should solve them. If not, send us an E-mail
(dhondt@t-online.de). The next sections contain some useful information on
how to use CalculiX in parallel, hints about units and golden rules you should
always keep in mind before starting an analysis. Section five contains a sim-
ple example problems to wet your appetite. Section six is a theoretical section
giving some background on the analysis types, elements, materials etc. Then,
an overview is given of all the available keywords in alphabetical order, fol-
lowed by detailed instructions on the format of the input deck. If CalculiX
does not run because your input deck has problems, this is the section to look
at. Then, there is a section on the user subroutines and a short overview of
the program structure. The CalculiX distribution contains a large set of test
examples (ccx-2.21.test.tar.bz2). If you try to solve a new kind of problem you
haven’t dealt with in the past, check these examples. You can also use them to
check whether you installed CalculiX correctly (if you do so with the compare
script and if you experience problems with some of the examples, please check
the comments at the start of the corresponding input deck). Finally, the User’s
Manual ends with some references used while writing the code.

This manual is not a textbook on finite elements. Indeed, a working knowl-
edge of the Finite Element Method is assumed. For people not familiar with
the Finite Element Method, I recommend the book by Zienkiewicz and Taylor
[109] for engineering oriented students and the publications by Hughes [37] and
Dhondt [23] for mathematically minded readers.

2 How to perform CalculiX calculations in par-
allel

Nowadays most computers have one socket with several cores, allowing for the
calculations to be performed in a parallel way. In CalculiX one can

e create the element stiffness matrices in parallel. No special compilation
flag is needed. At execution time the environment variable OMP_NUM_THREADS
or the environment variable CCX_NPROC_STIFFNESS must be set to the
number of cores, default is 1. If both are set, CCX_NPROC_STIFFNESS
takes precedence. The maximum number of cores is detected automati-
cally by CalculiX by using the sysconf(_SC_NPROCESSORS_CONF) func-
tion. It can be overriden by the user by means of environment variable
NUMBER_OF_CPUS.

Notice that older GNU-compiler versions (e.g. gcc 4.2.1) may have prob-
lems with this parallellization due to the size of the fields to be allocated
within each thread (e.g. s(100,100) in routine e_3d.f). This should not be
a problem with the actual compiler version.
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e solve the system of equations with the multithreaded version of SPOOLES.
To this end

— the MT-version of SPOOLES must have been compiled. For further
information on this topic please consult the SPOOLES documenta-
tion

— CalculiX CrunchiX must have been compiled with the USE_MT flag
activated in the Makefile, please consult the README.INSTALL file.

— at execution time the environment variable OMP_NUM_THREADS
must have been set to the number of cores you want to use. In
Linux this can be done by “export OMP_NUM_THREADS=n" on
the command line, where n is the number of cores. Default is 1.
Alternatively, you can set the number of cores using the environment
variable CCX_NPROC_EQUATION_SOLVER. If both are set, the
latter takes precedence.

e solve the system of equations with the multithreaded version of PARDISO.
PARDISO is proprietary. Look at the PARDISO documentation how to
link the multithreaded version. At execution time the environment vari-
able OMP_NUM_THREADS must be set to the number of cores, default
is 1.

e create material tangent matrices and calculate the stresses at the integra-
tion points in parallel. No special compilation flag is needed. At execution
time the environment variable OMP_NUM_THREADS or the environment
variable CCX_NPROC_RESULTS must be set to the number of cores, de-
fault is 1. If both are set, CCX_NPROC_RESULTS takes precedence.
The maximum number of cores is detected automatically by CalculiX by
using the sysconf(_.SC_NPROCESSORS_CONF) function. It can be over-
riden by the user by means of environment variable NUMBER_OF_CPUS.
Notice that if a material user subroutine (Sections and [B0)) is used,
certain rules have to be complied with in order to allow parallelization.
These include (this list is possibly not exhaustive):

— no save statements
— no data statements
— avoid logical variables

— no write statements

e calculate the viewfactors for thermal radiation computations in paral-
lel. No special compilation flag is needed. At execution time the en-
vironment variable OMP_NUM_THREADS or the environment variable
CCX_NPROC_VIEWFACTOR must be set to the number of cores, default
is 1. If both are set, CCX_NPROC_VIEWFACTOR takes precedence. The
maximum number of cores is detected automatically by CalculiX by using
the sysconf(_SC_NPROCESSORS_CONF) function. It can be overriden
by the user by means of environment variable NUMBER_OF _CPUS.
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3

3 UNITS

e perform several operations in CFD calculations (computational fluid dy-

namics) in parallel. No special compilation flag is needed. At execution
time the environment variable OMP_NUM_THREADS or the environment
variable CCX_NPROC_CFD must be set to the number of cores, default
is 1. If both are set, CCX_.NPROC_CFD takes precedence. The maxi-
mum number of cores is detected automatically by CalculiX by using the
sysconf(_.SC_ZNPROCESSORS_CONF) function. It can be overriden by
the user by means of environment variable NUMBER_OF_CPUS.

Calculate the magnetic intensity by use of the Biot-Savart law in par-
allel. No special compilation flag is needed. At execution time the en-
vironment variable OMP_NUM_THREADS or the environment variable
CCX_NPROC_BIOTSAVART must be set to the number of cores, default
is 1. If both are set, CCX_NPROC_BIOTSAVART takes precedence. The
maximum number of cores is detected automatically by CalculiX by using
the sysconf(_SC_NPROCESSORS_CONF) function. It can be overriden
by the user by means of environment variable NUMBER_OF _CPUS.

Perform several vector and matrix operations needed by the SLATEC
iterative solvers or by ARPACK in parallel. To this end the user must
have defined the environment variable OMP_NUM_THREADS, and used
the openmp FORTRAN flag in the Makefile. The parallellization is done
in FORTRAN routines using openmp. The corresponding lines start with
“c$omp”. If the openmp flag is not used, these lines are interpreted by the
compiler as comment lines and no parallellization takes place. Notice that
this parallellization only pays off for rather big systems, let’s say 300,000
degrees of freedom for CFD-calculations or 1,000,000 degrees of freedom
for mechanical frequency calculations.

Examples:

e For some reason the function sysconf does not work on your computer

system and leads to a segmentation fault. You can prevent using the
function by defining the maximum number of cores explicitly using the
NUMBER_OF_CPUS environment variable

You want to perform a thermomechanical calculation, but you are us-
ing a user defined material subroutine (Sections and B6]) which is
not suitable for parallelization. You can make maximum use of paral-
lelization (e.g. for the calculation of viewfactors) by setting the variable
OMP_NUM_THREADS to the maximum number of cores on your system,
and prevent parallelization of the material tangent and stress calculation
step by setting CCX_NPROC_RESULTS to 1.

Units

An important issue which frequently raises questions concerns units. Finite
element programs do not know any units. The user has to take care of that. In
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fact, there is only one golden rule: the user must make sure that the numbers
he provides have consistent units. The number of units one can freely choose
depends on the application. For thermomechanical problems you can choose
four units, e.g. for length, mass, time and temperature. If these are chosen,
everything else is fixed. If you choose SI units for these quantities, i.e. m for
length, kg for mass, s for time and K for temperature, force will be in kgm/s? =
N, pressure will be in N/m? = kg/ms?, density will be in kg/m?, thermal
conductivity in W/mK = J/smK = Nm/smK = kgm?/s>mK = kgm/s’K ,
specific heat in J/kgK = Nm/kgK = m?/s?K and so on. The density of steel in
the SI system is 7800 kg/m?>.

If you choose mm for length, g for mass, s for time and K for temper-
ature, force will be in gmm/s? and thermal conductivity in gmm/s3K. In
the {mm, g, s, K} system the density of steel is 7.8 x 1073 since 7800kg/m? =
7800 x 10~ %g/mm?.

However, you can also choose other quantities as the independent ones. A
popular system at my company is mm for length, N for force, s for time and K
for temperature. Now, since force = mass x length / time?, we get that mass
= force x time?/length. This leads to Ns?/mm for the mass and Ns?/mm?* for
density. This means that in the {mm, N,s, K} system the density of steel is
7.8 x 1079 since 7800kg/m?® = 7800Ns? /m* = 7.8 x 107?Ns? /mm*.

Notice that your are not totally free in choosing the four basic units: you
cannot choose the unit of force, mass, length and time as basic units since they
are linked with each other through force = mass x length / time?.

Finally, a couple of additional examples. Young’s Modulus for steel is
210000N/mm? = 210000x 105N /m? = 210000x 10°kg/ms* = 210000x 10%g/mms?.
So its value in the SI system is 210 x 10%, in the {mm, g,s, K} system it is also
210 x 10 and in the {mm, N, s, K} system it is 210 x 103. The heat capacity of
steel is 446J /kgK = 446m?/s?K = 446 x 105mm?/s?K, so in the SI system it is
446., in the {mm, g,s,K} and {mm,N,s, K} system it is 446 x 106.

Table [ gives an overview of frequently used units in three different systems:
the {m, kg, s, K} system, the {mm, N, s, K} system and the {cm, g, s, K} system.

Typical values for air, water and steel at room temperature are:

e air

— ¢, = 1005 J/kgK = 1005 x 10° mm?/s*K

— A = 0.0257 W/mK = 0.0257 N/sK

— p=18.21 x 107 kg/ms = 18.21 x 1072 Ns/mm?

— r (specific gas constant) = 287 J/kgK = 287 x 10° mm?/s’K
e water

— p=1000kg/m3 = 1072 Ns? /mm*
— ¢, = 4181.8 J/kgK = 4181.8 x 10 mm? /s?K
— A =0.5984 W/mK = 0.5984 N /sK
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Table 1: Frequently used units in different unit systems.
symbol meaning m,kg,s, K mm,N,s,K cm,g,s, K
E Young’s Modulus 1N = 177]:52 =106 mjynz =10
. k _ 10—12 Ns? —10-6
p Density 14 =107 | =107° L
F Force IN = 1k =1N = 10°23m
¢ Specific Heat | 100 =14 | =100 | =062
. W1k _ 1N — 106
A Conductivity 1 =130 =15 = 10° L7
. : w4k _10-3_N — 103
h Film Coefficient It =15% | =107° ——% =10° =
i Dynamic Viscosity | 18§ =1X2 = 107610, =14
— p=10"3Pas = 107 Ns/mm?
o steel

E =210000° N/m? = 210000 N/mm?

v (Poisson coefficient)= 0.3
p = 7800 kg/m? = 7.8 x 107% Ns? /mm*

cp = 446 J /kgK = 446 x 105 mm?/s’K

A =50 W/mK = 50 N/sK

4 Golden rules

Applying the finite element method to real-life problems is not always a piece
of cake. Especially achieving convergence for nonlinear applications (large de-
formation, nonlinear material behavior, contact) can be quite tricky. However,
adhering to a couple of simple rules can make life a lot easier. According to my
experience, the following guidelines are quite helpful:

1. Check the quality of your mesh in CalculiX GraphiX or by using any other
good preprocessor.

2. If you are dealing with a nonlinear problem, RUN A LINEARIZED VER-
SION FIRST: eliminate large deformations (drop NLGEOM), use a linear
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elastic material and drop all other nonlinearities such as contact. If the
linear version doesn’t run, the nonlinear problem won’t run either. The
linear version allows you to check easily whether the boundary conditions
are correct (no unrestrained rigid body modes), the loading is the one
you meant to apply etc. Furthermore, you get a feeling what the solution
should look like.

. USE QUADRATIC ELEMENTS (C3D10, C3D15, C3D20(R), S8, CPES,
CPS8, CAXS, B32), except for explicit dynamic calculations. The stan-
dard shape functions for quadratic elements are very good. Most finite
element programs use these standard functions. For linear elements this
is not the case: linear elements exhibit all kind of weird behavior such as
shear locking and volumetric locking. Therefore, most finite element pro-
grams modify the standard shape functions for linear elements to alleviate
these problems. However, there is no standard way of doing this, so each
vendor has created his own modifications without necessarily publishing
them. This leads to a larger variation in the results if you use linear
elements. Since CalculiX uses the standard shape functions for linear
elements too, the results must be considered with care.

. If you are using shell elements or beam elements, use the option OUT-
PUT=3D on the *NODE FILE card in CalculiX (which is default). That
way you get the expanded form of these elements in the .frd file. You can
easily verify whether the thicknesses you specified are correct. Further-
more, you get the 3D stress distribution. It is the basis for the 1D/2D
stress distribution and the internal beam forces. If the former is incorrect,
so will the latter be.

. If you include contact in your calculations and you are using quadratic ele-
ments, use the face-to-face penalty contact method or the mortar method
(which is by default a face-to-face method). In general, for contact be-
tween faces the face-to-face penalty method and the mortar method will
converge much better than the node-to-face method. The type of contact
has to be declared on the FCONTACT PATR]card. Notice that the mortar
method in CalculiX can only be used for static calculations.

. If you are performing an explicit dynamic calculation use:

e linear elements (C3D4, C3D8 or C3D6)
e node-to-face contact

e mass scaling: this is activated automatically as soon as you specify
a minimum time increment (third entry underneath FDYNAMIC]).

. if you do not have enough space to run a problem, check the numbering.
The memory needed to run a problem depends on the largest node and
element numbers (the computational time, though, does not). So if you
notice large gaps in the numbering, get rid of them and you will need less
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memory. In some problems you can save memory by choosing an iterative
solution method. The iterative scaling method (cf. FSTATIC]) needs less
memory than the iterative Cholesky method, the latter needs less memory
than SPOOLES or PARDISO.

If you experience problems you can:

. look at the screen output. In particular, the convergence information for

nonlinear calculations may indicate the source of your problem.

. look at the .sta file. This file contains information on the number of

iterations needed in each increment to obtain convergence

. look at the .cvg file. This file is a synopsis of the screen output: it gives you

a very fast overview of the number of contact elements, the residual force
and the largest change in solution in each iteration (no matter whether
convergent or not).

. use the “last iterations” option on the FNODE FILE] or similar card. This

generates a file with the name ResultsForLastlterations.frd with the de-
formation (for mechanical calculations) and the temperature (for thermal
calculations) for all non-converged iterations starting after the last con-
vergent increment.

. if you have contact definitions in your input deck you may use the “contact

elements” option on the FNODE FILE or similar card. This generates a
file with the name jobname.cel with all contact elements in all iterations
of the increment in which this option is active. By reading this file in
CalculiX GraphiX you can visualize all contact elements in each iteration
and maybe find the source of your problems.

. if you experience a segmentation fault, you may set the environment vari-

able CCX_LOG_ALLOC to 1 by typing “export CCX_LOG_ALLOC=1"
in a terminal window. Running CalculiX you will get information on which
fields are allocated, reallocated or freed at which line in the code (default
is 0).

. this is for experts: if you experience problems with dependencies between

different equations you can print the SPC’s at the beginning of each step
by removing the comment in front of the call to writeboun in ccx_2.21.c
and recompile, and you can print the MPC’s each time they are set up
by decommenting the loop in which writempc is called at the beginning
of cascade.c and recompile.
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Figure 1: Geometry and boundary conditions of the beam problem
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Figure 2: Mesh for the beam
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5 Simple example problems

5.1 Cantilever beam

In this section, a cantilever beam loaded by point forces at its free end is ana-
lyzed.

The geometry, loading and boundary conditions of the cantilever beam are
shown in Figure [l The size of the beam is 1x1x8 m3, the loading consists of
a point force of 9 x 10° N and the beam is completely fixed (in all directions)
on the left end. Let us take 1 m and 1 MN as units of length and force,
respectively. Assume that the beam geometry was generated and meshed with
CalculiX GraphiX (cgx) resulting in the mesh in Figure[2l For reasons of clarity,
only element labels are displayed.

A CalculiX input deck basically consists of a model definition section de-
scribing the geometry and boundary conditions of the problem and one or more
steps (Figure B]) defining the loads.

The model definition section starts at the beginning of the file and ends at
the occurrence of the first *STEP card. All input is preceded by keyword cards,
which all start with an asterisk (*), indicating the kind of data which follows.
*STEP is such a keyword card. Most keyword cards are either model definition
cards (i.e. they can only occur before the first *STEP card) or step cards (i.e.
they can only occur between *STEP and *END STEP cards). A few can be
both.

In our example (Figure M), the first keyword card is *HEADING, followed
by a short description of the problem. This has no effect on the output and only
serves for identification. Then, the coordinates are given as triplets preceded
by the *NODE keyword. Notice that data on the same line are separated by
commas and must not exceed a record length of 132 columns. A keyword card
can be repeated as often as needed. For instance, each node could have been
preceded by its own *NODE keyword card.

Next, the topology is defined by use of the keyword card *ELEMENT. Defin-
ing the topology means listing for each element its type, which nodes belong to
the element and in what order. The element type is a parameter on the keyword
card. In the beam case 20-node brick elements with reduced integration have
been used, abbreviated as C3D20R. In addition, by adding ELSET=Eall, all
elements following the *ELEMENT card are stored in set Eall. This set will be
later referred to in the material definition. Now, each element is listed followed
by the 20 node numbers defining it. With *NODE and *ELEMENT, the core
of the geometry description is finished. Remaining model definition items are
geometric boundary conditions and the material description.

The only geometric boundary condition in the beam problem is the fixation
at z=0. To this end, the nodes at z=0 are collected and stored in node set FIX
defined by the keyword card *NSET. The nodes belonging to the set follow on
the lines underneath the keyword card. By means of the card *BOUNDARY,
the nodes belonging to set FIX are subsequently fixed in 1, 2 and 3-direction,
corresponding to x,y and z. The three *BOUNDARY statements in Figure [4]
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Model Definition

material description

*STEP
Step 1

*END STEP

*STEP
Step 2

*END STEP

*STEP
Stepn

*END STEP

Figure 3: Structure of a CalculiX input deck
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*HEADING
Model: beam Date: 10-Mar—1998
*NODE
1, 0.000000, 0.000000, 0.000000
2, 1.000000, 0.000000, 0.000000
3, 1.000000, 1.000000, 0.000000
260, 0.500000, 0.750000, 7.000000
261, 0.500000, 0.500000, 7.500000
*ELEMENT, TYPE=C3D20R , ELSET=Eall
1, 1, 10, 95, 19, 61, 105, 222, 192, 9, 93,
94, 20, 104, 220, 221, 193, 62, 103, 219, 190
2, 10, 2, 13, 95, 105, 34, 134, 222, 11, 12,
96, 93, 106, 133, 223, 220, 103, 33, 132, 219
32, 258, 158, 76, 187, 100, 25, 7, 28, 259, 159,
186, 260, 101, 26, 27, 102, 261, 160, 77, 189
*NSET, NSET=FIX
97, 96, 95, 94, 93, 20, 19, 18, 17, 16, 15,
14, 13, 12, 11, 10, 9, 4, 3, 2, 1
*BOUNDARY
FIX, 1
*BOUNDARY
FIX, 2
*BOUNDARY
FIX, 3
*NSET,NSET=Nall, GENERATE
1,261
*MATERIAL, NAME=EL
*ELASTIC
210000.0, .3

*SOLID SECTION, ELSET=Eall,MATERIAL=EL
*NSET, NSET=LOAD
5,6,7,8,22,25,28,31,100
* %

*STEP

*STATIC

*CLOAD

LOAD, 2,1.

*NODE PRINT,NSET=Nall
U

*EL PRINT,ELSET=Eall

S

*NODE FILE

U

*EL FILE

S

*END STEP

Figure 4: Beam input deck
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1/1:DISF 100%Amplitude
Time:1.000000
Animated

beamp . frd
Figure 5: Deformation of the beam

can actually be grouped yielding:

*BOUNDARY
FIX,1
FIX,2
FIX,3

or even shorter:

*BOUNDARY
FIX,1,3

meaning that degrees of freedom 1 through 3 are to be fixed (i.e. set to
7€r0).

The next section in the input deck is the material description. This section
is special since the cards describing one and the same material must be grouped
together, although the section itself can occur anywhere before the first *STEP
card. A material section is always started by a *MATERIAL card defining
the name of the material by means of the parameter NAME. Depending on
the kind of material several keyword cards can follow. Here, the material is
linear elastic, characterized by a Young’s modulus of 210,000.0 M N/m? and
a Poisson coefficient of 0.3 (steel). These properties are stored beneath the
*ELASTIC keyword card, which here concludes the material definition. Next,
the material is assigned to the element set Eall by means of the keyword card
*SOLID SECTION.
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Figure 6: Axial normal stresses in the beam

Finally, the last card in the model definition section defines a node set LOAD
which will be needed to define the load. The card starting with two asterisks
in between the model definition section and the first step section is a comment
line. A comment line can be introduced at any place. It is completely ignored
by CalculiX and serves for input deck clarity only.

In the present problem, only one step is needed. A step always starts with
a *STEP card and concludes with a *END STEP card. The keyword card
*STATIC defines the procedure. The *STATIC card indicates that the load
is applied in a quasi-static way, i.e. so slow that mass inertia does not play a
role. Other procedures are *FREQUENCY, *BUCKLE, *MODAL DYNAMIC,
*STEADY STATE DYNAMICS and *DYNAMIC. Next, the concentrated load
is applied (keyword *CLOAD) to node set LOAD. The forces act in y-direction
and their magnitude is 1, yielding a total load of 9.

Finally, the printing and file storage cards allow for user-directed output
generation. The print cards (*NODE PRINT and *EL PRINT) lead to an
ASCII file with extension .dat. If they are not selected, no .dat file is generated.
The *NODE PRINT and *EL PRINT cards must be followed by the node and
element sets for which output is required, respectively. Element information is
stored at the integration points.

The *NODE FILE and *EL FILE cards, on the other hand, govern the
output written to an ASCII file with extension .frd. The results in this file can
be viewed with CalculiX GraphiX (cgx). Quantities selected by the *NODE
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Figure 7: Von Mises stresses in the beam

FILE and *EL FILE cards are always stored for the complete model. Element
quantities are extrapolated to the nodes, and all contributions in the same node
are averaged. Selection of fields for the *NODE PRINT, *EL PRINT, *NODE
FILE and *EL FILE cards is made by character codes: for instance, U are the
displacements and S are the (Cauchy) stresses.

The input deck is concluded with an *END STEP card.

The output files for the beam problem consist of file beam.dat and beam.frd.
The beam.dat file contains the displacements for set Nall and the stresses in the
integration points for set Eall. The file beam.frd contains the displacements
and extrapolated stresses in all nodes. It is the input for the visualization
program CalculiX GraphiX (cgx). An impression of the capabilities of cgx can
be obtained by looking at Figures Bl [f] and [

Figure B shows the deformation of the beam under the prevailing loads. As
expected, the beam bends due to the lateral force at its end. Figure [6] shows
the normal stress in axial direction. Due to the bending moment one obtains a
nearly linear distribution across the height of the beam. Finally, Figure[7 shows
the Von Mises stress in the beam.
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5.2 Frequency calculation of a beam loaded by compres-

sive forces

Let us consider the beam from the previous section and determine its eigenfre-
quencies and eigenmodes. To obtain different frequencies for the lateral direc-
tions the cross section is changed from 1x1 to 1x1.5. Its length is kept (8 length
units). The input deck is very similar to the one in the previous section (the
full deck is part of the test example suite: beamf2.inp):

* %

*%k Structure: beam under compressive forces.
**  Test objective: Frequency analysis; the forces are that

*% high that the lowest frequency is nearly
*k zero, i.e. the buckling load is reached.
*k
*HEADING
Model: beam Date: 10-Mar-1998
*NODE

1, 0.000000, 0.000000, 0.000000

*ELEMENT, TYPE=C3D20R
1, 1, 10, 95, 19, 61,
94, 20, 104, 220, 221,

*BOUNDARY
CN7, 1
*BOUNDARY
CN7, 2
*BOUNDARY
CN7, 3
*ELSET ,ELSET=EALL , GENERATE
1,32
*MATERIAL ,NAME=EL
*ELASTIC
210000.0, .3
*DENSITY
7.8E-9
*SOLID SECTION,MATERIAL=EL,ELSET=EALL
*NSET,NSET=LAST
5,
6,

*STEP

*STATIC

*CLOAD
LAST,3,-48.155

105, 222,
193, 62,

192, 9,
103, 219,

93,
190
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*END STEP
*STEP , PERTURBATION
*FREQUENCY

10

*NODE FILE

U

*EL FILE

S

*END STEP

The only significant differences relate to the steps. In the first step the
preload is applied in the form of compressive forces at the end of the beam. In
each node belonging to set LAST a compressive force is applied with a value
of -48.155 in the positive z-direction, or, which is equivalent, with magnitude
48.155 in the negative z-direction. The second step is a frequency step. By using
the parameter PERTURBATION on the *STEP keyword card the user specifies
that the deformation and stress from the previous static step should be taken
into account in the subsequent frequency calculation. The *FREQUENCY card
and the line underneath indicate that this is a modal analysis step and that the
10 lowest eigenfrequencies are to be determined. They are automatically stored
in the .dat file. Table [2] shows these eigenfrequencies for the beam without and
with preload together with a comparison with ABAQUS (the input deck for the
modal analysis without preload is stored in file beamf.inp of the test example
suite). One notices that due to the preload the eigenfrequencies drop. This is
especially outspoken for the lower frequencies. As a matter of fact, the lowest
bending eigenfrequency is so low that buckling will occur. Indeed, one way of
determining the buckling load is by increasing the compressive load up to the
point that the lowest eigenfrequency is zero. For the present example this means
that the buckling load is 21 x 48.155 = 1011.3 force units (the factor 21 stems
from the fact that the same load is applied in 21 nodes). An alternative way of
determining the buckling load is to use the FBUCKLE] keyword card. This is
illustrated for the same beam geometry in file beamb.inp of the test suite.

Figures [8 and [ show the deformation of the second bending mode across
the minor axis of inertia and deformation of the first torsion mode.

5.3 Frequency calculation of a rotating disk on a slender
shaft

*%

*x Structure: slender disk mounted on a long axis

*% Test objective: *COMPLEX FREQUENCY,

*% output of moments of inertia.

*%k

*NODE, NSET=Nall
1,6.123233995737e-17,1.000000000000e+00,0.000000000000e+00
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Table 2: Frequencies without and with preload (cycles/s).

without preload

with preload

CalculiX | ABAQUS

CalculiX | ABAQUS

13,006. | 13,096.
19,320. | 19,319.

76,840. | 76,834

86,955. | 86,954.

105,964. | 105,956.
162,999. | 162,998.
197,645. | 197,540.
256,161. | 256,029.
261,140. | 261,086.
351,862. | 351,197.

705. 1,780.
14,614. | 14,822.
69,731. | 70,411.
86,544. | 86,870.
101,291. | 102,148.
162,209. | 163,668.
191,581. | 193,065.
251,858. | 253,603.
259,905. | 260,837.
345,729. | 347,688.

Figure 8: Second bending mode across the minor axis of inertia
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Figure 9: First torsion mode

*ELEMENT, TYPE=C3D20R, ELSET=Eall

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 17, 18, 19, 20, 13, 14, 15, 16
*BOUNDARY
Nfix,1,3

*Solid Section, elset=Eall, material=steel
*Material, name=STEEL
*Elastic
210000., 0.3
*DENSITY
7.8e-9
*Step,nlgeom
*Static
*dload
Eall,centrif,3.0853e8,0.,0.,0.,0.,0.,1.
*end step
*step,perturbation
*frequency, STORAGE=YES
10,
*end step
*step,perturbation
*complex frequency,coriolis
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10,
*node file
pu
*end step

This is an example for a complex frequency calculation. A disk with an
outer diameter of 10, an inner diameter of 2 and a thickness of 0.25 is mounted
on a hollow shaft with outer diamter 2 and inner diameter 1 (example rotor.inp
in het test examples). The disk is mounted in het middle of the shaft, the ends
of which are fixed in all directions. The length of the shaft on either side of the
disk is 50. The input deck for this example is shown above.

The deck start with the definition of the nodes and elements. The set Nfix
contains the nodes at the end of the shaft, which are fixed in all directions. The
material is ordinary steel. Notice that the density is needed for the centrifugal
loading.

Since the disk is rotation there is a preload in the form of centrifugal forces.
Therefore, the first step is a nonlinear geometric static step in order to calculate
the deformation and stresses due to this loading. By selecting the parameter
perturbation in the subsequent frequency step this preload is taken into account
in the calculation of the stiffness matrix in the frequency calculation. The
resulting eigenfrequencies are stored at the top of file rotor.dat (Figure [IQ for a
rotational speed of 9000 rad/s). In a *FREQUENCY step an eigenvalue problem
is solved, the eigenvalues of which (first column on the top of Figure [I0]) are
the square of the eigenfrequencies of the structure (second to fourth column). If
the eigenvalue is negative, an imaginary eigenfrequency results. This is the case
for the two lowest eigenvalues for the rotor rotating at 9000 rad/s. For shaft
speeds underneath about 6000 rad/s all eigenfrequencies are real. The lowest
eigenfrequencies as a function of rotating speeds up to 18000 rad/s are shown
in Figure [Tl (+ and x curves).

What is the physical meaning of imaginary eigenfrequencies? The eigen-
modes resulting from a frequency calculation contain the term e®*. If the
eigenfrequency w is real, one obtains a sine or cosine, if w is imaginary, one ob-
tains an increasing or decreasing exponential function [23]. Thus, for imaginary
eigenfrequencies the response is not any more oscillatory: it increases indefi-
nitely, the system breaks apart. Looking at Figure [II] one observes that the
lowest eigenfrequency decreases for increasing shaft speed up to the point where
it is about zero at a shaft speed of nearly 6000 rad/s. At that point the eigenfre-
quency becomes imaginary, the rotor breaks apart. This has puzzled engineers
for a long time, since real systems were observed to reach supercritical speeds
without breaking apart.

The essential point here is to observe that the calculations are being per-
formed in a rotating coordinate system (fixed to the shaft). Newton’s laws are
not valid in an accelerating reference system, and a rotating coordinate system
is accelerating. A correction term to Newton’s laws is necessary in the form of a
Coriolis force. The introduction of the Coriolis force leads to a complex nonlin-
ear eigenvalue system, which can solved with the FCOMPLEX FREQUENCY]
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EIGEHNYARLUE OUTFOT

HODE HO EIGENVELUE FEEQUENCY
RERL PRRT IMRGINERY PRRT
(RRD/TIME) (CYCLES/TIME (FAD/TIME)
1 -0.4710377E+08  0.0000COOE+DD 0.000000CE+00D O.6862218E+04
2 -0.4710377E+08  0.0000CODE+DD 0.000000CE+DD 0.EBE3Z18E+04
3 0.ZZ4006ZE+09 0.1436684E+05 0.Z38Z04EE+04 0. 0000D0CE+DD
4 0.ZZ4006ZE+09 0.1436684E+05 0.Z38Z04EE+04 0. 0000D0CE+DD
5 0.34663T74E+09 o. 0.48%5725E+04 0. 0000D0CE+DD
[ 0.2466374E+0%  0.2076747E+D5 0.4896725E+04 0. 000D0DDE+DD
7 0.2028547E+10  0.4503040E+05 0.71EE8243E404 0. 0ODDODDE+DD
g 0.2920430E+10 0.5413353E405 0.2615618E404 0.000000DE+DD
o 0.Z2%230435%E+10 0.5413353E+05 0.261561EE+04 0. 0000D0CE+DD
o 0.5367484E+10 0.7326312ZE+05 0.116E015%E4+05 0. 0000D0CE+DD
EIGENVELUE OQUTPUT
MODE MO FREQUENCY
FERL PART IMAGINARY FART
(RRD/TIME) (CYCLES/TIME) (RRD/TIME)
1 0.3179491E+04 0.5060316E+03 0.3031618E-012
2 0.2495201E+04 0.1352B01E+04 -0.2864205E-04
3 0.1481488E+05 0.2357BE1E+04 -0.110B26%E-02
4 0.Z2307201E+05 0.3672184E+04 -0.3240550E-04
5 0.2634E70E+05  0.4193207E+04 0.1%973187E-04
E 0.4102791E+05% 0.E529704E+04 D.8E0086%E-04
7 0.4503%40E+05 0.71cE8244E+04 0.2343%47E-08
g 0.46492931E+05 0.74005085E+04 0.6623206E-04
o 0.E2ZE21E5E+05 0.22E6545E+04 0.5462548E-04
10 0.7375084E405 0.1173781E+05 0.2E50943E-05

Figure 10: Eigenfrequencies for the rotor
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Figure 11: Eigenfrequencies as a function of shaft speed

procedure (cf. Section[G.93]). One can prove that the resulting eigenfrequencies
are real, the eigenmodes, however, are usually complex. This leads to rotating
eigenmodes.

In order to use the *COMPLEX FREQUENCY procedure the eigenmodes
without Coriolis force must have been calculated and stored in a previous *FRE-
QUENCY step (STORAGE=YES) (cf. Input Deck). The complex frequency
response is calculated as a linear combination of these eigenmodes. The number
of eigenfrequencies requested in the *COMPLEX FREQUENCY step should
not exceed those of the preceding *FREQUENCY step. Since the eigenmodes
are complex, they are best stored in terms of amplitude and phase with PU
underneath the *NODE FILE card.

The correct eigenvalues for the rotating shaft lead to the straight lines in
Figure [Il Each line represents an eigenmode: the lowest decreasing line is a
two-node counter clockwise (ccw) eigenmode when looking in (-z)-direction, the
highest decreasing line is a three-node ccw eigenmode, the lowest and highest
increasing lines constitute both a two-node clockwise (cw) eigenmode. A node
is a location at which the radial motion is zero. Figure [I2] shows the two-node
eigenmode, Figure the three-node eigenmode. Notice that if the scales on
the x- and y-axis in Figure [[1] were the same the lines would be under 45°.

It might surprise that both increasing straight lines correspond to one and
the same eigenmode. For instance, for a shaft speed of 5816 rad/s one and the
same eigenmode occurs at an eigenfrequency of 0 and 11632 rad/s. Remember,
however, that the eigenmodes are calculated in the rotating system, i.e. as
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Figure 12: Two-node eigenmode
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Figure 13: Three-node eigenmode
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Figure 14: Description of the furnace

observed by an observer rotating with the shaft. To obtain the frequencies for
a fixed observer the frequencies have to be considered relative to a 45° straight
line through the origin and bisecting the diagram. This observer will see one
and the same eigenmode at 5816 rad/s and -5816 rad/s, so cw and ccw.

Finally, the Coriolis effect is not always relevant. Generally, slender rotat-
ing structures (large blades...) will exhibit important frequency shifts due to
Coriolis.

5.4 Thermal calculation of a furnace

This problem involves a thermal calculation of the furnace depicted in Figure
04l The furnace consists of a bottom plate at a temperature T'b, which is
prescribed. It changes linearly in an extremely short time from 300 K to 1000
K after which it remains constant. The side walls of the furnace are isolated
from the outer world, but exchange heat through radiation with the other walls
of the furnace. The emissivity of the side walls and bottom is e = 1. The top of
the furnace exchanges heat through radiation with the other walls and with the
environmental temperature which is fixed at 300 K. The emissivity of the top is
€ = 0.8. Furthermore, the top exchanges heat through convection with a fluid
(air) moving at the constant rate of 0.001 kg/s. The temperature of the fluid at
the right upper corner is 300 K. The walls of the oven are made of 10 cm steel.
The material constants for steels are: heat conductivity k£ = 50W /mK, specific
heat ¢ = 446W /kgK and density p = 7800kg/m3. The material constants
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for air are : specific heat ¢, = 1000W /kgK and density p = lkg/m3. The
convection coefficient is h = 25W/m?K. The dimensions of the furnace are
0.3 x 0.3 x 0.3m?3 (cube). At ¢t = 0 all parts are at T = 300K. We would like to
know the temperature at locations A,B,C,D and E as a function of time.

*%
*k Structure: furnace.
* K Test objective: shell elements with convection and radiation.
*%
*NODE, NSET=Nall
1, 3.00000e-01, 3.72529e-09, 3.72529e-09

*ELEMENT, TYPE=S6, ELSET=furnace
1, 1, 2, 3, 4, 5, 6

*ELEMENT , TYPE=D,ELSET=EGAS
301,603,609,604

*NSET , NSET=NGAS ,GENERATE
603,608

*NSET , NSET=Ndown

1,

*PHYSICAL CONSTANTS,ABSOLUTE ZER0=0.,STEFAN BOLTZMANN=5.669E-8
*MATERIAL ,NAME=STEEL

*DENSITY

7800.

*CONDUCTIVITY

50.

*SPECIFIC HEAT

446.

*SHELL SECTION,ELSET=furnace,MATERIAL=STEEL
0.01

*MATERIAL ,NAME=GAS

*DENSITY

1.

*SPECIFIC HEAT

1000.

*FLUID SECTION,ELSET=EGAS,MATERIAL=GAS
*INITIAL CONDITIONS,TYPE=TEMPERATURE
Nall,300.

*AMPLITUDE,NAME=A1

0.,.3,1.,1.

*STEP, INC=100

*HEAT TRANSFER

0.1,1.
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*VIEWFACTOR,WRITE
*BOUNDARY , AMPLITUDE=A1
Ndown,11,11,1000.

*BOUNDARY

603,11,11,300.

*BOUNDARY ,MASS FLOW
609,1,1,0.001

*RADIATE

**x Radiate based on down

1, R1CR,1000., 1.000000e+00

** Radiate based on top
51, R1CR,1000., 8.000000e-01

** Radiate based on side
101, R1CR,1000., 1.000000e+00

** Radiate based on top

51, R2,300., 8.000000e-01
*FILM

51, F2FC, 604, 2.500000e+01
*NODE FILE

NT

*NODE PRINT,NSET=NGAS

NT
*END STEP

The input deck is listed above. It starts with the node definitions. The
highest node number in the structure is 602. The nodes 603 up to 608 are fluid
nodes, i.e. in the fluid extra nodes were defined (z=0.3 corresponds with the
top of the furnace, z=0 with the bottom). Fluid node 603 corresponds to the
location where the fluid temperature is 300 K (“inlet”), node 608 corresponds
to the “outlet”, the other nodes are located in between. The coordinates of the
fluid nodes actually do not enter the calculations. Only the convective defini-
tions with the keyword *FILM govern the exchange between furnace and fluid.
With the *ELEMENT card the 6-node shell elements making up the furnace
walls are defined. Furthermore, the fluid nodes are also assigned to elements
(element type D), so-called network elements. These elements are needed for
the assignment of material properties to the fluid. Indeed, traditionally material
properties are assigned to elements and not to nodes. Each network element
consists of two end nodes, in which the temperature is unknown, and a midside
node, which is used to define the mass flow rate through the element. The fluid
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nodes 603 up to 613 are assigned to the network elements 301 up to 305.

Next, two node sets are defined: GAS contains all fluid nodes, Ndown con-
tains all nodes on the bottom of the furnace.

The *PHYSICAL CONSTANTS card is needed in those analyses in which
radiation plays a role. It defines absolute zero, here 0 since we work in Kelvin,
and the Stefan Boltzmann constant. In the present input deck SI units are used
throughout.

Next, the material constants for STEEL are defined. For thermal analyses
the conductivity, specific heat and density must be defined. The *SHELL SEC-
TION card assigns the STEEL material to the element set FURNACE, defined
by the *ELEMENT statement before. It contains all elements belonging to the
furnace. Furthermore, a thickness of 0.01 m is assigned.

The material constants for material GAS consist of the density and the
specific heat. These are the constants for the fluid. Conduction in the fluid is
not considered. The material GAS is assigned to element set EGAS containing
all network elements.

The *INITIAL CONDITIONS card defines an initial temperature of 300 K
for all nodes, i.e. furnace nodes AND fluid nodes. The *AMPLITUDE card
defines a ramp function starting at 0.3 at 0.0 and increasing linearly to 1.0 at
1.0. It will be used to define the temperature boundary conditions at the bottom
of the furnace. This ends the model definition.

The first step describes the linear increase of the temperature boundary con-
dition between ¢t = 0 and t = 1. The INC=100 parameter on the *STEP card
allows for 100 increments in this step. The procedure is *HEAT TRANSFER,
i.e. we would like to perform a purely thermal analysis: the only unknowns
are the temperature and there are no mechanical unknowns (e.g. displace-
ments). The step time is 1., the initial increment size is 0.1. Both appear on
the line underneath the *HEAT TRANSFER card. The absence of the param-
eter STEADY STATE on the *HEAT TRANSFER card indicates that this is a
transient analysis.

Next come the temperature boundary conditions: the bottom plate of the
furnace is kept at 1000 K, but is modulated by amplitude A1l. The result is that
the temperature boundary condition starts at 0.3 x 1000 = 300K and increases
linearly to reach 1000 K at t=1 s. The second boundary conditions specifies
that the temperature of (fluid) node 603 is kept at 300 K. This is the inlet
temperature. Notice that “11” is the temperature degree of freedom.

The mass flow rate in the fluid is defined with the *BOUNDARY card applied
to the first degree of freedom of the midside nodes of the network elements. The
first line tells us that the mass flow rate in (fluid)node 609 is 0.001. Node 609
is the midside node of network element 301. Since this rate is positive the
fluid flows from node 603 towards node 604, i.e. from the first node of network
element 301 to the third node. The user must assure conservation of mass (this
is actually also checked by the program).

The first set of radiation boundary conditions specifies that the top face of
the bottom of the furnace radiates through cavity radiation with an emissivity
of 1 and an environment temperature of 1000 K. For cavity radiation the envi-
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LC97 :NDTEMP
Tim:3001.000000
entity:T

max: 1.00e+03
min: 7.53e+02

1.00e+03
9.88e+02
9.76e+02

19.65e+02
9.53e+02
9.41e+02
9.29e+02
19.18e+02
9.06e+02
8.94e+02
8.82e+02
8.71e+02
§.59e+02
§.472+02
8.35e+02
8.24e+02
8.12e+02
8.00e+02
7.882+02
7.77e+02
7.65e+02

7 .53e+02 furnaced . frd

Figure 15: Temperature distribution at t=3001 s

ronment temperature is used in case the viewfactor at some location does not
amount to 1. What is short of 1 radiates towards the environment. The first
number in each line is the element, the number in the label (the second entry
in each line) is the face of the element exposed to radiation. In general, these
lines are generated automatically in cgx (CalculiX GraphiX).

The second and third block define the internal cavity radiation in the furnace
for the top and the sides. The fourth block defines the radiation of the top face
of the top plate of the furnace towards the environment, which is kept at 300
K. The emissivity of the top plate is 0.8.

Next come the film conditions. Forced convection is defined for the top face
of the top plate of the furnace with a convection coefficient h = 25W/mK.
The first line underneath the *FILM keyword indicates that the second face of
element 51 interacts through forced convection with (fluid)node 604. The last
entry in this line is the convection coefficient. So for each face interacting with
the fluid an appropriate fluid node must be specified with which the interaction
takes place.

Finally, the *NODE FILE card makes sure that the temperature is stored in
the .frd file and the *NODE PRINT card takes care that the fluid temperature
is stored in the .dat file.

The complete input deck is part of the test examples of CalculiX (fur-
nace.inp). For the present analysis a second step was appended keeping the
bottom temperature constant for an additional 3000 seconds.

What happens during the calculation? The walls and top of the furnace heat
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Figure 16: Temperature at selected positions

up due to conduction in the walls and radiation from the bottom. However, the
top of the furnace also loses heat through radiation with the environment and
convection with the fluid. Due to the interaction with the fluid the temperature
is asymmetric: at the inlet the fluid is cool and the furnace will lose more
heat than at the outlet, where the temperature of the fluid is higher and the
temperature difference with the furnace is smaller. So due to convection we
expect a temperature increase from inlet to outlet. Due to conduction we expect
a temperature minimum in the middle of the top. Both effects are superimposed.
The temperature distribution at ¢ = 3001s is shown in Figure There is a
temperature gradient from the bottom of the furnace towards the top. At the
top the temperature is indeed not symmetric. This is also shown in Figure [I6]
where the temperature of locations A, B, C, D and E is plotted as a function of
time.

Notice that steady state conditions have not been reached yet. Also note
that 2D elements (such as shell elements) are automatically expanded into 3D
elements with the right thickness. Therefore, the pictures, which were plotted
from within CalculiX GraphiX, show 3D elements.

5.5 Seepage under a dam

In this section, groundwater flow under a dam is analyzed. The geometry of
the dam is depicted in Figure [[7 and is taken from exercise 30 in Chapter 1 of
[32]. All length measurements are in feet (0.3048 m). The water level upstream
of the dam is 20 feet high, on the downstream side it is 5 feet high. The soil
underneath the dam is anisotropic. Upstream the permeability is characterized
by k1 = 4ky = 10~2cm/s, downstream we have 25k3 = 100k, = 10~2cm/s.
Our primary interest is the hydraulic gradient, i.e. Vh since this is a measure
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whether or not piping will occur. Piping means that the soil is being carried
away by the groundwater flow (usually at the downstream side) and constitutes
an instable condition. As a rule of thumb, piping will occur if the hydraulic
gradient is about unity.

From Section[6.9.14 we know that the equations governing stationary ground-
water flow are the same as the heat equations. The equivalent quantity of the
total head is the temperature and of the velocity it is the heat flow. For the
finite element analysis SI units were taken, so feet was converted into meter.
Furthermore, a vertical impermeable wall was assumed far upstream and far
downstream (actually, 30 m upstream from the middle point of the dam and 30
m downstream).

Now, the boundary conditions are:

1. the dam, the left and right vertical boundaries upstream and downstream,
and the horizontal limit at the bottom are impermeable. This means that
the water velocity perpendicular to these boundaries is zero, or, equiva-
lently, the heat flux.

2. taking the reference for the z-coordinate in the definition of total head
at the bottom of the dam (see Equation for the definition of total
head), and assuming that the atmospheric pressure pg is zero, the total
head upstream is 28 feet and downstream it is 13 feet. In the thermal
equivalent this corresponds to temperature boundary conditions.

The input deck is summarized in Figure I8 The complete deck is part of
the example problems. The problem is really two-dimensional and consequently
qu8 elements were used for the mesh generation within CalculiX GraphiX. To
obtain a higher resolution immediately adjacent to the dam a bias was used (the
mesh can be seen in Figure [I9).

At the start of the deck the nodes are defined and the topology of the el-
ements. The qu8 element type in CalculiX GraphiX is by default translated
by the send command into a S8 (shell) element in CalculiX CrunchiX. How-
ever, a plane element is here more appropriate. Since the calculation at stake
is thermal and not mechanical, it is really immaterial whether one takes plane
strain (CPES) or plane stress (CPS8) elements. With the *ELSET keyword
the element sets for the two different kinds of soil are defined. The nodes on
which the constant total head is to be applied are defined by *NSET cards.
The permeability of the soil corresponds to the heat conduction coefficient in
a thermal analysis. Notice that the permeability is defined to be orthotropic,
using the *CONDUCTIVITY, TYPE=ORTHO card. The values beneath this
card are the permeability in x, y and z-direction (SI units: m/s). The value
for the z-direction is actually immaterial, since no gradient is expected in that
direction. The *SOLID SECTION card is used to assign the materials to the ap-
propriate soil regions. The *INITIAL CONDITIONS card is not really needed,
since the calculation is stationary, however, CalculiX CrunchiX formally needs
it in a heat transfer calculation.
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Figure 17: Geometry of the dam

Within the step a *HEAT TRANSFER, STEADY STATE calculation is
selected without any additional time step information. This means that the
defaults for the step length (1) and initial increment size (1) will be taken. With
the *BOUNDARY cards the total head upstream and downstream is defined (11
is the temperature degree of freedom). Finally, the *NODE PRINT, *NODE
FILE and *EL FILE cards are used to define the output: NT is the temperature,
or, equivalently, the total head (Figure [[9) , and HFL is the heat flux, or,
equivalently, the groundwater flow velocity (y-component in Figure 20)).

Since the permeability upstream is high, the total head gradient is small.
The converse is true downstream. The flow velocity is especially important
downstream. There it reaches values up to 2.25 x 104 m/s (the red spot in
Figure 20)), which corresponds to a hydraulic gradient of about 0.56, since the
permeability in y-direction downstream is 4 x 10~ m/s. This is smaller than 1,
so no piping will occur. Notice that the velocity is naturally highest immediately
next to the dam.

This example shows how seepage problems can be solved by using the heat
transfer capabilities in CalculiX GraphiX. The same applies to any other phe-
nomenon governed by a Laplace-type equation.

5.6 Capacitance of a cylindrical capacitor

In this section the capacitance of a cylindrical capacitor is calculated with inner
radius 1 m, outer radius 2 m and length 10 m. The capacitor is filled with air,
its permittivity is ey = 8.8542 x 1072 CZ/NmQ. An extract of the input deck,
which is part of the test example suite, is shown below:
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dam. txt Sun Feb 12 13:17:58 2006 1
* *

* ok Structure: dam.

* % Test objective: groundwater flow analysis.

* %

*NODE, NSET=Nall
1, -3.00000e+01, -1.34110e-07, 0.00000e+00
2, —3.00000e+01, -4.53062e-01, 0.00000e+00
3, —2.45219e+01, -4.53062e-01, 0.00000e+00

*ELEMENT, TYPE=CPS8, ELSET=Eall

1, 1, 2, 3, 4, 5, 6, 7, 8
2, 4, 3, 9, 10, 7, 11, 12, 13
3, 10, 9, 14, 15, 12, 16, 17, 18

*ELSET, ELSET=Eareal
1,
2,

*ELSET, ELSET=Earea2
161,
162,

*NSET, NSET=Nup
342,
345,

*NSET, NSET=Ndown
982,
985,

*MATERIAL, NAME=MAT1

*CONDUCTIVITY, TYPE=ORTHO
1.E-2,25.E-4,1.E-4

*MATERIAL, NAME=MAT2

*CONDUCTIVITY, TYPE=ORTHO
1.E-4,4.E-4,1.E-4

*SOLID SECTION, ELSET=Eareal, MATERIAL=MAT1
*SOLID SECTION, ELSET=Earea2, MATERIAL=MAT2
*INITIAL CONDITIONS, TYPE=TEMPERATURE
Nall,O.

* %

*STEP

*HEAT TRANSFER, STEADY STATE

*BOUNDARY

Nup,11,11,8.5344

*BOUNDARY

Ndown,11,11,3.9624

*NODE PRINT,NSET=Nall

NT

*NODE FILE
NT

*EL FILE
HFL

*END STEP

Figure 18: Input deck of the dam problem
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LC4 :NDTEMP
Tim:1.000000
entity:T

max: 8.53e+00
min: 3.962+00

532+00
32e+00
10e+00
28e+00
BBe+00
452+00
23e+00
01e+00
79e+00
57e+00
36e+00
142+00
92e+00
70e+00
492+00
27e+00
05e+00
33e+00
B2e+00
40e+00
182+00
SEe+00
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LCZ:FLUX
Tim:1.000000
entity:F2

max: 2.25e-04
min: —-6.80e-05

25e-04
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See-04
42e-04
28e-04
14e=-04
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Figure 19: Total head

cam. frd

Figure 20: Discharge velocity in y-direction
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DATL:FLUK
Time:1.000000
Entity:F2

max: 1.27e-11
min: 6.37e-12
1.27e-11

1.24e-11
1.21e-11
1.18e-11

1.45e-11
1.12e-11
1.09e-14
1.06e-11
1.03e-11
9.99e-12
9.69%e-12
9.3%e-12
9.09e-12
8.79e-12
8.48e-12
8.18e-12
7.88e-12
7.58e-12
7.28e-12
6.98e-12 zlx
5.68e-12
6.37e-12

condensator . frd

Figure 21: Heat flux in the capacitor’s thermal analogy

*NODE, NSET=Nall
*ELEMENT, TYPE=C3D20, ELSET=Eall

*NSET ,NSET=Nin
1,
2,

*NSET , NSET=Nout
57,
58,

*SURFACE,NAME=S1, TYPE=ELEMENT
6,53

1,83

*MATERIAL ,NAME=EL
*CONDUCTIVITY
8.8541878176e-12

*SOLID SECTION,ELSET=Eall,MATERIAL=EL
*STEP

*HEAT TRANSFER,STEADY STATE
*BOUNDARY

Nin,11,11,2.
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Nout,11,11,1.

*EL FILE

HFL

*SECTION PRINT,SURFACE=S1
FLUX

*END STEP

As explained in Section the capacitance can be calculated by deter-
mining the total heat flux through one of the capacitor’s surfaces due to a unit
temperature difference between the surfaces. The material in between the sur-
faces of the capacitor is assigned a conductivity equal to its permittivity. Here,
only one degree of the capacitor has been modeled. In axial direction the mesh is
very coarse, since no variation of the temperature is expected. Figure Il shows
that the heat flux at the inner radius is 1.27 x 1071 W/m? . This corresponds
to a total heat flow of 7.98719 W. The analytical formula for the capacitor yields
2meo/ In(2) = 8.0261719 C/V.

The total flux through the inner surface S1 is also stored in the .dat file
because of the FSECTION PRINT] keyword card in the input deck. It amounts
to —2.217 x 1072 W. This value is negative, because the flux is entering the
space in between the capacitor’s surfaces. Since only one degree was modeled,
this value has to be multiplied by 360 and yields the same value as above.

5.7 Hydraulic pipe system

In CalculiX it is possible to perform steady-state hydraulic and aerodynamic
network calculations, either as stand-alone applications, or together with me-
chanical and/or thermal calculations of the adjacent structures. Here, a stand-
alone hydraulic network discussed in [10] is analyzed. The input deck pipe.f can
be found in the test suite.

The geometry of the network is shown in Figure It is a linear network
consisting of:

e an upstream reservoir with surface level at 14.5 m

e an entrance with a contraction of 0.8

a pipe with a length of 5 m and a diameter of 0.2 m

a bend of 45 © and a radius of 0.3 m

a pipe with a length of 5 m and a diameter of 0.2 m

a pipe with a length of 5 m and a diameter of 0.3 m

a pipe with a length of 2.5 m and a diameter of 0.15 m

a gate valve in E with a = 0.5
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14.50
R A: AO/A=0.8
AB: Pipe D=0.2 m, Manning n=0.015
B: Bend R=0.3m
10.15 BC: Pipe D=0.2 m, Manning n=0.015
Y CD: Pipe D=0.3 m, Manning n=0.015
DE: Pipe D=0.15 m, Manning n=0.015

5.00
E: Gate Valve, alpha=0.5

EF: Pipe D=0.15 m, Manning n=0.015
6.50

Figure 22: Geometry of the hydraulic network

e a pipe with a length of 1.56 m and a diameter of 0.15 m

e an exit in a reservoir with surface level at 6.5 m

All pipes are characterized by a Manning friction coefficient n=0.015. The
input deck looks like:

* %

*% Structure: pipe connecting two reservoirs.
**  Test objective: hydraulic network.

*%

*NODE, NSET=NALL

2,0.,0.,14.5

3,0.,0.,14.5

4,0.,0.,12.325

26,14.9419,0.,6.5

*ELEMENT , TYPE=D,ELSET=EALL
1,0,2,3

2,3,4,5

13,25,26,0
*MATERIAL ,NAME=WATER
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*DENSITY

1000.

*FLUID CONSTANTS

4217.,1750.E-6,273.

*ELSET,ELSET=E1

2

*ELSET , ELSET=E2

3,5

*ELSET ,ELSET=E3

4

*ELSET,ELSET=E4

6

*ELSET , ELSET=E5

7

*ELSET ,ELSET=E6

8

*ELSET ,ELSET=E7

9,11

*ELSET , ELSET=E8

10

*ELSET ,ELSET=E9

12

*ELSET ,ELSET=E10

1,13

*FLUID SECTION,ELSET=E1,TYPE=PIPE ENTRANCE,MATERIAL=WATER
0.031416,0.025133

*FLUID SECTION,ELSET=E2,TYPE=PIPE MANNING,MATERIAL=WATER
0.031416,0.05,0.015

*FLUID SECTION,ELSET=E3,TYPE=PIPE BEND,MATERIAL=WATER
0.031416,1.5,45.,0.4

*FLUID SECTION,ELSET=E4,TYPE=PIPE ENLARGEMENT ,MATERIAL=WATER
0.031416,0.070686

*FLUID SECTION,ELSET=E5,TYPE=PIPE MANNING,MATERIAL=WATER
0.070686,0.075,0.015

*FLUID SECTION,ELSET=E6,TYPE=PIPE CONTRACTION,MATERIAL=WATER
0.070686,0.017671

*FLUID SECTION,ELSET=E7,TYPE=PIPE MANNING,MATERIAL=WATER
0.017671,0.0375,0.015

*FLUID SECTION,ELSET=E8,TYPE=PIPE GATE VALVE,MATERIAL=WATER
0.017671,0.5

*FLUID SECTION,ELSET=E9,TYPE=PIPE ENLARGEMENT ,MATERIAL=WATER
0.017671,1.E6

*FLUID SECTION,ELSET=E10,TYPE=PIPE INOUT,MATERIAL=WATER
*BOUNDARY

3,2,2,1.E5

25,2,2,1.E5
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*STEP

*HEAT TRANSFER,STEADY STATE
*DLOAD
EALL,GRAV,9.81,0.,0.,-1.
*NODE PRINT,NSET=NALL

U

*END STEP

In CalculiX linear networks are modeled by means of 3-node network ele-
ments (D-type elements). In the corner nodes of the element the temperature
and the pressure are unknown. They are assigned to the degrees of freedom
0 and 2, respectively. In the midside node the mass flux is unknown and is
assigned to degree of freedom 1. The properties of the network elements are
defined by the keyword FELUID SECTIONI They are treated extensively in
Section [6.4] (gases), (liquid pipes) and [6.6] (liquid channels). For the network
at stake we need:

e a dummy network entrance element expressing that liquid is entering the
network (element 1). It is characterized by a node number 0 as first node

e a network element of type PIPE ENTRANCE at location A (element 2).
This element also takes the water depth into account. Notice that there is
no special reservoir element. Differences in water level can be taken into
account in any element type by assigning the appropriate coordinates to
the corner nodes of the element.

e a network element of type PIPE MANNING for the pipe between location
A and B (element 3)

e anetwork element of type PIPE BEND for the bend at location B (element
4)

e a network element of type PIPE MANNING for the pipe between location
B and C (element 5)

e a network element of type PIPE ENLARGEMENT for the increase of
diameter at location C (element 6)

e a network element of type PIPE MANNING for the pipe between location
C and D (element 7)

e a network element of type PIPE CONTRACTION to model the decrease
in diameter at location D (element 8)

e a network element of type PIPE MANNING for the pipe between location
D and E (element 9)

e a network element of type PIPE GATE VALVE for the valve at location
E (element 10)
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e a network element of type PIPE MANNING for the pipe between location
E and F (element 11)

e a network element of type PIPE ENLARGEMENT for the exit in the
reservoir (element 12). Indeed, there is no special reservoir entrance ele-
ment. A reservoir entrance has to be modeled by a large diameter increase.

e a dummy network exit element expressing that liquid is leaving the net-
work (element 13)

In the input deck, all these elements are defined as D-type elements, their
nodes have the correct coordinates and by means of *FLUID SECTION cards
each element is properly described. Notice that the dummy network entrance
and exit elements are characterized by typeless *FLUID SECTION cards.

For a hydraulic network the material properties reduce to the density (on
the FDENSITY] card), the specific heat and the dynamic viscosity (both on the
FELUID SECTIONI card). The specific heat is only needed if heat transfer is
being modeled. Here, this is not the case. The dynamic viscosity of water is
1750 x 107°N s/m2 [39]. The boundary conditions reduce to the atmospheric
pressure in node 3 and 25, both at the liquid surface of the reservoir. Remember
that the pressure has the degree of freedom 2 in the corner nodes of the network
elements.

Networks are only active inFCOUPLED TEMPERATURE-DISPLACEMENT]
or FHEAT TRANSEER] procedures. Here, we do not take the structure into ac-
count, so a heat transfer analysis will do. Finally, the gravity loading has to be
specified, this is indeed essential for hydraulic networks. Regarding the nodal
output, remember that NT requests degree of freedom 0, whereas U requests
degrees of freedom 1 to 3. Since we are interested in the mass flux (DOF 1 in
the middle nodes) and the pressure (DOF 2 in the corner nodes), U is selected
underneath the *NODE PRINT line. Officially, U are displacements, and that’s
the way they are labeled in the .dat file.

The results in the .dat file look as follows:

displacements (vx,vy,vz) for set NALL and time 1.

2 8.9592E+01 0.0000E+00 0.0000E+00
3 0.0000E+00 1.0000E+05 0.0000E+00
4 8.9592E+01 0.0000E+00 0.0000E+00
5 0.0000E+00 1.3386E+05 0.0000E+00
6 8.9592E+01 0.0000E+00 0.0000E+00
7 0.0000E+00 1.2900E+05 0.0000E+00
8 8.9592E+01 0.0000E+00 0.0000E+00
9 0.0000E+00 1.2859E+05 0.0000E+00
10 8.9592E+01 0.0000E+00 0.0000E+00
11  0.0000E+00 1.5841E+05 0.0000E+00
12 8.9592E+01 0.0000E+00 0.0000E+00



50 5 SIMPLE EXAMPLE PROBLEMS

13 0.0000E+00 1.6040E+05 0.0000E+00
14 8.9592E+01 0.0000E+00 0.0000E+00
15 0.0000E+00 1.9453E+05 0.0000E+00
16 8.9592E+01 0.0000E+00 0.0000E+00
17 0.0000E+00 1.7755E+05 0.0000E+00
18 8.9592E+01 0.0000E+00 0.0000E+00
19 0.0000E+00 1.8361E+05 0.0000E+00
20 8.9592E+01 0.0000E+00 0.0000E+00
21 0.0000E+00 1.5794E+05 0.0000E+00
22 8.9592E+01 0.0000E+00 0.0000E+00
23 0.0000E+00 1.6172E+05 0.0000E+00
24 8.9592E+01 0.0000E+00 0.0000E+00
25 0.0000E+00 1.0000E+05 0.0000E+00
26 8.9592E+01 0.0000E+00 0.0000E+00

The mass flux in the pipe (first DOF in the midside nodes, column 1) is
constant and takes the value 89.592 kg/s. This agrees well with the result in
[10] of 89.4 1/s. Since not all node and element definitions are listed it is useful
for the interpretation of the output to know that location A corresponds to node
5, location B to nodes 7-9, location C to nodes 11-13, location D to nodes 15-17,
location E to nodes 19-21 and location F to node 23. The second column in the
result file is the pressure. It shows that the bend, the valve and the contraction
lead to a pressure decrease, whereas the enlargement leads to a pressure increase
(the velocity drops).

If the structural side of the network (e.g. pipe walls) is modeled too, the
fluid pressure can be mapped automatically onto the structural element faces.
This is done by labels of type PxNP in the FDLOAD card.

5.8 Lid-driven cavity

The lid-driven cavity is a well-known benchmark problem for viscous incom-
pressible fluid flow [I10]. The geometry at stake is shown in Figure We are
dealing with a square cavity consisting of three rigid walls with no-slip condi-
tions and a lid moving with a tangential unit velocity. The lower left corner has
a reference static pressure of 0. We are interested in the velocity and pressure
distribution for a Reynolds number of 400.

*k
**  Structure: lid-driven cavity.

*x Test objective: incompressible, viscous, laminar, 3D fluid flow
*k

*NODE, NSET=Nall
1,0.00000,0.00000,0.

*ELEMENT , TYPE=F3D6 ,ELSET=Eall
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Figure 23: Geometry of the lid-driven cavity
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1/1:V3D0F

Time:1.000000

Entity:ALl

max: 1.00e+00
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Figure 24: Mesh of the lid-driven cavity

1,1543,1626,1624,3918,4001,3999

*NSET,NSET=Nin
1774,
*NSET,NSET=Nwall
1,

*NSET ,NSET=N1
1374,

*BOUNDARY
Nall,3,3,0.
Nwall,1,2,0.
Nin,2,2,0.
1,8,8,0.
2376,8,8,0.
*MATERIAL ,NAME=WATER
*DENSITY

1.

*FLUID CONSTANTS
1.,.25E-2,293.

*SOLID SECTION,ELSET=Eall,MATERIAL=WATER
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*INITIAL CONDITIONS,TYPE=FLUID VELOCITY
Nall,1,0.

Nall,2,0.

Nall,3,0.

*INITIAL CONDITIONS,TYPE=PRESSURE
Nall,oO.

k%

*STEP , INCF=20000

*CFD,STEADY STATE

*BOUNDARY

Nin,1,1,1.

*NODE FILE,FREQUENCYF=200

VF,PSF

*END STEP

The input deck is listed above (this deck is also available in the fluid test
suite as file 1id400.inp). Although the problem is essentially 2-dimensional it was
modeled as a 3-dimensional problem with unit thickness since 2-dimensional
fluid capabilities are not available in CalculiX. The mesh (2D projection) is
shown in Figure It consists of 6-node wedge elements. There is one element
layer across the thickness. This is sufficient, since the results do not vary in
thickness direction. The input deck starts with the coordinates of the nodes and
the topology of the elements. The element type for fluid volumetric elements is
the same as for structural elements with the C replaced by F (fluid): F3D6. The
nodes making up the lid and those belonging to the no-slip walls are collected
into the nodal sets Nin and Nwall, respectively. The nodal set N1 is created for
printing purposes. It contains a subset of nodes close to the lid.

The homogeneous boundary conditions (i.e. those with zero value) are listed
next underneath the *BOUNDARY keyword: The velocity in all nodes in z-
direction is zero, the velocity at the walls is zero (no-slip condition) as well as
the normal velocity at the lid. Furthermore, the reference point in the lower
left corner of the cavity has a zero pressure (node 1 and its corresponding node
across the thickness 2376). The material definition consists of the density, the
heat capacity and the dynamic viscosity. The density is set to 1. The heat capac-
ity and dynamic viscosity are entered underneath the FELUID CONSTANTS
keyword. The heat capacity is not needed since the calculation is steady state,
so its value here is irrelevant. The value of the dynamic viscosity was chosen
such that the Reynolds number is 400. The Reynolds number is defined as
velocity times length divided by the kinematic viscosity. The velocity of the
lid is 1, its length is 1 and since the density is 1 the kinematic and dynamic
viscosity coincide. Consequently, the kinematic viscosity takes the value 1,/400.
The material is assigned to the elements by means of the *SOLID SECTION
card.

The unknowns of the problem are the velocity and static pressure. No ther-
mal boundary conditions are provided, so the temperature is irrelevant. All
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141 :V3DF
Time:1.000000
Entity:vi

max: 1.00e+00
min: -3.31e-01

1.00e+00

9.37e-01
8.73e-01
8.10e-01

7. 46e-01
6.83e-01
6.20e-01
5.56e-01
4,93e-01
4,30e-01
3.66e-01
3.03e-01
2.39%e-01
1.76e-01
1.13e-01
4.,92e-02
-1.442-02
-7 .759e-02
-1.41e-01
-2.042-01
—-2.68e-01
-3.31e-01 £

1id400.frd

Figure 25: x-component of the velocity in the lid-driven cavity

initial values for the unknowns are set to 0 by means o the *INITIAL CONDI-

TIONS, TYPE=FLUID VELOCITY and *INITIAL CONDITIONS,TYPE=PRESSURE
cards. Notice that for the velocity the initial conditions have to be specified for

each degree of freedom separately.

The step is as usual started with the *STEP keyword. The maximum num-
ber of increments, however, is for fluid calculations governed by the parameter
INCF. For steady state fluid calculations the keyword *CFD,STEADY STATE
is to be used. The values underneath this line are not relevant for fluid calcula-
tions, since the increment size is automatically chosen such that the procedure
is stable. The nonzero tangential velocity of the lid is entered underneath the
*BOUNDARY card. Recall that non-homogeneous (i.e. nonzero) boundary
conditions have to be defined within a step. The step ends with a nodal print
request for the velocity VF and the static pressure PS. The printing frequency
is defined to be 200 by means of the FREQUENCYF parameter. This means,
that results will be stored every 200 increments.

The velocity distribution in x-direction (i.e. the direction tangential to the
lid) is shown in Figure The smallest value (-0.33) and its location agree
very well with the results in [110]. Figure[28] shows a vector plot of the velocity.
Near the lid there is a large gradient, in the lower left and lower right corner
are dead zones. The pressure plot (Figure 27)) reveals a low pressure zone in the
center of the major vortex and in the left upper corner. The right upper corner
is a stagnation point for the x-component of the velocity and is characterized
by a significant pressure built-up.
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2/3:V3DF
Entity:ALL

max: 1.00e+00
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Figure 26: Velocity distribution in the lid-driven cavity
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Figure 27: Pressure distribution in the lid-driven cavity
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Figure 28: Velocity across the space in between the plates for different times

5.9 Transient laminar incompressible Couette problem

Another well-known problem is the incompressible laminar flow between two
parallel plates. At time zero both plates are at rest, whereas at positive times
one of the plates is moved parallel to the other plate with a velocity of 1. The an-
alytical solution can be found in [83] in the form of a series expansion containing
the complementary error function erfc. In the steady state regime the velocity
profile is linear across the space in between the plates. The velocity profiles at
different times are shown in Figure 2§ and compared with the analytical solution
for a unity distance between the plates and a kinematic viscosity v = 1. The
input deck for the CalculiX results can be found in the test suite (couettel.inp).
The figure shows a good agreement between the numerical and analytical values,
indicating that the time integration in the CFD-implementation in CalculiX is
correct. The small deviations at small times are due to the rather course mesh.

5.10 Stationary laminar inviscid compressible airfoil flow

In [77] the results of CFD-calculations for several airfoils are reported. Here,
the computations for My, = 1.2 (Mach number at infinity) and o = 7. (angle
of attack) are reported. The input deck for this calculation can be found in the
fluid examples test suite for the Finite Element Method (agard05.inp).

To explain the differences in the input deck between incompressible and com-
pressible flow the crucial section from the compressible input deck is reproduced
below.

*EQUATION

2
3,2,-0.99030509E+00,3,1,-0.13890940E+00
2
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Figure 29: Mesh for the naca012 airfoil flow

DAT4 :M3DF
Time:22.989614
Entity :MACH
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Figure 30: Mach number in the naca012 airfoil flow
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DATE:CP3DF
Time:22.989614
Entity:CP

max: 1.58e+00
min: -5.99e-01
1.58e+00

1.48e+00
1.38e+00
1.27e+00

1.17e+00
1.06e+00
9.60e-01
§.56e-01
7.52e-01
6.48e-01
5.44e-01
4.41e-01
3.37e-01
2.33e-01
1.29e-01
2.48e-02
-7.91e-02
-1.83e-01
-2.87e-01
-3.91e-01
-4.95e-01
-5.99e-01

agard0s. frd

Figure 31: Pressure coefficient in the naca012 airfoil flow

3756,2,-0.99030509E+00,3756,1,-0.13890940E+00

*MATERIAL , NAME=ATR

*CONDUCTIVITY

0.

*FLUID CONSTANTS

1.,0.,293.

*SPECIFIC GAS CONSTANT

0.285714286d0

*SOLID SECTION,ELSET=Eall,MATERIAL=AIR
*PHYSICAL CONSTANTS,ABSOLUTE ZER0=0.
*INITIAL CONDITIONS,TYPE=FLUID VELOCITY
Nall,1,0.99254615

Nall,2,0.12186934

Nall,3,0.d0

*INITIAL CONDITIONS,TYPE=PRESSURE
Nall,0.49603175

*INITIAL CONDITIONS,TYPE=TEMPERATURE
Nall,1.73611111

*VALUES AT INFINITY
1.73611111,1.,0.49603175,1.,1.

*x

*STEP , INCF=200000, SHOCK SMOOTHING=0.01
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*CFD, STEADY STATE,COMPRESSIBLE
1.,1.

*BOUNDARY
BOU1,11,11,1.73611111
BOU1,1,1,0.99254615
BOU1,2,2,0.12186934
BOU1,8,8,0.49603175
Nall,3,3,0.

*NODE FILE,FREQUENCYF=40000
VF,PSF,CP, TSF, TTF,MACH

*END STEP

Since for compressible flow the temperature, velocity and pressure are linked
through the ideal gas equation, the energy conservation equation is always used
and the definition of the thermal conductivity and specific heat is mandatory.
Inviscid flow is triggered by the definition of a zero viscosity and a zero thermal
conductivity (therefore, the viscous terms in the conservation of momentum
and conservation of energy equation disappear). Slip boundary conditions at
the airfoil surface are realized through equations. The specific gas constant is
defined with the appopriate keyword. It only depends on the kind of gas and not
on the temperature. The physical constants card is used to define absolute zero
for the temperature scale. This information is needed since the temperature
in the gas equation must be specified in Kelvin. Initial conditions must be
specified for the velocity, pressure and temperature. Careful selection of these
values can shorten the computational time. The values at infinity (defined with
the "VALUES AT INFINITY]card) are used to calculate the pressure coefficient
Cp = (p — pint)/ (%pinf‘/iif). In viscous calculations they can be used for the
computation of the friction coefficient too. The smoothing parameter on the
*STEP card is used to define shock smoothing and will be discussed further
down.

The COMPRESSIBLE parameter on the *CFD card indicates that this is
a compressible CFD calculation. The consequence of this is that the ideal gas
equation is used to link the density, pressure and temperature. Therefore, no
*DENSITY card should be present in the input deck, and the *SPECIFIC GAS
CONSTANT card is required. The use of the STEADY STATE parameter tells
CalculiX that the calculation is stationary. Instationary calculations are trig-
gered by dropping this parameter. In reality, all CFD-calculations in CalculiX
are instationary. The STEADY STATE parameter, however, forces the calcula-
tions to be pursued until steady state is reached (so the time used is virtual) or
until the maximum number of subincrements (parameter INCF on the *STEP
card) is reached. Transient calculations stop as soon as the final time is reached
(the time is real).

In compressible calculations shock smoothing is frequently needed in order
to avoid divergence. Shock smoothing, however, can change the solution. There-
fore, the shock smoothing coefficient, which can take values between 0. and 2.,
should be chosen as small as possible. For the agard05 example a value of 0.01
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was needed. In general, additional viscosity will reduce the shock smoothing
needed to avoid divergence. There is a second effect of the shock smoothing
coefficient: there is no clear steady state convergence any more. In order to
understand this some additional information about the way CFD-calculations
in CalculiX are performed is needed. The initial increment size which is spec-
ified by the user underneath the *CFD card is a mechanical increment size.
For each mechanical increment an instationary CFD-calculation is performed
subject to the actual loads (up to steady state for a STEADY STATE calcu-
lation). For this CFD-calculation subincrements are used, the size of which
depends on the physical characteristics of the flow (viscosity, heat conductivity
etc.). They are determined such that stability is assured (or at least very likely).
In CalculiX, steady state convergence is detected as soon as the change in the
conservative variables (p, pu, pv etc.) from subincrement to subincrement does
not exceed 10.78 times the actual values of these variables. In calculations with
a nonzero shock smoothing coefficient the change in variables at first decreases
down to a certain level about which it oscillates erraticaly. Therefore, it is likely
that convergence will never be detected. The change in the conservative vari-
ables is stored in a file with the name jobname.fcv (assuming the input deck
to be jobname.inp). The user may force convergence by limiting the number of
subincrements with the INCF parameter on the *STEP card. As soon as INCF
subincrements are calculated the CFD-calculation is assumed to be finished and
the next mechanical increment is started.

The smoothing coefficient may be further reduced by choosing smaller CFD
subincrements. The fifth entry underneath the *CFD-card is the factor by which
the CFD increment size calculated based on physical parameters such as viscos-
ity and local velocity is divided. Default is 1.25 for compressible calculatons and
1. for incompressible calculations. The factor cannot be less than the default.
For instance, a factor of 5. implies that the time increment is chosen as 20 % of
the physically based time increment. Larger factors will decrease the need for
shock smoothing but also linearly increase the computational time.

If the calculation diverges, the shock smoothing coefficient is set to 0.001 if
it was zero before, and to twice its value else, and the calculation is repeated.
If the value exceeds 2 the calculation is stops with an error message. Shock
smoothing is only used for compressible calculations.

Figure 29 shows the mesh used for the agard05 calculation. It consists of
linear wedge elements. In CalculiX, only linear elements (tetrahedra, hexahedra
or wedges) are allowed for CFD-calculations. It is finer along the airfoil (but not
as fine as needed to capture the boundary layer in viscous calculations). Figures
and BIlshow the Mach number and the pressure coefficient, respectively. The
maximum Mach number in [77] is about 1.78, the maximum pressure coefficient
is about -0.55. This agrees well with the present results. Increasing the shock
smoothing coefficient leads to smoothing fringe plots, however, the actual values
become worse.

The total temperature for this calculation (not shown here) was nearly con-
stant. Recall that the total change of the total temperature along a stream line
is given by:
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OAT4 :M3D0F
Time:553.562378
Entity :MACH
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Figure 32: Mach number for the Carter problem

Dpc,T; dp

Dt ot

The terms on the right hand side correspond to the viscous work (zero), the

heat flow (zero, since the heat conduction coefficient is zero), the heat introduced

per unit mass (zero), the change in pressure (zero in the steady state regime)
and the work by external body forces (zero).

= (tlmvm)J —V -q+ phg + + pf™ 08, (1)

5.11 Laminar viscous compressible compression corner flow

This benchmark example is described in [I5]. The input deck for the CalculiX
computation is called carter_10deg_mach3.inp and can be found in the fluid test
example suite. The flow is entering at Mach 3 parallel to a plate of length
16.8 after which a corner of 10° arises. The Reynolds number based on a unit
length is 1000., which yields for a unit velocity a dynamic viscosity coefficient
4 = 1073, No units are specified: the user can choose appropriate consistent
units. Choosing ¢, = 1 and k = 1.4 leads to a specific gas constant r = 0.286.
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Figure 33: velocity profile across the flow for the Carter problem
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Figure 34: Static pressure at the wall for the Carter problem
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Figure 35: Pressure coefficient for laminar viscous flow about a naca012 airfoil

The selected Mach number leads to an inlet temperature of 7' = 0.278. The
ideal gas law yields a static inlet pressure of p = 0.0794 (assuming an unit
inlet density). The wall is assumed to be isothermal at a total temperature of
T; = 0.778. Finally, the assumed Prandl number (Pr=pc,/)) of 0.72 leads to a
conduction coefficient of 0.00139.

A very fine mesh with about 425,000 nodes was generated, gradually finer
towards the wall (y* = 0.885 for the closest node near the wall at L=1 from the
inlet, where y* = u,y/v and u, = \/7/p; y is the distance from the wall and 7
is the shear stress parallel to the wall ). The Mach number is shown in Figure
The shock wave emanating from the front of the plate and the separation
and reattachment compression fan at the kink in the plate are cleary visible.
One also observes the thickening of the boundary layer near the kink leading
to a recirculation zone. Figure B3] shows the velocity component parallel to the
inlet plate orientation across a line perpendicular to a plate at unit length from
the entrance. One notices that the boundary layer in the CalculiX calculation
is smaller than in the Carter solution. This is caused by the temperature-
independent viscosity. Applying the Sutherland viscosity law leads to the same
boundary layer thickness as in the reference. In CalculiX, no additional shock
smoothing was necessary. Figure[34] plots the static pressure at the wall relative
to the inlet pressure versus a normalized plate length. The reference length for
the normalization was the length of the plate between inlet and kink (16.8 unit
lengths). So the normalized length of 1 corresponds to the kink. There is a good
agreement between the CalculiX and the Carter results, apart from the outlet
zone, where the outlet boundary conditions influence the CalculiX results.
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Figure 36: Friction coefficient for laminar viscous flow about a naca012 airfoil

5.12 Laminar viscous compressible airfoil flow

A further example is the laminar viscous compressible flow about a naca012 air-
foil. Results for this problem were reported by [63]. The entrance Mach number
is 0.85, the Reynolds number is 2000. Of interest is the steady state solution.
In CalculiX this is obtained by performing a transient CFD-calculation up to
steady state. The input deck for this example is called naca012_visc_mach0.85.inp
and can be found amoung the CFD test examples. Basing the Reynolds num-
ber on the unity chord length of the airfoil, a unit entrance velocity and a unit
entrance density leads to a dynamic viscosity of u = 5 x 1074, Taking ¢, = 1
and x = 1.4 leads to a specific gas constant » = 0.2857 (all in consistent units).
Use of the entrance Mach number determines the entrance static temperature
to be Ty = 3.46. Finally, the ideal gas law leads to a entrance static pressure of
ps = 0.989. Taking the Prandl number to be 1 determines the heat conductivity
A = 5% The surface of the airfoil is assumed to be adiabatic.

The results for the pressure and the friction coefficient at the surface of
the airfoil are shown in Figures and [36] respectively, as a function of the
shock smoothing coefficient. The pressure coefficient is defined by ¢, = (p —
Do)/ (0.5p50v2,), where p is the local static pressure, pso, poo and ve, are the
static pressure, density and velocity at the entrance, respectively. Figure
shows that the result for a shock smoothing coefficient of 0.004, which is the
smallest value not leading to divergence is in between the results reported by
Cambier and Mittal. The friction coefficient is defined by 7, /(0.5p0cv2, ), where
Tw 18 the local shear stress. The CalculiX results with a shock smoothing coef-
ficient of 0.004 are smaller than the ones reported by Mittal. The cy-peak at
the front of the airfoil is also somewhat too small: the literature result is 0.17,
the CalculiX peak reaches only up to 0.15. The shock coefficient is already very
small and it is the smallest feasible value for this mesh anyway, so decreasing
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Figure 37: Water depth in a channel with hydraulic jump

the shock coefficient, which would further increase the peak, is not an option.
A too coarse mesh density at that location may also play a role.

5.13 Channel with hydraulic jump

That open channel flow can be modeled as a one-dimensional network is maybe
not so well known. The governing equation is the Bresse equation (cf. Section
[(9.1]) and the available fluid section types are listed in Section

The input deck for the present example is shown below.

* %
* %
* %
* %
* %

Structure: channel connecting two reservoirs.

Test objective: steep slope, frontwater - jump -

backwater curve

*NODE, NSET=NALL

1,0.

L)

L)

.,0.

L)

-

-

O O O O O O
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10,9.,0.,0.
11,10.,0.,0.
*ELEMENT , TYPE=D , ELSET=EALL

*MATERIAL ,NAME=WATER

*DENSITY

1000.

*FLUID CONSTANTS

4217.,1750.E-6,273.

*ELSET,ELSET=E1

1,6

*ELSET ,ELSET=E2

2

*ELSET ,ELSET=E4

4

*ELSET ,ELSET=E5

5

*FLUID SECTION,ELSET=E1,TYPE=CHANNEL INOUT,MATERIAL=WATER
*FLUID SECTION,ELSET=E2,TYPE=CHANNEL SLUICE GATE,MANNING,MATERIAL=WATER
10.,0.,0.1,0.005,0.01,0.8

*FLUID SECTION,ELSET=E4,TYPE=CHANNEL STRAIGHT,MANNING,MATERIAL=WATER
10.,0.,49.8,0.005,0.01

*FLUID SECTION,ELSET=E5,TYPE=CHANNEL RESERVOIR,MANNING,MATERIAL=WATER
10.,0.,0.1,0.005,0.01

*BOUNDARY

10,2,2,2.7

*BOUNDARY ,MASS FLOW

1,1,1,60000.

*STEP

*HEAT TRANSFER,STEADY STATE

*DLOAD

EALL,GRAV,9.81,0.,0.,-1.

*NODE PRINT,NSET=NALL

U

*END STEP

It is one of the examples in the CalculiX test suite (channel3). The channel
is made up of five 3-node network elements (type D) in one long line. The nodes
have fictitious coordinates. They do not enter the calculations, however, they
are listed in the .frd file. For a proper visualization with CalculiX GraphiX it
may be advantageous to use the correct coordinates. As usual in networks, the
final node of the entry and exit element have the label zero. The material is
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water and is characterized by its density, heat capacity and dynamic viscosity.
Next, the elements are stored in appropriate sets (by using *ELSET) for the
sake of referencing in the FFLUID SECTION] card.

The structure of the channel becomes apparent when analyzing the *FLUID
SECTION cards: upstream there is a sluice gate, downstream there is a large
reservoir and both are connected by a straight channel. The sluice gate is
described by its width (10 m), a trapezoid angle § = 0 (i.e. the cross section
is rectangular) and a slope Sy of 0.005. Since the parameter MANNING has
been used on the *FLUID SECTION card, the next parameter (0.01 m~1/35)
is the Manning coefficient. Finally, the gate height is 0.8 m. The slope and
the Manning coefficient are needed to calculate the critical and the normal
depth and should be the same as in the downstream straight channel element.
The constants for the straight channel element can be checked in Section
Important here is the length of 49.8 m. The last element, the reservoir, is again
a very short element (length 0.1 m).

Next, the boundary conditions are defined: the reservoir fluid depth is 2.7
m, whereas the mass flow is 60000 kg/s. Network calculations in CalculiX are
a special case of steady state heat transfer calculations, therefore the *HEAT
TRANSFER, STEADY STATE card is used. The prevailing force is gravity.

When running CalculiX a message appears that there is a hydraulic jump
at relative location 0.67 in element 4 (the straight channel element). This is
also clear in Figure B7 where the channel has been drawn to scale. The sluice
gate is located at x=5 m, the reservoir starts at x=55 m. The bottom of the
channel is shaded black. The water level behind the gate was not prescribed
and is one of the results of the calculation: 3.667 m. The water level at the gate
is controlled by its height of 0.8 m. A frontwater curve (i.e. a curve controlled
by the upstream conditions - the gate) develops downstream and connects to
a backwater curve (i.e. a curve controlled by the downstream conditions - the
reservoir) by a hydraulic jump at a x-value of 38.5 m. In other words, the jump
connects the upstream supercritical flow to the downstream subcritical flow.
The critical depth is illustrated in the figure by a dashed line. It is the depth
for which the Froude number is 1: critical flow.

In channel flow, the degrees of freedom for the mechanical displacements are
reserved for the mass flow, the water depth (the component in direction of the
gravity vector, not the depth orthogonal to the channel floor, since the latter
quantity is discontinuous at the location of a slope change) and the critical
depth, respectively. Therefore, the option U underneath the *NODE PRINT
card will lead to exactly this information in the .dat file. The same information
can be stored in the .frd file by selecting MF, DEPT and HCRI underneath the
*NODE FILE card.

5.14 Cantilever beam using beam elements

Previously, a thick cantilever beam was modeled with volume elements. In the
present section quadratic beam elements are used for a similar exercise (Section
[6233). Beam elements are easy to define: they consist of three nodes on a line.
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Figure 38: Geometry of the beam

Internally, they are expanded into volumetric elements. There are two types
of beam elements: B32 elements, which are expanded into C3D20 elements,
and B32R (reduced integration) elements, which are expanded into C3D20R
elements. Based on the results in the present section, the B32R element is
highly recommended. The B32 element, on the other hand, should be avoided
especially if section forces are needed.

The first cantilever beam which is looked at is 100 mm long and has a square
cross section of 2 x 2 mm?. The axis of the beam is along the global z-direction.
This beam is modeled with just one element and loaded at its end by a unit force
in x-direction, Figure[38 We are interested in the stresses at integration point a
and at node b, the section forces at the beam’s fixed end, and the displacement
in x at the free end. The location of the integration point a is at 2 = —1/+/3,
y =1/v/3 and z = 50(1 4 1/+/3), the nodal coordinates of b are x = —1, y = 1
and z = 100 [23]. The material is isotropic linear elastic with a Young’s modulus
of 100,000 MPa and a Poisson’s ratio of 0.3.

The input deck for this example is very similar to the simplebeam.inp ex-
ample in the test suite:

*k
*k Structure: cantilever beam, one element
%k Test objective: B32R elements.

*k

*NODE,NSET=Nall

1, 0, 0, O

2, 0, 0, 50

3, 0, 0, 100

*ELEMENT, TYPE=B32R ,ELSET=EA11

1,1,2,3

*BOUNDARY

3,1,6
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*MATERIAL ,NAME=ALUM
*ELASTIC

1E7,.3

*BEAM SECTION,ELSET=EA1l,MATERIAL=ALUM,SECTION=RECT
2.,2.

1.d40,0.40,0.d0

*STEP

*STATIC

*CLOAD

1,1,1.

*EL PRINT,ELSET=Eall

S

*NODE FILE

U

*EL FILE,SECTION FORCES
S,NOE

*END STEP

The stresses at the integration points are obtained by a FEL PRINTI card,
the stresses at the nodes by the OUTPUT=3D option (default) on theFEL FILE]
card, whereas for the section forces the SECTION FORCES option on the same
card is used (this option is mutually exclusive with the OUTPUT=3D option).
The displacements are best obtained in the non-expanded view, i.e. using the
OUTPUT=2D option. This means that for the present results the example
had to be run twice: once with the OUTPUT=3D option and once with the
SECTION FORCES option.

The results are summarized in Table Bl The {mm,N,s K} system is used.
The reference results are analytical results using simple beam theory [76]. The
agreement is overwhelming. The stresses at the integration points match ex-
actly, so do the extrapolated normal stresses to the nodes. The shear stresses
need special attention. For a beam the shear stress varies parabolically across
the section. A quadratic volumetric element can simulate only a linear stress
variation across the section. Therefore, the parabolic variation is approximated
by a constant shear stress across the section. Since the reduced integration
points (at +1/+/3) happen to be points at which the parabolic stress variation
attains its mean value the values at the integration points are exact! The ex-
trapolated values to the nodes take the same constant value and are naturally
wrong since the exact value at the corners is zero.

The section forces are obtained by

1. calculating the stresses at the integration points (inside the element, such
as integration point a)

2. extrapolating those stresses to the corner nodes (such as node b)

3. calculating the stresses at the middle nodes by interpolation between the
adjacent corner nodes
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Table 3: Results for the square section beam subject to bending (1 element).

result | value | reference
0:2(a) | 34.151 34.151
0z.(a) | -0.25 -0.25
Fy. 1. 1.
My, 100. 100.
0:2(b) 75. 75.
0.2(b) | -0.25 0.
Uy 2.25 2.50

Table 4: Results for the square section beam subject to bending (5 elements).

result value | reference
0.-(a) | 41.471 41.471
ozz(a) | -0.25 -0.25
F.. -1. -1.
My, 100. 100.
0:2(b) 75. 75.
0.2(b) | -0.25 0.
Uy, 2.44 2.50

4. interpolating the stresses at all nodes within a section face onto the re-
duced integration points within the face (such as integration point c, using
the shape functions of the face)

5. integrating these stresses numerically.

As shown by Table B] this procedure yields the correct section forces for the
square beam.

The displacements at the beam tip are off by 10 %. The deformation of a
beam subject to a shear force at its end is third order, however, the C3D20R
element can only simulate a quadratic behavior. The deviation is reduced to
2.4 % by using 5 elements (Table M]). Notice that integration point a is now
closer to the fixation (same position is before but in the element adjacent to the
fixation).

The same beam was now subjected to a torque of 1 Nmm at its free end.
The results are summarized in Table

The torque is matched perfectly, the torsion at the end of the beam (u, is
the displacement in y-direction at the corresponding node of node b) is off by 15
% [76]. The shear stresses at node b are definitely not correct (there is no shear
stress at a corner node), however, the integration of the values interpolated from
the nodes at the facial integration points yields the exact torque! Using more
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Table 5: Results for the square section beam subject to torsion (1 element).

result value reference
ozz(a) | -0.21651 -
oy-(a) | -0.21651
M., 1.
Oz2(D) -0.375
0y2(b) -0.375
u, | 9.75-107* | 1.1525-1073

o o o

Table 6: Results for the circular section beam subject to bending (1 element).

result value reference
0..(a) 34.00 52.26
oz.(a) | -0.322 -0.318
F,. -0.99996 -1.
My, 58.7 100.
0.2(b) 62.8 90.03
0z2(b) | -0.322 -0.318
Uy 2.91 4.24

elements does not change the values in Table

The same exercise is now repeated for a circular cross section (radius = 1
mm, same length, boundary conditions and material data as for the rectangular
cross section). For such a cross section the vertex nodes of the element lie
at x,y = £0.7071, £0.7071, whereas the middle nodes lie at z,y = 0,+1 and
z,y = £1,0. The integration points are located at x,y = +0.5210. The results
for bending with just one element are shown in Table [f] and with 5 elements in
Table [

For just one element the shear stress is quite close to the analytical value,
leading to a even better match of the shear force. This is remarkable an can
only be explained by the fact that the cross area of the piecewise quadratic
approximation of the circular circumference is smaller and exactly compensates
the slightly higher shear stress. A similar effect will be noticed for the torque.
The normal stress, however, is far off at the integration points as well as at the
nodes leading to a bending moment which is way too small. The same applies
to the deformation in x-direction. Using five elements leads to a significant
improvement: the bending moment is only 2 % off, the deformation at the free
end 9 %. Here again one can argue that the deformation is of cubic order,
whereas a quadratic element can only simulate a quadratic change. Using more
elements consequently improves the results.

The results for a torque applied to a circular cross section beam is shown in
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Table 7: Results for the circular section beam subject to bending (5 elements).

result value reference
0.2(a) 59.77 63.41
ox.(a) | -0.322 -0.318
F.. -0.99996 -1.
My, 102. 100.
0..(b) 109. 90.03
oz2(b) | -0.322 -0.318
Ug 3.86 4.24

Table 8: Results for the circular section beam subject to torsion (1 element).

result value reference
0zz(a) -0.309 -0.331
oy-(a) -0.309 -0.331
M., 0.999994 1.
022(b) -0.535 -0.450
0y=(b) -0.535 -0.450
u, | 1.54-107% | 1.66-10"3

Table §] (1 element; the results for 5 elements are identical).

Again, it is remarkable that the torque is perfectly matched, although the
shear stress at the integration points is 6 % off. This leads to shear values at the
vertex nodes which are 19 % off. Interpolation to the facial integration points
yields shear stresses of -0.305 MPa. Integration of these stresses finally leads to
the perfect torque values. The torsion angle at the end of the beam is 7 %off.

Summarizing, one can state that the use of C3D20R elements leads to quite
remarkable results:

e For a rectangular cross section:

the section forces are correct

— the stresses at the integration points are correct

— the displacements for bending are correct, provided enough elements
are used

— the torsion angle is somewhat off (15 %).
e For a circular cross section:

— the shear force and torque section forces are correct

— the bending moment is correct if enough elements are used
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— the displacements for bending are correct, provided enough elements
are used

— the torsion angle is somewhat off (7 %).

It is generally recommended to calculate the stresses from the section forces.
The only drawback is the C3D20R, element may lead to hourglassing, leading to
weird displacements. However, the mean of the displacements across the cross
section is usually fine. An additional problem which can arise is that nonlinear
geometric calculations may not converge due to this hourglassing. This is reme-
died in CalculiX by slightly perturbing the coordinates of the expanded nodes
(by about 0.1 %).

A similar exercise was performed for the B32 element, however, the results
were quite discouraging. The section forces were, especially for bending, way
off.

5.15 Reinforced concrete cantilever beam

Purpose of this exercise is to calculate the stresses in a reinforced concrete
cantilever beam due to its own weight. Special issues in this type of problem are
the treatment of the structure as a composite and the presence of a compression-
only material (the concrete).

The input deck runs like:

*NODE, NSET=Nall
1,1.000000000000e+01,0.000000000000e+00,0.000000000000e+00

*ELEMENT, TYPE=S8R, ELSET=Eall
1’ 1’ 2, 3’ 4’ 5, 6’ 7’
2, 2, 9, 10, 3, 11, 12, 13,

** Names based on left

*NSET,NSET=Nleft

49,

50,

52,

** Names based on right

*NSET,NSET=Nright

1,

4,

8,

*MATERIAL ,NAME=COMPRESSION_ONLY

*USER MATERIAL,CONSTANTS=2
1.4e10, 1.e5

*DENSITY

2350.

*MATERIAL ,NAME=STEEL
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*ELASTIC

210000.¢6, .3

*DENSITY

7800.

*SHELL SECTION,ELSET=Eall,COMPOSITE
.09, ,COMPRESSION_ONLY
.01, ,STEEL

.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
.1, ,COMPRESSION_ONLY
*BOUNDARY

Nleft,1,6
*STEP , NLGEOM

*STATIC

1.,1.

*DLOAD
Eall,GRAV,9.81,0.,0.,-1.
*NODE FILE

U

*EL FILE

S

*END STEP

The beam has a cross section of 1 x 1 m? and a length of 10 m. The density
of concrete is 2350 kg/m®, whereas the density of steel is 7800 kg/m®. The
Young’s moduli are 14000 MPa and 210000 MPa, respectively. Steel is provided
only on the top of the beam (tension side of the beam) at a distance of 9.5
cm from the upper surface. Its layer thickness is 1 cm (in reality the steel is
placed within the concrete in the form of bars. The modeling as a thin layer is
an approximation. One has to make sure that the complete section of the bars
equals the section of the layer). Using the composite feature available for shell
structures significantly simplifies the input. Notice that this feature is not (yet)
available for beam elements. Consequently the beam was modeled as a plate
with a width of 1 m and a length of 10 m. Underneath the *SHELL SECTION
card the thickness of the layers and their material is listed, starting at the top of
the beam. The direction (from top to bottom) is controlled by the direction of
the normal on the shell elements (which is controlled by the order in which the
elements’ nodes are listed underneath the *ELEMENT card). In a composite
shell there are two integration points across each layer. Use of the S8R element
or S6 element is mandatory. In order to capture the location of the neutral axis
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Figure 39: Axial stress across the height of the beam at the fixed end

several layers were used to model the concrete part of the section (in total 10
layers for the concrete and 1 for the steel).

Concrete cannot sustain tension whereas it is largely linear elastic under pres-
sure. This can be modeled with the COMPRESSION_ONLY material model. In
CalculiX this is an example of a user material. The name of user materials has
to start with a fixed character set, in this case ”"COMPRESSION_ONLY”. The
remaining 64 characters (a material name can be at most 80 characters long) can
be freely chosen. In the present input deck no extra characters were selected.
Choosing extra characters is needed if more than 1 compression-only material
is present (in order to distinguish them). The ?COMPRESSION_ONLY” ma-
terial is characterized by 2 constants, the first is Young’s modulus, the second
is the maximum tensile stress the user is willing to allow, in our case 0.1 MPa
(SI-units are used).

Using simple beam theory ([68]) leads to a tensile stress of 152.3 MPa in
the steel and a maximum compressive stress of 7.77 MPa at the lower edge of
the concrete. The finite element calculation (Figure B9) predicts 152 MPa and
7.38 MPa, respectively, which is quite close. In CalculiX, the graphical output
of composite structures is always expanded into three dimensions. In Figure 40
one notices the correct dimension of the composite and the high tensile stresses
in the thin steel layer.
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DATZ:STRESS
Time:1.000000
Entity:3xx

max: 1.52e+08
min: —7.38%e+06

4.00e+06
3.4e6e+06
2.92e+06
2.37e+06
1.832+06
1.292+06
7.502+05
2.08e+03
—-3.33e+03
-8.759e+03
—-1.42e+06
~-1.96e+06
—-2.50e+06
—-3.04e+06
-3.58e+06
—-4.13e+06
-4.67e+06
-5.21e+06
-5.75e+06
—-6.292+06
—-6.83e+06
—-7.38e+06
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concrete_beam. frd

Figure 40: Axial stress across the height of the beam at the fixed end

DATZ:5TRESS
Time:1.000000
Entity:PS1
+0ispf:10.000000
max: 3.17e+01
min: —3.47e-02

17e+01
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g7e+01
72e+01
57e+01
42e+01
.26e+01
1le+01
.96e+01
.81e+01
LBEe+01
.51e+01
L36e+01
.21le+01
.05e+01
.03e+00
.52e+00
.01e+00
.50e+00
39e+00
48e+00
-3.47e-02

o
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leiferl.frd

Figure 41: Maximum principal stress in the deformed sheet
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DAT2:STRESS
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Figure 42: Shear stress in the isotropic simulation

5.16 Wrinkling of a thin sheet

The input decks for this problem can be found in the test suite as leiferl.inp
and leifer2.inp. It was first devised by J. Leifer in 2003. The structure is a
thin square sheet with an edge length of 229 mm and a thickness of 0.0762
mm. It is fixed on one side and moved parallel to this side on the opposite side
by 1 mm. Young’s modulus and Poisson’s coefficient are 3790 MPa and 0.38,
respectively. Experimental evidence points to the creation of wrinkles due to
this shear deformation.

Here, two approaches are described to simulate this experiment. In both
cases the sheet is simulated using quadratic shell elements. In the first simulation
(leiferl) the material is considered as a linear elastic isotropic material, and
wrinkling occurs due to natural buckling processes in the sheet. To enhance
this buckling, the coordinates in the direction perpendicular to the sheet (this
is the z-direction in our simulation) are slightly perturbed in a aleatoric way
(look at the coordinates in the input deck to verify this). Furthermore, the
simulation is performed in a dynamic procedure starting with very small time
steps. Figure Bl shows the maximum principal stress in the deformed sheet
(the edge at x=0 was fixed, the edge at x=229 was moved 1 mm in negative
y-direction). One nicely notices the wrinkles. A look at the smallest principal
stress shows that there are virtually no pressure stresses in the sheet: they were
removed by buckling. A disadvantage of this kind of simulation is the very long
computational time (336 increments for a step time of 1!).

The absence of pressure stress points to a second way of obtaining the correct
stress distribution: instead of simulating the material as isotropic, one can use a
tension-only material model (leifer2). This has the advantage that convergence
is much faster (small computational times). Figuresfd2land 43 compare the shear
stress of both simulations: they match quite nicely (the shear stress distribution
in an isotropic simulation without wrinkling is totally different). The same
applies to the other stress components. The use of a tension-only material,
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DAT2:STRESS
Time:1.000000
Entity:sXy
max: 3.132-02
min: -5.31e+00
2.22e-15

-2.53e-01
-5.062-01
-7.59e-01

-1.01e+00
-1.262400
-1.52e+00
-1.77e+00
-2.022400
~2.28e+00
-2.53+00
-2.782400
~3.03e+00
-3.292+00
-3.542400
-3.792+00
-4.05e+00
-4.302400
-4.552+00
-4.81e+00
-5.062+00
-5.312+00

leifer2.frd

Figure 43: Shear stress in the tension-only simulation

DAT3:STRAIN
Time:1.000000
Entity:PE3

max: 4.91e-08
min: -3.09e-02

I 4.91e-08

-4.99e-03
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-6.98e-03
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-9.97e-03
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-1.99e-02
-2.092-02

leifer2.frd

Figure 44: Minimum principal strain in the tension-only simulation
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1/2:53TRESS
Time:1.000000
Entity:Mises

max: 1.4le+02
min: 4.71le+00
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Figure 45: von Mises stress in the starting geometry of the beam

however, does not lead to out-of-plane deformations. Here, wrinkling can only
be derived indirectly by looking at the smallest principal strain (Figure E4]).
The large negative values point to the existence of wrinkles.

5.17 Optimization of a simply supported beam

In this section the optimization of a simply supported beam w.r.t. stress and
subject to a non-increasing mass constraint is treated. This example shows how
an optimization might be performed, the procedure itself is manually and by no
way optimized. For industrial applications one would typically write generally
applicable scripts taking care of the manual steps explained here.

This example uses the files optl.inp, optl.sh, opt2.fbl and op3.inp, all avail-
able in the CalculiX test suite. File optl.inp contains the geometry and the
loading of the problem at stake: the structure is a beam simply supported at
its ends (hinge on one side, rolls on the other) and a point force in the middle.
The von Mises stresses are shown in Figure

The target of the optimization is to reduce the stresses in the beam. The
highest stresses occur in the middle of the beam and at the supports (cf. Figure
[5)). Since the stresses at the supports will not decrease due to a geometrical
change of the beam (the peak stresses at the supports are cause by the point-like
nature of the support) the set of design variables (i.e. the nodes in which the
geometry of the beam is allowed to change during the optimization) is chosen as
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Figure 46: Nodes excluded from the set of design variables

all nodes in the beam except for a set of nodes in the vicinity of the supports.
These latter nodes are shown in Figure

In order to perform an optimization one has to determine the sensitivity
of the objective w.r.t. the design variables taking into account any constraints
for every intermediate design step (iteration) of the optimization. The objec-
tive and the constraints are generally design responses. First, the sensitity
of each design response is determined in a FSENSITIVITY] step. Then, one
design response is selected as objective and one or more as constraints in a
FEEASIBLE DIRECTION]step. In the latter step the sensitivity of the uncon-
strained objective is combined with the sensitity of the constraints in order to
obtain the sensitivity of the constrained objective.

The design variables were already discussed and constitute the set of nodes
in which the design is allowed to change. In the input deck for the present
example this is taken care of by the lines:

*DESIGNVARIABLES, TYPE=COORDINATE
DESIGNNODES

“DESIGNNODES” is a nodal set containing the design nodes as previously
discussed. For optimization problems in which the geometry of the structure
is to be optimized the type is COORDINATE. Alternatively, one could opti-
mize the orientation of anisotropic materials in a structure, this is covered by
TYPE=ORIENTATION.

The objective is the design response one would like to minimize. In the
present example the Kreisselmeier-Steinhauser function calculated from the von
Mises stress in all design nodes (cf. FDESIGN RESPONSE] for the definition of
this function) is to be minimized. Again, the support nodes are not taken into
account because of the local stress singularity. The objective is taken care of by
the lines:

*DESIGN RESPONSE, NAME=STRESS_RESP
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MISESSTRESS,DESIGNNODES,10.,100.
in the sensitivity step and

*0BJECTIVE, TARGET=MIN
STRESS_RESP

in the feasible direction step in the input deck. Notice that the node set used
to define the Kreisselmeier-Steinhauser function (second entry underneath the
*DESIGN RESPONSE card) does not have to coincide with the set of design
variables. The third and fourth entry underneath the *DESIGN RESPONSE
card constitute parameters in the Kreisselmeier-Steinhauser function. Specifi-
cally, the fourth entry is a reference stress value and should be of the order of
magnitude of the actual maximum stress in the model. The third parameter
allows to smear the maximum stress value in a less or more wide region of the
model.

In addition to the objective function (only one objective function is allowed)
one or more constraints can be defined in the feasible direction step. In the ac-
tual example the mass of the beam should not increase during the optimization.
This is taken care of by

*DESIGN RESPONSE, NAME=MASS_RESP
MASS,Eall

in the sensitivity step and

*CONSTRAINT
MASS_RESP,LE,1.,

in the feasible direction step. For the meaning of the entries the reader
is referred to FDESIGN RESPONSE] and FCONSTRAINTI Notice that for this
constraint to be active the user should have defined a density for the material at
stake. Within CalculiX the constraint is linearized. This means that, depending
on the increment size during an optimization, the constraint will not be satisfied
exactly.

In the CalculiX run the sensitivity of the objective and all constraints w.r.t.
the design variables is calculated. The sensitivity is nothing else but the first
derivative of the objective function w.r.t. the design variables (similarly for the
constraints), i.e. the sensitivity shows how the design response changes if the
design variable is changed. For design variables of type COORDINATE the
change of the design variables (i.e. the design nodes) is in a direction locally
orthogonal to the geometry. So in our case the sensitivity of the stress tells
us how the stress changes if the geometry is changed in direction of the local
normal (similar with the mass CONSTRAINT). If the sensitivity is positive the
stress increases while thickening the structure and vice versa. This sensitivity
may be postprocessed by using a filter. In the present input deck (optl.inp) the
following filter is applied:
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Figure 47: Stress sensitivity before filtering
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Figure 48: Stress sensitivity after filtering
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Figure 49: Mass sensitivity after filtering
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Figure 50: Stress sensitivity taking the mass constraint into account

*FILTER, TYPE=LINEAR,EDGE PRESERVATION=YES,DIRECTION WEIGHTING=YES
3.

The filter is linear with a radius of 3 (it can be visualized as a cone at each
design variable in which the sensitivity is integrated and subsequently smeared),
sharp corners should be kept (EDGE PRESERVATION=YES, cf. FEILTER))
and surfaces with a clearly different orientation (e.g. orthogonal) are not taken
into account while filtering (or taken into account to a lesser degree, DIREC-
TION WEIGHTING=YES). The filtering is applied to each design response
separately. Figure 7 shows the stress sensitivity before filtering, Figure 48] the
stress sensitivity after filtering and Figure [49] the mass sensitivity after filtering.
All of this information is obtained by requesting SEN underneath the *NODE
FILE card. Notice that the sensitivity is normalized after filtering.

After calculating the filtered sensitivities of the objective function and the
constraints separately (this is done in the sensitivity step) they are joined by pro-
jecting the sensitivity of the active constraints on the sensitivity of the objective
function (this is done in the feasible direction step). For a mesh modification size
of 1 (parameter underneath the *FEASIBLE DIRECTION card) this results in
Figure

The sensitivities calculated in this way allow us to perform an optimization.
The simplest concept is the steepest gradient algorithm in which the geometry
is changed in the direction of the steepest gradient. In the present calculations
only one gradient is calculated (the one in the direction of the local normal)
since a geometry change parallel to the surface of the structure generally does
not change the geometry at all. So the geometry is changed in the direction of
the local normal by an amount to be defined by the user. It is usually a percent-
age of the local sensitivity, the so-called mesh modification size, to be defined
underneath the *FEASIBLE DIRECTION card. Here, a mesh modification size
of 10 % was selected (i.e. 0.1).

In order to maintain a good quality mesh the other boundary nodes and the
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Figure 51: Deformed mesh after one iteration

internal nodes should be appropriately moved as well. This is taken care of by a
subsequent linear elastic calculation with the sensitivity-based surface geometry
change as boundary conditions. The corresponding input deck with the name
optl.equ is automatically generated within the *FEASIBLE DIRECTION step.

This input deck contains the original geometry of the beam. The sensitivity-
based surface geometry change is imposed by *BOUNDARY statements.

Furthermore, preservation of sharp edges and corners in the original struc-
ture is taken care of by linear equations. In order to obtain a good quality mesh
at the free surface the fictitious elastic modulus is decreased with increasing
distance from the free surface. Before running optl.equ it is copied by script
optl.sh into opt2.inp.

The resulting deformed mesh is shown in Figure[5Il The beam was thickened
in the middle, where the von Mises stresses were highest. This should lead to
a decrease of the highest stress value. In order to check this, a new sensitivity
calculation was done on the deformed structure. To that end the deformation
calculated based on opt2.inp is superimposed on the coordinates (by a call to
opt2.fbl in script optl.sh) and stored as opt3.inc. This file is included in input
deck opt3.inp, which apart from the coordinates is a copy of optl.inp. The
resulting von Mises stresses are shown in Figure The von Mises stress in the
middle of the lower surface of the beam has indeed decreased from 114 to about
80 (MPa if the selected units were mm, N, s and K). Further improvements can
be obtained by running several iterations.

5.18 Mesh refinement of a curved cantilever beam

This example illustrates the use of the *REFINE MESH keyword card in order
to refine a tetrahedral mesh based on some solution variable. The structure is a
curved cantilever beam (Figure[53)) meshed very coarsely using C3D10 elements.
The left side of the beam is completely fixed in z-direction, the lower left node
is furthermore fixed in x and y, the lower right node in y. A load of 9 force units
is applied to the nodes in the right face of the beam in +y direction. This leads
to the normal stresses in z shown in the Figure. The beam experiences bending
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Figure 52: Mises stress after one iteration

leading to tensile stresses at the bottom and compressive stresses at the top.
The input deck of the beam (circ10p.inp) is part of the CalculiX test suite.
Here, only the step information in the input deck is reproduced:

*STEP

*STATIC

*CLOAD

LOAD,2,1.

*NODE PRINT,NSET=FIX,TOTALS=0NLY
RF

*SECTION PRINT,SURFACE=Sfix,NAME=SP1
SOF, SOM

*NODE FILE

U

*EL FILE

S

*REFINE MESH,LIMIT=50.

S

*END STEP

It illustrates several possibilities to obtain the reaction forces. One way is
to use the *NODE PRINT keyword card to request the storage of RF in the
.dat file. It acts on a node set, in this case all nodes on the left surface of
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Figure 53: Normal stress in z-direction for the coarse mesh
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Figure 54: Error estimator for the coarse mesh
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the beam. The parameter TOTALS=ONLY indicates that only the sum of the
forces should be printed, not the individual contributions. The *NODE PRINT
option works well if the adjacent elements of the nodal set are not subject to
distributed loads, neither surface distributed loads (pressure) nor volumetric
distribute loads (gravity, centrifugal forces). Else the value printed for RF will
include part of these latter forces.

A second possibility is to define a facial surface and use SOF and SOM
underneath the *SECTION PRINT card in order to request the forces and
moments on this surface. The surface Sfix consists of all faces in the left surface
of the beam. The forces and moments are obtained by integration across the
surface.

The output in the .dat-file looks like:

total force (fx,fy,fz) for set FIX and time 0.1000000E+01

-9.372063E-13 -9.000000E+00 3.127276E-12

statistics for surface set SFIX and time 0.1000000E+01
total surface force (fx,fy,fz) and moment about the origin(mx,my,mz)
2.454956E+00 -7.226251E+00 1.377949E+01 7.236961E+01 -5.740438E+00 -4.957194E+00
center of gravity and mean normal
5.000000E-01 5.000000E-01 0.000000E+00 0.000000E+00 0.000000E+00 -1.000000E+00
moment about the center of gravity(mx,my,mz)
6.547987E+01 1.149306E+00 -1.165902E-01
area, normal force (+ = tension) and shear force (size)

6.000000E+00 -1.377949E+01 7.631875E+00

From this one observes that the reaction force obtained by the *NODE
PRINT statement is very accurate, however, the integration across the surface
of the stresses is rather inaccurate: instead of 9 force units one obtains 7.23
units. The moment about the center of gravity is 65.5 [force][length] instead of
the expected 72 [force][length] (the length of the beam is 8 length units).

The value of the error estimator is shown in Figure[54l Not surprisingly, the
error is quite high, up to 30 %.

In order to obtain better results, an automatic stress-based refinement is
triggered by the *REFINE MESH,LIMIT=50 card. The field on which the re-
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Figure 55: Normal stress in z-direction for the fine mesh

finement is based is listed underneath this card. “S” means that the Mises stress
will be used. The Mises stress for this example reaches values of about 400 stress
units, so a refinement of up to a factor of 8 is locally possible (a refinement limit
of 50. was chosen). In the current version of CalculiX up to three iterations are
performed, each of which allows for a refinement by a factor of two. The refine-
ments are always applied to a version of the original mesh in which any quadratic
elements are replaced by linear ones (C3D10 by C3D4), i.e. the middle nodes
are not taken into account. The results of these refinement iterations are stored
as input decks (containing only the mesh) in files finemesh.inp0, finemesh.inp1l
and finemesh.inp2. After generating the mesh stored in finemesh.inp2, the pro-
gram generates midnodes for all elements if the input deck contained at least
one quadratic element. All nodes are subsequently projected onto the faces of
the original mesh. This means that the geometry is basically described by the
outer surface of the mesh in the input deck. Elements in the input deck other
than tetrahedral elements remain untouched. The resulting projected mesh is
stored as input deck in jobname.fin. It contains only the refined mesh (nodes
and elements).

Running the circl0p input deck and reapplying the necessary boundary
and loading conditions (this has to be done by hand) leads to the input deck
cric10pfin.inp (also part of the CalculiX test examples). Running this deck leads
to the normal z-stresses in Figure 55 and the error in Figure

The mesh has been refined near the left face of the beam, where the stresses
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Figure 56: Error estimator for the fine mesh

were highest. The resulting elements are quadatic elements and the curvature
of the original mesh has been nicely kept.

The compressive stresses are slightly increased, while the tensile stresses are
now much more localized about the nodes fixed in y-direction. The overall level,
however, is similar. The stress error is about the same as for the coarse mesh,
however, at those locations where the stress is high, the error is now low, about
5 % instead of 30 %. These are the locations of interest.

The output for the reaction forces in the .dat file looks like:

total force (fx,fy,fz) for set FIX and time 0.1000000E+01

3.221013E-12 -9.000000E+00 7.356782E-12

statistics for surface set SFIX and time 0.1000000E+01

total surface force (fx,fy,fz) and moment about the origin(mx,my,mz)

1.512388E-01 -9.252627E+00 -7.227514E-01 7.175724E+01 1.563390E-01 -4.206416E+00
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center of gravity and mean normal

5.000000E-01 5.000000E-01 4.014218E-19 -4.263022E-20 4.286885E-20 -1.000000E+00
moment about the center of gravity(mx,my,mz)

7.211862E+01 -2.050367E-01 4.955169E-01

area, normal force (+ = tension) and shear force (size)

6.000000E+00 7.227514E-01 9.253863E+00

The nodal output is again very accurate, while the section output has clearly
improved: the total reaction force is now -9.25 force units, the moment about
the center of gravity is 72.12 [force|[length]. The finer mesh leads to more
accurate nodal stresses, which are the ones which have been used to determined
the section forces.

6 Theory

The finite element method is basically concerned with the determination of
field variables. The most important ones are the stress and strain fields. As
basic measure of strain in CalculiX the Lagrangian strain tensor E is used for
elastic media, the deviatoric elastic left Cauchy-Green tensor for incremental
plasticity, the logarithmic (or Hencky) strain [9] for some other plasticity models
as deformation plasticity and Johnson-Cook hardening and linear strains where
appropriate, i.e. for small deformations combined with small rotations. The
Lagrangian strain satisfies ([25]):

Fxr=Ukt+ ULk +UmxUnmr)/2, K,L,M=1,23 (2)

where Uy are the displacement components in the material frame of reference
and repeated indices imply summation over the appropriate range. In a linear
analysis, this reduces to the familiar form:

Exr=(Ukr+Urk)/2, K,L=12,3. (3)
The deviatoric elastic left Cauchy-Green tensor is defined by ([87]):
biy = Je_Q/sz,lee,K (4)

where J* is the elastic Jacobian and zj, j is the elastic deformation gradient.
Finally, the logarithmic strain satisfies:

e 1= Zln Ain; @ n;, (5)

K2
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where A? are the eigenvalues of the Cauchy-Green tensor C := FT . F and
n; are obtained from the eigenvectors IN; of C' through

where R is the rotation tensor obtained from the well known decomposition
of the deformation gradient F' into a product of an orthogonal matrix R and
a symmetric matrix U in the form FF = R - U. The above formulas apply to
Cartesian coordinate systems.

The stress measure consistent with the Lagrangian strain is the second Piola-
Kirchhoff stress S. This stress, which is internally used in CalculiX for all ap-
plications (the so-called total Lagrangian approach, see [9]), can be transformed
into the first Piola-Kirchhoff stress P (the so-called engineering stress, a non-
symmetric tensor) and into the Cauchy stress o (true stress). All CalculiX
input (e.g. distributed loading) and output is in terms of true stress. The stress
measures are related by:

P=JF'. o (7)

and

S=JF'. 0. FT, (8)

where J = det(F).

The treatment of the thermal strain depends on whether the analysis is
geometrically linear or nonlinear. For isotropic material the thermal strain
tensor amounts to @ATI, where @ is the (secant) expansion coefficient, AT is
the temperature change since the initial state and I is the second order identity
tensor. For geometrically linear calculations the thermal strain is subtracted
from the total strain to obtain the mechanical strain:

E?efh = EKL —aAT0kr,. (9)

In a nonlinear analysis the thermal strain is subtracted from the deforma-
tion gradient in order to obtain the mechanical deformation gradient. Indeed,
assuming a multiplicative decomposition of the deformation gradient one can
write:

de =F - dX = Fyeen - Fup - dX, (10)

where the total deformation gradient F' is written as the product of the
mechanical deformation gradient and the thermal deformation gradient. For
isotropic materials the thermal deformation gradient can be written as Fy, =
(1 +@AT)I and consequently:

F!' ~ (1-aAT)I. (11)

Therefore one obtains:



92 6 THEORY

(Finech )ik~ Frr (1 —@AT) = (1 +wp k) (1 —aAT)
~ 1+up g —aAT. (12)

Based on the mechanical deformation gradient the mechanical Lagrange
strain is calculated and subsequently used in the material laws:

2Emcch == Frlnlcch . chch -1 (13)

Since the stretches A are the eigenvalues of the deformation gradient, sub-
tracting @ATTI from F amounts to subtracting @AT from A\ = L/Lg = 1+
AL/Lg. Therefore, the thermal strain get the meaning of a length change di-
vided by an initial length. Infinitesimally one obtains:

dL
fo = Oéd]ﬂl7 (14)
leading to
L— Lo /T
= a(&)d
= a(T)(T - To)
= a(T)AT, (15)
from which
L=Lo(1+a(T)AT. (16)

Here, Tj is the temperature for which the specimen length is Ly, « is the
instantaneous or tangent expansion coefficient and @ is the secant expansion
coefficient. We observe that the extension is linear in the temperature. This is
also the way in which the expansion coefficients are usually measured, i.e. with
respect to the initial specimen length.

Notice that the same approach is taken in CalculiX for the calculation of the
corotational logarithmic strain needed for an Abaqus User Material Routine.
First, the thermal strain is subtracted from the total stretch to obtain the
mechanical stretch and then the corational logarithmic strain is built:

Elnmech = Z(ln Xi —a@AT)N; ® N, (17)
which implies
dL
7= adT, (18)

leading to
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mp = " ae)de

Lo T
= a(T)AT, (19)
L = Ly exp[a(T)AT). (20)

This establishes an exponential expansion relationship. This is fine, as long
as the thermal strain was also measured according to Equation(I8]), i.e. with
reference to the actual length. The latter approach, used by a lot of Finite
Element codes requires linear expansion coefficients for linear calculations (using
linear strain) and exponential ones for nonlinear geometric calculations (using
logarithmic strain). The approach in CalculiX avoids this.

6.1 Node Types
There are three node types:

e 1D fluid nodes. These are nodes satisfying at least one of the following
conditions:

— nodes belonging to 1D network elements (element labels starting with
D)

— reference nodes in FEILM] cards of type forced convection (label:
F*FC).

— reference nodes in FDLOAD| cards of type nodal pressure (label:
P*NP).

e 3D fluid nodes. These are nodes belonging to 3D fluid elements (element
labels starting with F)

e structural nodes. Any nodes not being 1D fluid nodes nor 3D fluid nodes.

It is not allowed to create equations between nodes of different types.

6.2 Element Types

There are a lot of different elements implemented in CalculiX, therefore it is not
always easy to select the right one. In general, one can say that the quadratic
elements are the most stable and robust elements in CalculiX. If you are not
a finite element specialist the use of quadratic elements is strongly suggested.
This includes:

e hexahedral elements: C3D20R
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o tetrahedral elements: C3D10

e axisymmetric elements: CAX8R
e plane stress elements: CPS8R

e plane strain elements: CPESR
e shell elements: S8R

e beam elements: B32R

Other elements frequently exhibit unsatisfactory behavior in certain instances,
e.g. the C3D8 element in bending states. Unless you are a specialist, do not
use such elements. Detailed information is given underneath.

6.2.1 Eight-node brick element (C3D8 and F3D8)

The C3D8 element is a general purpose linear brick element, fully integrated
(2x2x2 integration points). The shape functions can be found in [46]. The
node numbering follows the convention of Figure B7 and the integration points
are numbered according to Figure This latter information is important
since element variables printed with the FEL PRINT keyword are given in the
integration points.

Although the structure of the element is straightforward, it should not be
used in the following situations:

e due to the full integration, the element will behave badly for isochoric
material behavior, i.e. for high values of Poisson’s coefficient or plastic
behavior.

e the element tends to be too stiff in bending, e.g. for slender beams or thin
plates under bending. [109].

The F3D8 element is the corresponding fluid element.

6.2.2 Eight-node brick element with reduced integration (C3D8R)

The C3D8R element is a general purpose linear brick element, with reduced inte-
gration (1 integration point). The shape functions are the same as for the C3D8
element and can be found in [46]. The node numbering follows the convention
of Figure [57 and the integration point is shown in Fig

Due to the reduced integration, the locking phenomena observed in the C3D8
element do not show. However, the element exhibits other shortcomings:

e The element tends to be not stiff enough in bending.

e Stresses, strains.. are most accurate in the integration points. The integra-
tion point of the C3D8R, element is located in the middle of the element.
Thus, small elements are required to capture a stress concentration at the
boundary of a structure.
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Figure 57: 8-node brick element
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Figure 58: 2x2x2 integration point scheme in hexahedral elements
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Figure 59: 1x1x1 integration point scheme in hexahedral elements

e There are 12 spurious zero energy modes leading to massive hourglass-
ing: this means that the correct solution is superposed by arbitrarily large
displacements corresponding to the zero energy modes. Thus, the dis-
placements are completely wrong. Since the zero energy modes do no lead
to any stresses, the stress field is still correct. In practice, the C3D8R el-
ement is not very useful without hourglass control. Starting with version
2.3 hourglass control is automatically activated for this element (using the
theory in [28]), thus alleviating this issue.

6.2.3 Incompatible mode eight-node brick element (C3D8I)

The incompatible mode eight-node brick element is an improved version of the
C3D8-element. In particular, shear locking is removed and volumetric locking
is much reduced. This is obtained by supplementing the standard shape func-
tions with so-called bubble functions, which have a zero value at all nodes and
nonzero values in between. In CalculiX, the version detailed in [I00] has been
implemented. The C3DS8I element should be used in all instances in which linear
elements are subject to bending. Although the quality of the C3D8I element
is far better than the C3D8 element, the best results are usually obtained with
quadratic elements (C3D20 and C3D20R). The C3D8I element is not very good
when subjected to torsion. Since the B31 element is expanded into a C3D8I
element this also applies to the B31 element.
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Figure 60: 20-node brick element

6.2.4 Twenty-node brick element (C3D20)

The C3D20 element is a general purpose quadratic brick element (3x3x3 inte-
gration points). The shape functions can be found in [46]. The node numbering
follows the convention of Figure [60 and the integration scheme is given in Figure
6]

This is an excellent element for linear elastic calculations. Due to the location
of the integration points, stress concentrations at the surface of a structure are
well captured. However, for nonlinear calculations the elements exhibits the
same disadvantages as the C3D8 element, albeit to a much lesser extent:

e due to the full integration, the element will behave badly for isochoric
material behavior, i.e. for high values of Poisson’s coefficient or plastic
behavior.

e the element tends to be too stiff in bending, e.g. for slender beams or thin
plates under bending. [109].
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Figure 61: 3x3x3 integration point scheme in hexahedral elements

6.2.5 Twenty-node brick element with reduced integration (C3D20R)

The C3D20R element is a general purpose quadratic brick element, with reduced
integration (2x2x2 integration points). The shape functions can be found in [46].
The node numbering follows the convention of Figure and the integration
scheme is shown in Figure

The element behaves very well and is an excellent general purpose element
(if you are setting off for a long journey and you are allowed to take only one
element type with you, that’s the one to take). It also performs well for isochoric
material behavior and in bending and rarely exhibits hourglassing despite the
reduced integration (hourglassing generally occurs when not enough integration
points are used for numerical integration and spurious modes pop up resulting
in crazy displacement fields but correct stress fields). The reduced integration
points are so-called superconvergent points of the element [7]. Just two caveats:

e the integration points are about one quarter of the typical element size
away from the boundary of the element, and the extrapolation of integra-
tion point values to the nodes is trilinear. Thus, high stress concentrations
at the surface of a structure might not be captured if the mesh is too coarse.

e all quadratic elements cause problems in node-to-face contact calculations,
because the nodal forces in the vertex nodes equivalent to constant pres-
sure on an element side (section [EIT.2]) are zero or have the opposite
sign of those in the midside nodes. This problem seems to be solved if
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Figure 62: 4-node tetrahedral element

face-to-face penalty or mortar contact is used.

6.2.6 Four-node tetrahedral element (C3D4 and F3D4)

The C3D4 is a general purpose tetrahedral element (1 integration point). The
shape functions can be found in [I09]. The node numbering follows the conven-
tion of Figure

This element is included for completeness, however, it is not suited for struc-
tural calculations unless a lot of them are used (the element is too stiff). Please
use the 10-node tetrahedral element instead.

The F3D4 element is the corresponding fluid element.

6.2.7 Ten-node tetrahedral element (C3D10)

The C3D10 element is a general purpose tetrahedral element (4 integration
points). The shape functions can be found in [I09]. The node numbering
follows the convention of Figure
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Figure 63: 10-node tetrahedral element
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The element behaves very well and is a good general purpose element, al-
though the C3D20R element yields still better results for the same number of
degrees of freedom. The C3D10 element is especially attractive because of the
existence of fully automatic tetrahedral meshers.

6.2.8 Modified ten-node tetrahedral element (C3D10T)

The C3D10T elements is identical to the C3D10 element except for the treat-
ment of thermal strains. In a regular C3D10 element both the initial tem-
peratures and the displacements are interpolated quadratically, which leads to
quadratic thermal strains and linear total strains (since the total strain is the
derivative of the displacements). The mechanical strain is the total strain mi-
nus the thermal strain, which is consequently neither purely linear nor purely
quadratic. This discrepancy may lead to a checkerboard pattern in the stresses,
which is observed especially in the presence of high initial temperature gradi-
ents. To alleviate this the initial temperatures are interpolated linearly within
the C3D10T element.

Notice that the linear interpolation of the initial temperatures is standard
for the C3D20 and C3D20R element. For the C3D10 element it is not to keep
the compatibily with ABAQUS.

6.2.9 Six-node wedge element (C3D6 and F3D6)

The C3D6 element is a general purpose wedge element (2 integration points).
The shape functions can be found in [I]. The node numbering follows the
convention of Figure

This element is included for completeness, however, it is probably not very
well suited for structural calculations unless a lot of them are used. Please use
the 15-node wedge element instead.

The F3D6 element is the corresponding fluid element.

6.2.10 Fifteen-node wedge element (C3D15)

The C3D15 element is a general purpose wedge element (9 integration points).
The shape functions can be found in [I]. The node numbering follows the
convention of Figure

The element behaves very well and is a good general purpose element, al-
though the C3D20R element yields still better results for the same number of
degrees of freedom. The wedge element is often used as fill element in “auto-
matic” hexahedral meshers.

6.2.11 Three-node shell element (S3)

This is a general purpose linear triangular shell element. For the node numbering
and the direction of the normal to the surface the reader is referred to the
quadratic six-node shell element (S6) in Figure 60l (just drop the middle nodes).
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Figure 64: 6-node wedge element
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Figure 65: 15-node wedge element
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Figure 66: 6-node triangular element

In CalculiX, three-node shell elements are expanded into three-dimensional
C3D6 wedge elements. The way this is done can be derived from the analogous
treatment of the S6-element in Figure [67] (again, drop the middle nodes). For
more information on shell elements the reader is referred to the eight-node shell
element S8.

6.2.12 Four-node shell element (S4 and S4R)

This is a general purpose linear 4-sided shell element. For the node number-
ing and the direction of the normal to the surface the reader is referred to
the quadratic eight-node shell element (S8) in Figure [68 (just drop the middle
nodes).

In CalculiX, S4 and S4R four-node shell elements are expanded into three-
dimensional C3D8I and C3D8R elements, respectively. The way this is done can
be derived from the analogous treatment of the S8-element in Figure 69 (again,
drop the middle nodes). For more information on shell elements the reader is
referred to the eight-node shell element S8.

6.2.13 Six-node shell element (S6)

This is a general purpose triangular shell element. The node numbering and
the direction of the normal to the surface is shown in Figure

In CalculiX, six-node shell elements are expanded into three-dimensional
wedge elements. The way in which this is done is illustrated in Figure For
more information on shell elements the reader is referred to the eight-node shell
element in the next section.
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Figure 67: Expansion of a 2D 6-node element into a 3D wedge element

6.2.14 Eight-node shell element (S8 and S8R)

This element is a general purpose 4-sided shell element. The node numbering
and the direction of the normal to the surface is shown in Figure

In CalculiX, quadratic shell elements are automatically expanded into 20-
node brick elements. The way this is done is illustrated in Figure For each
shell node three new nodes are generated according to the scheme on the right
of Figure With these nodes a new 20-node brick element is generated: for a
S8 element a C3D20 element, for a S8R element a C3D20R element.

Since a shell element can be curved, the normal to the shell surface is defined
in each node separately. For this purpose the FNORMATI keyword card can be
used. If no normal is defined by the user, it will be calculated automatically by
CalculiX based on the local geometry.

If a node belongs to more than one shell element, all, some or none of the
normals on these elements in the node at stake might have been defined by the
user (by means of *NORMAL). The failing normals are determined based on the
local geometry (notice, however, that for significantly distorted elements it may
not be possible to determine the normal; this particularly applies to elements in
which the middle nodes are way off the middle position). The number of normals
is subsequently reduced using the following procedure. First, the element with
the lowest element number with an explicitly defined normal in this set, if any,
is taken and used as reference. Its normal is defined as reference normal and
the element is stored in a new subset. All other elements of the same type in
the set for which the normal has an angle smaller than 0.5° with the reference
normal and which have the same local thickness and offset are also included
in this subset. The elements in the subset are considered to have the same
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Figure 69: Expansion of a 2D 8-node element into a 3D brick element
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Figure 70: Overlapping shell elements at a knot

normal, which is defined as the normed mean of all normals in the subset. This
procedure is repeated for the elements in the set minus the subset until no
elements are left with an explicitly defined normal. Now, the element with the
lowest element number of all elements left in the set is used as reference. Its
normal is defined as reference normal and the element is stored in a new subset.
All other elements left in the set for which the normal has an angle smaller than
20° with the reference normal and which have the same local thickness and
offset are also included in this subset. The normed mean of all normals in the
subset is assigned as new normal to all elements in the subset. This procedure is
repeated for the elements left until a normal has been defined in each element.

This procedure leads to one or more normals in one and the same node. If
only one normal is defined, this node is expanded once into a set of three new
nodes and the resulting three-dimensional expansion is continuous in the node.
If more than one normal is defined, the node is expanded as many times as there
are normals in the node. To assure that the resulting 3D elements are connected,
the newly generated nodes are considered as a knot. A knot is a rigid body
which is allowed to expand uniformly. This implies that a knot is characterized
by seven degrees of freedom: three translations, three rotations and a uniform
expansion. Graphically, the shell elements partially overlap (Figure [70).

Consequently, a node leads to a knot if
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e the direction of the local normals in the elements participating in the node
differ beyond a given amount. Notice that this also applies to neighbor-
ing elements having the inverse normal. Care should be taken that the
elements in plates and similar structures are oriented in a consistent way
to avoid the generation of knots and the induced nonlinearity.

e several types of elements participate (e.g. shells and beams).
e the thickness is not the same in all participating elements.
e the offset is not the same in all participating elements.

e a rotation or a moment is applied in the node (only for dynamic calcula-
tions)

In CalculiX versions prior to and including version 2.7 a knot was also in-
troduced as soon as the user applied a rotation or a moment to a node. Right
now, this is still the case for dynamic calculations (cf. listing above). However,
in static calculations, starting with version 2.8 this type of loading is handled
by using mean rotation MPC’s (cf. Section B7.1)). The mean rotation MPC’s
are generated automatically, so the user does not have to take care of that. It
generally leads to slightly better results then by use of knots. However, the
use of mean rotation MPC’s prohibits the application of drilling moments, i.e.
moments about an axis perpendicular to a shell surface. Similarly, no drilling
rotation should be prescribed, unless all rotational degrees of freedom are set to
zero in the node. If the shell surface is not aligned along the global coordinate
directions, prescribing a moment or rotation aboun an axis perpendicular to the
drilling direction may require the definition of a local coordinate system. Also
note that the rotation in a mean rotation MPC should not exceed 90 degrees.
Starting with version 2.15 any nonzero drilling moment or rotation is automat-
ically removed and a warning is issued. In earlier versions, a drilling moment
or rotation led to an error, forcing the program to abort.

Beam and shell elements are always connected in a stiff way if they share
common nodes. This, however, does not apply to plane stress, plane strain
and axisymmetric elements. Although any mixture of 1D and 2D elements
generates a knot, the knot is modeled as a hinge for any plane stress, plane
strain or axisymmetric elements involved in the knot. This is necessary to
account for the special nature of these elements (the displacement normal to
the symmetry plane and normal to the radial planes is zero for plane elements
and axisymmetric elements, respectively).

The translational node of the knot (cfr REF NODE in the FRIGID BODY]
keyword card) is the knot generating node, the rotational node is extra gener-
ated.

The thickness of the shell element can be defined on the FSHELL SECTION
keyword card. It applies to the complete element. Alternatively, a nodal thick-
ness in each node separately can be defined using FNODAL THICKNESS| In

that way, a shell with variable thickness can be modeled. Thicknesses defined
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by a *NODAL THICKNESS card take precedence over thicknesses defined by a
*SHELL SECTION card. The thickness always applies in normal direction. The
FSHELL SECTIONI card is also used to assign a material to the shell elements
and is therefore indispensable.

The offset of a shell element can be set on the FSHELL SECTION] card.
Default is zero. The unit of the offset is the local shell thickness. An offset of 0.5
means that the user-defined shell reference surface is in reality the top surface of
the expanded element. The offset can take any real value. Consequently, it can
be used to define composite materials. Defining three different shell elements
using exactly the same nodes but with offsets -1, 0 and 1 (assuming the thickness
is the same) leads to a three-layer composite.

However, due to the introduction of a knot in every node of such a com-
posite, the deformation is usually too stiff. Therefore, a different method has
been coded to treat composites. Right now, it can only be used for 8-node
shells with reduced integration (S8R) and 6-node shell elements (S6). Instead
of defining as many shells as there are layers the user only defines one shell
element, and uses the option COMPOSITE on the FSHELL SECTION] card.
Underneath the latter card the user can define as many layers as needed. In-
ternally, the shell element is expanded into only one 3-D brick element but the
number of integration points across the thickness amounts to twice the num-
ber of layers. During the calculation the integration points are assigned the
material properties appropriate for the layer they belong to. In the .dat file
the user will find the displacements of the global 3-D element and the stresses
in all integration points (provided the user has requested the corresponding
output using the FNODE PRINT] and FEL PRINT] card). In the .frd file, how-
ever, each layer is expanded independently and the displacements and stresses
are interpolated/extrapolated accordingly (no matter whether the parameter
OUTPUT=3D was used). The restrictions on this kind of composite element
are right now:

e can only be used for S8R and S6 elements
e reaction forces (RF) cannot be requested in the .frd file.
e the use of *NODAL THICKNESS is not allowed

e the error estimators cannot be used.

In composite materials it is frequently important to be able to define a
local element coordinate system. Indeed, composites usually consist of layers of
anisotropic materials (e.g. fiber reinforced) exhibiting a different orientation in
each layer. To this end the FORIENTATION] card can be used.

First of all, it is of uttermost importance to realize that a shell element
ALWAYS induces the creation of a local element coordinate system, no matter
whether an orientation card was defined or not. If no orientation applies to a
specific layer of a specific shell element then a local shell coordinate system is
generated consisting of:
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e a local x’-axis defined by the projection of the global x-axis on the shell
(actually at the location of the shell which corresponds to local coordinates
& =0,n=0), or, if the angle between the global x-axis and the normal
to the shell is smaller than 0.1°, by the projection of the global z-axis on
the shell.

e a local y’-axis such that ¢/ = 2/ x z/.

e a local z’-axis coinciding with the normal on the shell (defined such that
the nodes are defined clockwise in the element topology when looking in
the direction of the normal).

Notice that this also applies in shell which are not defined as composites
(can be considered as one-layer composites).

If an orientation is applied to a specific layer of a specific shell element then
a local shell coordinate system is generated consisting of:

e a local x’-axis defined by the projection of the local x-axis defined by
the orientation on the shell (actually at the location of the shell which
corresponds to local coordinates £ = 0, n = 0), or, if the angle between
the local x-axis defined by the orientation and the normal to the shell is
smaller than 0.1°, by the projection of the local z-axis as defined by the
orientation on the shell.

e a local y’-axis such that ¢y’ = 2’ x 2/.

e a local z’-axis coinciding with the normal on the shell (defined such that
the nodes are defined clockwise in the element topology when looking in
the direction of the normal).

The treatment of the boundary conditions for shell elements is straightfor-
ward. The user can independently fix any translational degree of freedom (DOF
1 through 3) or any rotational DOF (DOF 4 through 6). Here, DOF 4 is the
rotation about the global or local x-axis, DOF 5 about the global or local y-axis
and DOF 6 about the global or local z-axis. Local axes apply if the transfor-
mation (FTRANSFORM]) has been defined, else the global system applies. A
hinge is defined by fixing the translational degrees of freedom only. Recall that
it is not allowed to constrain a rotation about the drilling axis on a shell, unless
the rotations about all axes in the node are set to zero.

For an internal hinge between 1D or 2D elements the nodes must be doubled
and connected with MPC’s. The connection between 3D elements and all other
elements (1D or 2D) is always hinged.

Point forces defined in a shell node are not modified if a knot is generated
(the reference node of the rigid body is the shell node). If no knot is generated,
the point load is divided among the expanded nodes according to a 1/2-1/2 ratio
for a shell mid-node and a 1/6-2/3-1/6 ratio for a shell end-node. Concentrated
bending moments or torques are defined as point loads (FCLOADI) acting on
degree four to six in the node. Their use generates a knot in the node.
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Distributed loading can be defined by the label P in the FDLOADI card. A
positive value corresponds to a pressure load in normal direction.

In addition to a temperature for the reference surface of the shell, a temper-
ature gradient in normal direction can be specified on the FTEMPERATURE]
card. Default is zero.

Concerning the output, nodal quantities requested by the keyword FNODE PRINT]
are stored in the shell nodes. They are obtained by averaging the nodal values of
the expanded element. For instance, the value in local shell node 1 are obtained
by averaging the nodal value of expanded nodes 1 and 5. Similar relationships
apply to the other nodes, in 6-node shells:

e shell node 1 = average of expanded nodes 1 and 4
e shell node 2 = average of expanded nodes 2 and 5
e shell node 3 = average of expanded nodes 3 and 6
e shell node 4 = average of expanded nodes 7 and 10
e shell node 5 = average of expanded nodes 8 and 11

e shell node 6 = average of expanded nodes 9 and 12
In 8-node shells:

e shell node 1 = average of expanded nodes 1 and 5

e shell node 2 = average of expanded nodes 2 and 6

e shell node 3 = average of expanded nodes 3 and 7

e shell node 4 = average of expanded nodes 4 and 8

e shell node 5 = average of expanded nodes 9 and 13
e shell node 6 = average of expanded nodes 10 and 14
e shell node 7 = average of expanded nodes 11 and 15

e shell node 8 = average of expanded nodes 12 and 16

Element quantities, requested by FEL PRINT] are stored in the integration
points of the expanded elements.

Default storage for quantities requested by the and FEL_FILEl
is in the expanded nodes. This has the advantage that the true three-dimensional
results can be viewed in the expanded structure, however, the nodal numbering
is different from the shell nodes. By selecting OUTPUT=2D the results are
stored in the original shell nodes. The same averaging procedure applies as for
the *NODE PRINT command.

In thin structures two words of caution are due: the first is with respect to
reduced integration. If the aspect ratio of the beams is very large (slender beams,
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aspect ratio of 40 or more) reduced integration will give you far better results
than full integration. However, due to the small thickness hourglassing can
readily occur, especially if point loads are applied. This results in displacements
which are widely wrong, however, the stresses and section forces are correct.
Usually also the mean displacements across the section are fine. If not, full
integration combined with smaller elements might be necessary. Secondly, thin
structures can easily exhibit large strains and/or rotations. Therefore, most
calculations require the use of the NLGEOM parameter on the FSTEP| card.

6.2.15 Three-node membrane element (M3D3)

This element is similar to the S3 shell element except that it cannot sustain
bending. This is obtained by modelling hinges in each of the nodes of the
element. Apart from that, all what is said about the S3 element also ap-
plies here with one exception: instead of the *SHELL SECTION card the
FMEMBRANE SECTION] card has to be used.

6.2.16 Four-node membrane element (M3D4 and M3D4R)

These elements are similar to the S4 and S4R shell elements, respectively, except
that they cannot sustain bending. This is obtained by modelling hinges in each
of the nodes of the elements. Apart from that, all what is said about the S4
and S4R elements also applies here with one exception: instead of the *SHELL
SECTION card the card has to be used.

6.2.17 Six-node membrane element (M3D6)

This element is similar to the S6 shell element except that it cannot sustain
bending. This is obtained by modelling hinges in each of the end nodes of
the element. Apart from that, all what is said about the S6 element also
applies here with one exception: instead of the *SHELL SECTION card the
FMEMBRANE SECTION] card has to be used.

6.2.18 Eight-node membrane element (M3D8 and M3D8R)

These elements are similar to the S8 and S8R shell elements, respectively, except
that they cannot sustain bending. This is obtained by modelling hinges in each
of the end nodes of the elements. Apart from that, all what is said about the S8
and S8R elements also applies here with one exception: instead of the *SHELL
SECTION card the card has to be used.

6.2.19 Three-node plane stress element (CPS3)

This element is very similar to the three-node shell element. Figures and
apply (just drop the middle nodes). For more information on plane stress
elements the reader is referred to the section on CPS8 elements.
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6.2.20 Four-node plane stress element (CPS4 and CPS4R)

This element is very similar to the eight-node shell element. Figures and
apply (just drop the middle nodes). The CPS4 and CPS4R elements are
expanded into C3D8 and C3DS8R elements, respectively. For more information
on plane stress elements the reader is referred to the section on CPS8 elements.

6.2.21 Six-node plane stress element (CPS6)

This element is very similar to the six-node shell element. Figures and
apply. For more information on plane stress elements the reader is referred to
the next section.

6.2.22 Eight-node plane stress element (CPS8 and CPS8R)

The eight node plane stress element is a general purpose plane stress element.
It is actually a special case of shell element: the structure is assumed to have a
symmetry plane parallel to the x-y plane and the loading only acts in-plane. In
general, the z-coordinates are zero. Just like in the case of the shell element, the
plane stress element is expanded into a C3D20 or C3D20R element. Figures
and [69 apply. From the above premises the following conclusions can be drawn:

e The displacement in z-direction of the midplane is zero. This condition is
introduced in the form of SPC’s. MPC’s must not be defined in z-direction!

e The displacements perpendicular to the z-direction of nodes not in the
midplane is identical to the displacements of the corresponding nodes in
the midplane.

e The normal is by default (0,0,1)

e The thickness can vary. It can be defined in the same way as for the shell
element, except that the FSOLID SECTION] card is used instead of the
*SHELL SECTION card.

e Different offsets do not make sense.

e Point loads are treated in a similar way as for shells.

The use of plane stress elements can also lead to knots, namely, if the thick-
ness varies in a discontinuous way, or if plane stress elements are combined with
other 1D or 2D elements such as axisymmetric elements. The connection with
the plane stress elements, however, is modeled as a hinge.

Distributed loading in plane stress elements is different from shell distributed
loading: for the plane stress element it is in-plane, for the shell element it is out-
of-plane. Distributed loading in plane stress elements is defined on the FDLOADI
card with the labels P1 up to P4. The number indicates the face as defined in
Figure [Tl
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Figure 71: Face numbering for quadrilateral elements
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If a plane stress element is connected to a structure consisting of 3D elements
the motion of this structure in the out-of-plane direction (z-direction) is not
restricted by its connection to the 2D elements. The user has to take care that
any rigid body motion of the structure involving the z-direction is taken care
of, if appropriate. This particularly applies to any springs connected to plane
stress elements, look at test example spring4 for an illustration.

Notice that structures containing plane stress elements should be defined in
the global x-y plane, i.e. z=0 for all nodes.

6.2.23 Three-node plane strain element (CPE3)

This element is very similar to the three-node shell element. Figures and
apply (just drop the middle nodes). For more information on plane strain
elements the reader is referred to the section on CPES elements.

6.2.24 Four-node plane strain element (CPE4 and CPE4R)

This element is very similar to the eight-node shell element. Figures and
apply (just drop the middle nodes). The CPE4 and CPE4R elements are
expanded into C3D8 and C3D8R elements, respectively. For more information
on plane strain elements the reader is referred to the section on CPES8 elements.

6.2.25 Six-node plane strain element (CPE6)

This element is very similar to the six-node shell element. Figures and
apply. For more information on plane strain elements the reader is referred to
the next section.

6.2.26 Eight-node plane strain element (CPE8 and CPES8R)

The eight node plane strain element is a general purpose plane strain element.
It is actually a special case of plane stress element: the treatise of Section [6.2.27]
also applies here. In addition we have:

e The displacement in z-direction of all nodes (not only the mid-nodes) is
zero. This condition is introduced in the form of MPC’s, expressing that
the displacement in z-direction of nodes not in the midplane is identical
to the displacement of the corresponding nodes in the midplane.

e Different thicknesses do not make sense: one thickness applicable to all
plane strain elements suffices.

Plane strain elements are used to model a slice of a very long structure, e.g.
of a dam.

If a plane strain element is connected to a structure consisting of 3D elements
the motion of this structure in the out-of-plane direction (z-direction) is not
restricted by its connection to the 2D elements. The user has to take care that
any rigid body motion of the structure involving the z-direction is taken care
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of, if appropriate. This particularly applies to any springs connected to plane
strain elements.

Notice that structures containing plane strain elements should be defined in
the global x-y plane, i.e. z=0 for all nodes.

6.2.27 Three-node axisymmetric element (CAX3)

This element is very similar to the three-node shell element. Figures and
apply (just drop the middle nodes). For more information on axisymmetric
elements the reader is referred to the section on CAXS8 elements.

6.2.28 Four-node axisymmetric element (CAX4 and CAX4R)

This element is very similar to the eight-node shell element. Figures [68] and
apply (just drop the middle nodes). The CAX4 and CAX4R elements are ex-
panded into C3D8 and C3D8R elements, respectively. For more information on
axisymmetric elements the reader is referred to the section on CAXS8 elements.

6.2.29 Six-node axisymmetric element (CAXG6)

This element is very similar to the six-node shell element. Figures and
apply. For more information on axisymmetric elements the reader is referred to
the next section.

6.2.30 Eight-node axisymmetric element (CAX8 and CAX8R)

This is a general purpose quadratic axisymmetric element. Just as the shell,
plane stress and plane strain element it is internally expanded into a C3D20 or
C3D20R element according to Figure [69] and the node numbering of Figure
applies.

For axisymmetric elements the coordinates of the nodes correspond to the ra-
dial direction (first coordinate) and the axial direction (second or y-coordinate).
The axisymmetric structure is expanded by rotation about the second coordi-
nate axis, half clockwise and half counterclockwise. The radial direction corre-
sponds to the x-axis in the 3D expansion, the axial direction with the y-axis.
The x-y plane cuts the expanded structure in half. The z-axis is perpendicular
to the x-y plane such that a right-hand-side axis system is obtained.

The same rules apply as for the plane strain elements, except that in-plane
conditions in a plane strain construction now correspond to radial plane condi-
tions in the axisymmetric structure. Expressed in another way, the z-direction
in plane strain now corresponds to the circumferential direction in a cylindrical
coordinate system with the y-axis as defining axis. Notice that nodes on the
x-axis are not automatically fixed in radial direction. The user has to take care

of this by using the FBOUNDARY] card

Compared to plane strain elements, the following conditions apply:
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e The expansion angle is fixed, its size is 2°. The value on the line beneath

the FSOLID SECTION keyword, if any, has no effect.

e The displacements in cylindrical coordinates of all nodes not in the defin-
ing plane are identical to the displacements of the corresponding nodes in
the defining plane. This is formulated using MPC’s.

e Forces act in radial planes. They have to be defined for the complete
circumference, i.e. if you apply a force in a node, you first have to sum all
forces at that location along the circumference and then apply this sum
to the node.

e Concentrated heat fluxes act in radial planes. They have to be defined for
the complete circumference.

e Mass flow rates act in radial planes. They have to be defined for the
complete circumference.

e For distributed loading Figure [1] applies.

A special application is the combination of axisymmetric elements with plane
stress elements to model quasi-axisymmetric structures. Consider a circular disk
with holes along the circumference, Figure Assume that the holes take up
k% of the circumferential width, i.e. if the center of the holes is located at
a radius r, the holes occupy 27rk/100. Then, the structure is reduced to a
two-dimensional model by simulating the holes by plane stress elements with
width 277(100 — k)/100 and everything else by axisymmetric elements. More
sophisticated models can be devised (e.g. taking the volume of the holes into
account instead of the width at their center, or adjusting the material properties
as well [42]). The point here is that due to the expansion into three-dimensional
elements a couple of extra guidelines have to be followed:

e expanded plane stress and axisymmetric elements must have a small thick-
ness to yield good results: in the case of plane stress elements this is be-
cause a large thickness does not agree with the plane stress assumption,
in the case of axisymmetric elements because large angles yield bad re-
sults since the expansion creates only one layer of elements. CalculiX uses
an expansion angle of 2°, which amounts to 7/90 radians. Consequently,
only 100/180% of the disk is modeled and the thickness of the plane stress
elements is (100 — k)7 /9000. This is done automatically within CalculiX.
On the *SOLID SECTION card the user must specify the thickness of the
plane stress elements for 360°, i.e. 27r(100 — k)/100.

e the point forces on the axisymmetric elements are to be given for the
complete circumference, as usual for axisymmetric elements.

e the point forces on the plane stress elements act on the complete circum-
ference.
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Figure 72: Disk with holes

o distributed loads are not affected, since they act on areas and/or volumes.

If an axisymmetric element is connected to a structure consisting of 3D
elements the motion of this structure in the circumferential direction is not
restricted by its connection to the 2D elements. The user has to take care that
any rigid body motion of the structure involving the circumferential direction is
taken care of, if appropriate. This particularly applies to any springs connected
to axisymmetric elements.

Notice that structures containing axisymmetric elements should be defined
in the global x-y plane, i.e. z=0 for all nodes.

6.2.31 Two-node 2D beam element (B21)

This element is internally replaced by a B31 element and is treated as such.

6.2.32 Two-node 3D beam element (B31 and B31R)

This element is very similar to the three-node beam element. Figures[73 and [[4]
apply (just drop the middle nodes). The B31 and B31R elements are expanded
into C3D8I and C3D8R elements, respectively. Since the C3D8R element has
only one integration point in the middle of the element, bending effect cannot
be taken into account. Therefore,the B31R element should not be used for
bending. For more information on beam elements the reader is referred to the
next section.
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Figure 73: 3-node quadratic beam element/3-node network element

6.2.33 Three-node 3D beam element (B32 and B32R)

In CalculiX this is the general purpose beam element. The node numbering is
shown in Figure [73]

In each node a local Cartesian system t — n; — ng is defined. t is the
normalized local tangential vector, n; is a normalized vector in the local 1-
direction and ns is a normalized vector in the local 2-direction, also called the
normal. The local directions 1 and 2 are used to expand the beam element into
a C3D20 or C3D20R element according to Figure [[4l

For each node of the beam element 8 new nodes are generated according to
the scheme on the right of Figure[74l These new nodes are used in the definition
of the brick element, and their position is defined by the local directions together
with the thickness and offset in these directions.

The tangential direction follows from the geometry of the beam element.
The normal direction (2-direction) can be defined in two ways:

e cither by defining the normal explicitly by using the FNORMATI keyword
card.

e if the normal is not defined by the *NORMAL card, it is defined implicitly
by n, =t xng

In the latter case, ny can be defined either

e explicitly on the FBEAM SECTION] card.

e implicitly through the default of (0,0,-1).

If a node belongs to more than one beam element, the tangent and the normal
is first calculated for all elements to which the node belongs. Then, the element
with the lowest element number in this set for which the normal was defined
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Figure 74: Expansion of a beam element

explicitly using a *NORMAL card is used as reference. Its normal and tangent
are defined as reference normal and reference tangent and the element is stored
in a new subset. All other elements of the same type in the set for which the
normal and tangent have an angle smaller than 0.5° with the reference normal
and tangent and which have the same local thicknesses, offsets and sections are
also included in this subset. All elements in the subset are considered to have
the same normal and tangent. The normal is defined as the normed mean of all
normals in the subset, the same applies to the tangent. Finally, the normal is
slightly modified within the tangent-normal plane such that it is normal to the
tangent. This procedure is repeated until no elements are left with an explicitly
defined normal. Then, the element with the lowest element number left in the
set is used as reference. Its normal and tangent are defined as reference normal
and reference tangent and the element is stored in a new subset. All other
elements of the same type in the set for which the normal and tangent have an
angle smaller than 20° with the reference normal and tangent and which have
the same local thicknesses, offsets and sections are also included in this subset.
All elements in the subset are considered to have the same normal and tangent.
This normal is defined as the normed mean of all normals in the subset, the
same applies to the tangent. Finally, the normal is slightly modified within the
tangent-normal plane such that it is normal to the tangent. This procedure is
repeated until a normal and tangent have been defined in each element. Finally,
the 1-direction is defined by n; = na X t.

If this procedure leads to more than one local coordinate system in one and
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the same node, all expanded nodes are considered to behave as a knot with the
generating node as reference node. Graphically, the beam elements partially

overlap (Figure [73]).
Consequently, a node leads to a knot if

e the direction of the local normals in the elements participating in the node
differ beyond a given amount. Notice that this also applies to neighboring
elements having the inverse normal. Care should be taken that the ele-
ments in beams are oriented in a consistent way to avoid the generation
of knots.

e several types of elements participate (e.g. shells and beams).
e the thickness is not the same in all participating elements.

e the offset is not the same in all participating elements.

e the section is not the same in all participating elements.

e a rotation or a moment is applied in the node (only for dynamic calcula-
tions)

Similarly to shells applied rotations or moments (bending moments, torques)
in static calculations are taken care of by the automatic generation of mean
rotation MPC’s.

Beam and shell elements are always connected in a stiff way if they share
common nodes. This, however, does not apply to plane stress, plane strain
and axisymmetric elements. Although any mixture of 1D and 2D elements
generates a knot, the knot is modeled as a hinge for any plane stress, plane
strain or axisymmetric elements involved in the knot. This is necessary to
account for the special nature of these elements (the displacement normal to
the symmetry plane and normal to the radial planes is zero for plane elements
and axisymmetric elements, respectively).

The section of the beam must be specified on the FBEAM SECTION] key-
word card. It can be rectangular (SECTION=RECT), elliptical (SECTION=CIRC),
pipe-like (SECTION=PIPE) or box-like (SECTION=BOX). A circular cross
section is a special case of elliptical section, pipe and box sections are special
cases of a rectangular cross section obtained through appropriate integration
point schemes. For a rectangular cross section the local axes must be defined
parallel to the sides of the section, for an elliptical section they are parallel
to the minor and major axes of the section. The thickness of a section is the
distance between the free surfaces, i.e. for a circular section it is the diameter.

The thicknesses of the beam element (in 1- and 2-direction) can be defined
on the FBEAM SECTION] keyword card. It applies to the complete element.
Alternatively, the nodal thicknesses can be defined in each node separately using
FNODATL THICKNESSl That way, a beam with variable thickness can be mod-
eled. Thicknesses defined by a *NODAL THICKNESS card take precedence
over thicknesses defined by a *BEAM SECTION card.



122 6 THEORY

Figure 75: Overlapping beam elements at a knot



6.2 Element Types 123

The offsets of a beam element (in 1- and 2-direction) can be set on the
FBEAM SECTION] card. Default is zero. The unit of the offset is the beam
thickness in the appropriate direction. An offset of 0.5 means that the user-
defined beam reference line lies in reality on the positive surface of the expanded
beam (i.e. the surface with an external normal in direction of the local axis).
The offset can take any real value. Consequently, it can be used to define
composite structures, such as a plate supported by a beam, or a I cross section
built up of rectangular cross sections.

The treatment of the boundary conditions for beam elements is straightfor-
ward. The user can independently fix any translational degree of freedom (DOF
1 through 3) or any rotational DOF (DOF 4 through 6). Here, DOF 4 is the
rotation about the global x-axis, DOF 5 about the global y-axis and DOF 6
about the global z-axis. No local coordinate system should be defined in nodes
with constrained rotational degrees of freedom. A hinge is defined by fixing the
translational degrees of freedom only.

For an internal hinge between 1D or 2D elements the nodes must be doubled
and connected with MPC’s. The connection between 3D elements and all other
elements (1D or 2D) is always hinged.

Point forces defined in a beam node are not modified if a knot is generated
(the reference node is the beam node). If no knot is generated, the point load
is divided among the expanded nodes according to a 1/4-1/4-1/4-1/4 ratio for
a beam mid-node and a (-1/12)-(1/3)-(-1/12)-(1/3)-(-1/12)-(1/3)-(-1/12)-(1/3)
ratio for a beam end-node. Concentrated bending moments or torques are
defined as point loads (FCLOAD)) acting on degree four to six in the node.
Their use generates a knot in the node.

Distributed loading can be defined by the labels P1 and P2 in the FDLOADI
card. A positive value corresponds to a pressure load in direction 1 and 2,
respectively.

In addition to a temperature for the reference surface of the beam, a tem-
perature gradient in 1-direction and in 2-direction can be specified on the
FTEMPERATUREl Default is zero.

Concerning the output, nodal quantities requested by the keyword FNODE PRINTI
are stored in the beam nodes. They are obtained by averaging the nodal values
of the expanded element. For instance, the value in local beam node 1 are ob-
tained by averaging the nodal value of expanded nodes 1, 4, 5 and 8. Similar
relationships apply to the other nodes:

e beam node 1 = average of expanded nodes 1,4,5 and 8
e beam node 2 = average of expanded nodes 9,11,13 and 15

e beam node 3 = average of expanded nodes 2,3,6 and 7

Element quantities, requested by FEL PRINT] are stored in the integration
points of the expanded elements.

Default storage for quantities requested by the FNODE FILE] and FEL FILE]

is in the expanded nodes. This has the advantage that the true three-dimensional
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results can be viewed in the expanded structure, however, the nodal numbering
is different from the beam nodes. By using the OUTPUT=2D parameter in the
first step one can trigger the storage in the original beam nodes. The same av-
eraging procedure applies as for the *NODE PRINT command. Section forces
can be requested by means of the parameter SECTION FORCES. If selected,
the stresses in the beam nodes are replaced by the section forces. They are
calculated in a local coordinate system consisting of the 1-direction ny, the 2-
direction ny and 3-direction or tangential direction t (Figure [(4]). Accordingly,
the stress components now have the following meaning:

e xx: Shear force in 1-direction

e yy: Shear force in 2-direction

e 7zz: Normal force

e xy: Torque

e x7: Bending moment about the 2-direction

e yz: Bending moment about the 1-direction

The section forces are calculated by a numerical integration of the stresses
over the cross section. To this end the stress tensor is needed at the integration
points of the cross section. It is determined from the stress tensors at the nodes
belonging to the cross section by use of the shape functions. Therefore, if the
section forces look wrong, look at the stresses in the expanded beams (omitting
the SECTION FORCES and OUTPUT=2D parameter).

For all elements different from beam elements the parameter SECTION
FORCES has no effect.

In thin structures two words of caution are due: the first is with respect to
reduced integration. If the aspect ratio of the shells is very large (slender shells)
reduced integration will give you far better results than full integration. In
order to avoid hourglassing a 2x5x5 Gauss-Kronrod integration scheme is used
for B32R-elements with a rectangular cross section. This scheme contains the
classical Gauss scheme with reduced integration as a subset. The integration
point numbering is shown in Figure For circular cross sections the regular
reduced Gauss scheme is used. In the rare cases that hourglassing occurs the
user might want to use full integration with smaller elements. Secondly, thin
structures can easily exhibit large strains and/or rotations. Therefore, most
calculations require the use of the NLGEOM parameter on the FSTEP] card.

6.2.34 Two-node 2D truss element (T2D2)

This element is internally replaced by a T3D2 element and is treated as such.
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Figure 76: Gauss-Kronrod integration scheme for B32R elements with rectan-
gular cross section
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6.2.35 Two-node 3D truss element (T3D2)

This element is similar to the B31 beam element except that it cannot sustain
bending. This is obtained by inserting hinges in each node of the element.
Apart from this all what is said about the B31 element also applies to the
T3D2 element with one exception: instead of the *BEAM SECTION card the
FSOLID SECTION card has to be used.

6.2.36 Three-node 3D truss element (T3D3)

This element is similar to the B32 beam element except that it cannot sustain
bending. This is obtained by inserting hinges in each end node of the element.
Apart from this all what is said about the B32 element also applies to the
T3D3 element with one exception: instead of the *BEAM SECTION card the
FSOLID SECTION] card has to be used.

6.2.37 Three-node network element (D)

This is a general purpose network element used in forced convection applications.
It consists of three nodes: two corner nodes and one midside node. The node
numbering is shown in Figure[[3l In the corner nodes the only active degrees of
freedom are the temperature degree of freedom (degree of freedom 11) and the
pressure degree of freedom (degree of freedom 2). These nodes can be used in
forced convection FEILM] conditions. In the middle node the only active degree
of freedom is degree of freedom 1, and stands for the mass flow rate through
the element. A positive mass flow rate flows from local node 1 to local node
3, a negative mass flow rate in the reverse direction. It can be defined using
a FBOUNDARY] card for the first degree of freedom of the midside node of
the element. Fluid material properties can be defined using the FMATERIATL]
and FSPECIFIC GAS CONSTANT] cards and assigned
by the FFLUID SECTIONI card.

network elements form fluid dynamic networks and should not share any
node with any other type of element. Basically, analyses involving fluid dynamic
networks belong to one of the following two types of calculations:

e Pure thermomechanical calculations. In that case the mass flow in all ele-
ments of the network is known and the only unknowns are the temperature
(in the network and the structure) and displacements (in the structure).
This mode is automatically activated if all mass flows are specified using
boundary cards. In that case, pressures in the network are NOT calcu-
lated. Furthermore, the type of network element is not relevant and should
not be specified.

e Fully coupled calculations involving fluid thermodynamical calculations
with structural thermomechanical calculations. This mode is triggered if
the mass flow in at least one of the network elements is not known. It
requires for each network element the specification of its fluid section type.
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Figure 77: Definition of a GAPUNTI element

The available types of fluid sections are listed in subsection [6.4] and

Notice that three-node network elements are one-dimensional and can ac-
count for two- or three-dimensional effects in the fluid flow only to a limited
degree.

A special kind of network element is one in which one of the corner nodes
is zero (also called a dummy network element). This type is element is used
at those locations where mass flow enters or leaves the network. In this case
the corner node which is not connected to any other network element gets the
label zero. This node has no degrees of freedom. The degree of freedom 1 of
the midside node corresponds to the entering or leaving mass flow.

6.2.38 Two-node unidirectional gap element (GAPUNI)

This is a standard gap element defined between two nodes. The clearance d
of the gap and its direction n are defined by using the FGAP] card. Let the
displacement vector of the first node of the GAPUNI element be w; and the
displacement vector of the second node us. Then, the gap condition is defined

by (Figure [77):

d+n-(uz —uy) > 0. (21)

6.2.39 Two-node 3-dimensional dashpot (DASHPOTA)

The dashpot element is defined between two nodes (Figure [78). The force in
node 2 amounts to:

(T2 —x1) ] (2 — 1)

F2=—C (’Uz—’l)l)' L L

(22)

where c is the dashpot coefficient, v is the velocity vector,  is the actual
location of the nodes and L is the actual distance between them. Notice that
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Figure 78: Definition of a DASHPOTA element

F; = —F5. Right now, only linear dashpots are allowed, i.e. the dashpot
coefficient is constant (i.e. it does not depend on the relative velocity. However,
it can depend on the temperature). It is defined using the FDASHPOT] keyword
card.

The two-node three-dimensional dashpot element is considered as a genuine
three-dimensional element. Consequently, if it is connected to a 2D element
with special restraints on the third direction (plane stress, plane strain or ax-
isymmetric elements) the user has to take care that the third dimension does
not induce rigid body motions in the dashpot nodes.

The dashpot element can only be used in linear dynamic calculations char-

acterized by the FMODAL DYNAMIC| keyword card.

6.2.40 One-node 3-dimensional spring (SPRING1)

This is a spring element which is attached to only one node. The direction n in
which the spring acts has to be defined by the user underneath the FSPRINGI
keyword card by specifying the appropriate degree of freedom. This degree of
freedom can be local if the ORIENTATION parameter is used on the *SPRING
card. If u is the displacement in the spring node and K is the spring constant,
the force is obtained by:

F=K(u-n)n. (23)

A nonlinear spring can be defined by specifying a piecewise linear force versus
elongation relationship (underneath the *SPRING card).

6.2.41 Two-node 3-dimensional spring (SPRING2)

This is a spring element which is attached to two nodes (Figure [[9). The
directions 11 and no determining the action of the spring have to be defined by
the user underneath the FSPRINGI keyword card by specifying the appropriate
degrees of freedom. These degrees of freedom can be local if the ORIENTATION
parameter is used on the *SPRING card. Usually, it does not make sense to
take a different degree of freedom in node 1 and node2. If w4 is the displacement
in node 1 (and similar for node 2) and K is the spring constant, the force in
node 1 is obtained by:

F, = K[(u1 - n1)ny — (ug - na)nqj, (24)
and the force in node 2 by:
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Figure 79: Definition of a SPRINGA element

F2 = 7K[(U1 . ’I’Ll)’nz - (’Uq . nz)n2]. (25)

A nonlinear spring can be defined by specifying a piecewise linear force versus
elongation relationship (underneath the *SPRING card).

6.2.42 Two-node 3-dimensional spring (SPRINGA)

This is a spring element defined between two nodes (Figure [[9). The force
needed in node 2 to extend the spring with original length Ly to a final length
L is given by:

F =k(L- Lo)n, (26)

where k is the spring stiffness and n is a unit vector pointing from node 1 to
node 2. The force in node 1 is —F'. This formula applies if the spring stiffness
is constant. It is defined using the FSPRING keyword card. Alternatively, a
nonlinear spring can be defined by providing a graph of the force versus the
elongation. In calculations in which NLGEOM is active (nonlinear geometric
calculations) the motion of nodes 1 and 2 induces a change of n.

The two-node three-dimensional spring element is considered as a genuine
three-dimensional element. Consequently, if it is connected to a 2D element
with special restraints on the third direction (plane stress, plane strain or ax-
isymmetric elements) the user has to take care that the third dimension does not
induce rigid body motions in the spring nodes. An example of how to restrain
the spring is given in test example spring4.

Note that a spring under compression, if not properly restrained, may change
its direction by 180°, leading to unexpected results. Furthermore, for nonlinear
springs, it does not make sense to extend the force-elongation curve to negative
elongation values < L.

6.2.43 One-node coupling element (DCOUP3D)
This type is element is used to define the reference node of a distributing cou-

pling constraint (cf. FDISTRIBUTING COUPLING). The node should not

belong to any other element. The coordinates of this node are immaterial.
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6.2.44 One-node mass element (MASS)

This element is used to define nodal masses. The topology description consists
of the one node in which the mass is applied. The size of the mass is defined

using the FMASS card.

6.2.45 User Element (Uxxxx)

The user can define his/her own elements. In order to do so he/she has to:

e Give a name to the element. The name has to start with “U” followed by
maximal 4 characters. Any character from the ASCII character set can
be taken, but please note that lower case characters are converted into
upper case by CalculiX. Consequently, “Ubeam” and “UBEam” are the
same name. This reduces the character set from 256 to 230 characters.

e specify the number of integration points within the element (maximum
256), the number of nodes belonging to the element (maximum 256) and
the number of degrees of freedom in each node (maximum 256) by using

the FUSER_ELEMENT] keyword card.

e write a FORTRAN subroutine resultsmech_uxxxx.f calculating the sec-
ondary variables (usually strains, stresses, internal forces) from the pri-
mary variables (= the solution of the equation system, usually displace-
ments, rotations....). Add a call to this routine in resultsmech_u.f

e write a FORTRAN subroutine e_c3d_uxxxx.f calculating the element stiff-
ness matrix and the element external force vector (and possibly the ele-
ment mass matrix). Add a call to this routine in e_c3d_u.f

e write a FORTRAN subroutine extrapolate_uxxxx.f calculating the value
of the secondary variables (usually strains, stresses..) at the nodes based
on their values at the integration points within the element. Add a call
to this routine in extrapolate_u.f

6.2.46 User Element: 3D Timoshenko beam element (U1)

An example for a 3D Timoshenko beam element (for static linear elastic calcu-
lations and small deformations) according to [I06] is implemented as element
“U1” in CalculiX. It is used in example userbeam.inp in the test suite. The
reader is referred to files resultsmech_ul.f, e_c3d_ul.f and extrapolate_ul.f for
details on how a user elements is coded.

6.2.47 User Element: 3-node shell element (US3)

The US3 shell element has six degrees of freedom per node - three translations
and three rotations (Figure[80). The discrete shear gap approach together with
the cell smoothing technique is implemented for the treatment of shear locking.
The membrane behavior is resolved by means of the assumed natural deviatoric
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Figure 80: Definition of the US3 element

strains formulation with certain adjustments implemented to accommodate for
shell behavior. A detailed description of the formulation is given in [78]. In
that reference the accuracy and convergence rate were tested on a chosen set
of well-known challenging benchmark problems, and the results were compared
with those yielded by the Abaqus(©) S3 element. The element shows a very good
performance in the static linear elastic analysis compared to the Abaqus©) S3
element.

The shell formulation is implemented as element US3 in CalculiX and can
be used for static and dynamic linear elastic (small deformations) calculations
under the consideration of isotropic material properties. Simpson’s rule (three
points) is provided to calculate the cross-sectional behavior of the shell. For a
homogeneous section this integration scheme is exact for linear problems and
should be sufficient for routine thermal-stress calculations. Following loadings
are implemented:

e Concentrated forces and moments.
e Nodal temperatures with temperature gradients through shell thickness.

e Element face pressure loads.

6.2.48 Substructure (Superelement)

A substructure (also called superelement in some coded) is an element charac-
terized by a number of nodes and a stiffness (and optionally a mass matrix)
describing the relationship between forces and displacements in these nodes.
The matrices may have been obtained by another code. The element definition
is triggered by al*MATRIX ASSEMBLE| card (instead of an *ELEMENT card),
the name of the file containing the stiffness matrix and, optionally, the name of
the file containing the mass matrix. Right now, both have to be symmetric and
only the upper triangle (including the diagonal) or the lower triangle (including
the diagonal) should be given in the form

row node, row dof, column node, column dof, value
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for each entry of the matrix, one per line (the order is irrelevant). A sub-
structure can right now contain at most 256 nodes and only translational degrees
of freedom (=dof) are allowed (dof 1 for the global x-axis, dof 2 for the global
y-axis and dof 3 for the global z-axis). In addition, the matrix should receive a
name containing at most 4 characters. Names of existing user elements exluding
the “U” in front should not be used, such as “S3”. The nodes belonging to the
element may be subject to Single Point Constraints, Multiple Point Constraints
or point loads, but not to distributed loading (neither facial nor volumetric).
Since the location of any integration points is not known, no element values
such as stresses or strains are calculated. Only nodal information can be stored
to file using FNODE PRINT] and similar keyword cards.

A substructure is basically a linear construct. Right now, it can be used in
a *STATIC, *DYNAMIC or *FREQUENCY procedure.

6.3 Beam Section Types

A beam element is characterized by its cross section. This cross section is
defined by a FBEAM SECTION] card. All beam sections which are not rect-
angular (including square) or elliptical (including circular) are considered as
“beam general sections” and are internally expanded into a rectangular cross
section (C3D20R-type element) and the actual section of the beam is simulated
by an appropriate integration point scheme. A section type is characterized by
a finite number of parameters, which must be entered immediately underneath
the *BEAM SECTION card. A new section type can be added by changing the
following routines:

e allocation.f (define the new section underneath the *BEAMSECTION if-
statement)

o calinput.f (define the new section underneath the *BEAMSECTION if-
statement)

e beamgeneralsections.f (here, the one-letter abbreviation for the section has
to be added. For instance, the pipe section is characterized by ’P’. Fur-
thermore, the programmer must define the number of parameters needed
to characterize the section).

e beamintscheme.f (here, the integration point scheme has to be defined)

e beamextscheme.f (here, the extrapolation of the integration point variables
such as stresses or strains to the nodes of the expanded C3D20R element).

Right now, the following section types are available:

6.3.1 Pipe

The pipe section is circular and is characterized by its outer radius and its
thickness (in that order). There are 8 integration points equally distributed
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along the circumference. In local coordinates, the radius at which the integration
points are located is 1/(£2 + 1)/2, where £ = /R, r being the inner radius and
R the outer radius. The weight for each integration point is given by m(1—£2)/8
[12].

6.3.2 Box

The Box section (contributed by O. Bernhardi) is simulated using a ’parent’
beam element of type B32R.

The outer cross sections are defined by a and b, the wall thicknesses are t1,
to, t3 and ¢4 and are to be given by the user (Figure [BT]).

The cross-section integration is done using Simpson’s method with 5 inte-
gration points for each of the four wall segments. Line integration is performed;
therefore, the stress gradient through an individual wall is neglected. Each wall
segment can be assigned its own wall thickness.

The integration in the beam’s longitudinal direction ¢ is done using the usual
Gauss integration method with two stations; therefore, the element has a total
of 32 integration points.

From the figure, we define, for example, the local coordinates of the first
integration point

1 ta ty
- =1-—; =1-— 27
M 5 G . (27)
The other three corner points are defined correspondingly. The remaining
points are evenly distributed along the center lines of the wall segments. The
length p and q of the line segments, as given w.r.t. the element intrinsic coor-
dinates n and (, can now be calculated as
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p=2-——— = q=2-— -7 (28)

An integral of a function f(n, (), over the area € of the hollow cross section
and evaluated w.r.t the natural coordinates 7, (, can be approximated by four
line integrals, as long as the line segments I'y, 'y, I's and I'y are narrow enough:

/fMKMQ

2 [ram.od + 2t2/fn<F2))dF2+
2ti”/f (Ts), ﬁ34-2“/f ))dly (29)

According to Simpson’s rule, the integration points are spaced evenly along
each segment. For the integration weights we get, for example, in case of the
first wall segment

%

wp = {1,4,2,4, 1} (30)
Therefore, we get, for example, for corner Point 1
1t 1ty
-— 31
M5l 5? (3D
and for Point 2
4t
=_-—= 32
w2 = =g (32)

The resulting element data (stresses and strains) are extrapolated from the
eight corner integration points (points 1,5,9 and 13) from the two Gauss integra-
tion stations using the shape functions of the linear 8-node hexahedral element.

Remarks

e The wall thickness are assumed to be small compared to the outer cross
section dimensions.

e The bending stiffnesses of the individual wall segments about their own
neutral axes are completely neglected due to the line integral approach.

e Torsion stiffness is governed to a large extent by warping of the cross
section which in turn can only be modelled to a limited extent by this
type of element.

e Modelling of U or C profiles is also possible by setting one of the wall
thicknesses to zero. Modelling L sections however, by setting the wall
thickness of two segments to zero, will probably cause spurious modes.
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6.3.3 (General

The general section can only be used for user element type Ul and is defined
by the following properties (to be given by the user in that order):

cross section area A

moment of inertia I
moment of inertia I
moment of inertia Ioo

Timoshenko shear coefficient &

Furthermore, the specification of the 1-direction (cf. third line in the FBEAM SECTIONI
definition) is REQUIRED for this type of section. Internally, the properties are
stored in the prop-array in the following order:

cross section area A

moment of inertia I

moment of inertia I

moment of inertia Ioo

Timoshenko shear coefficient k

global x-coordinate of a unit vector in 1-direction
global y-coordinate of a unit vector in 1-direction
global z-coordinate of a unit vector in 1-direction
offset1

offset2

In the present implementation of the Ul-type element I15, offset1 and offset2
have to be zero.

6.4

Fluid Section Types: Gases

Before introducing the fluid section types for gases, a couple of fundamental
aerodynamic equations are introduced. For details, the reader is referred to

[67].

The thermodynamic state of a gas is usually determined by the static

pressure p, the static temperature T' and the density p. For an ideal gas (the
case considered here), they are related by p = prT (the ideal gas equation),
where r is the specific gas constant. r only depends on the material, it does not
depend on the temperature.

The energy conservation law runs like [23]:
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Pﬁi = Vpitk — PUkk — Qi k + phY, (33)

where D denotes the total derivative. By use of the mass conservation:
dp
ot

and the conservation of momentum

+ (pvk),k =0 (34)

(9’Uk

p (815 + Uk,lW) =tr, — Pk + oSk (35)

this equation can also be written as

Dle + viv1,/2
p% = (vtrr) — (pVk) &k + poefi — Qe + ph’, (36)
or
D h+U Ve /2 a
p%}fk/] = ('Uktkl),l + 67;: +p1)kfk — Qk.k +ph0, (37)

where h = ¢ + p/p is the entalpy. For an ideal gas one can write h = ¢,T, ¢, is
the heat capacity at constant pressure.

The total temperature T} is now defined as the temperature which is obtained
by slowing down the fluid to zero velocity in an adiabatic way. Using the energy
equation (&), dropping the first term on the right hand side because of ideal
gas conditions (no viscosity), the second term because of stationarity, the third
term because of the absence of volumetric forces and the last two terms because
of adiabatic conditions one obtains the relationship:

Dic,T + vpvi /2]
P Di

along a stream line (recall that the meaning of the total derivative DX/Dt is
the change of X following a particle), from which

=0, (38)

02
Ti=T+ — 39
t + 2Cp, ( )
where v is the magnitude of the velocity. The Mach number is defined by

v
vV rrT ’

where x is the specific heat ratio and the denominator is the speed of sound.
Therefore, the total temperature satisfies:

M =

(40)

k—1

M?). (41)
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The total pressure is defined as the pressure which is attained by slowing
down the fluid flow in an isentropic way, i.e. a reversible adiabatic way. An
ideal gas is isentropic if p! ~*T" is constant, which leads to the relationship

()7

and consequently to

K

k—1
Pt :p(]. + ?M2)”*1. (43)

Substituting the definition of mass flow m = pAv, where A is the cross
section of the fluid channel, in the definition of the Mach number (and using
the ideal gas equation to substitute p) leads to

mVrT
M=——-.
Ap\/k

Expressing the pressure and temperature as a function of the total pressure
and total temperature, respectively, finally leads to

(44)

(r+1)

W ko1 ,\ Hem
=M|1 M . 45
ApiV/k ( i ) ()

This is the general gas equation, which applies to all types of flow for ideal gases.
The left hand side is called the corrected flow. The right hand side exhibits a
maximum for M = 1, i.e. sonic conditions.

It is further possible to derive general statements for isentropic flow through
network elements. Isentropic flow is reversible adiabatic by definition. Due to
the adiabatic conditions the total enthalpy h; = ¢,T} is constant or

dh + vdv = 0. (46)

The first law of thermodynamics (conservation of energy) specifies that

de = 0q + dw, (47)

or, because of the adiabatic and reversible conditions

de = —pd (;) . (48)

Since the enthalpy h = ¢ + p/p, one further obtains

dh = dp/p. (49)

Substituting this in the equation we started from leads to:

dp = —pvdv. (50)
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The continuity equation through a network element with cross section A,
pvA = constant can be written in the following differential form:

dp dv dA
Pl Sk T gy 51
Sttt o (51)
or, with the equation above
dp dp dA
L L=, 52
o o A (52)
which leads to
A 2
aA_dv _dp_dp (| o 5
A p2 p po? (@)
dp

Since 1/% is the speed of sound (use the isentropic relation p o p" and the

ideal gas equation p = prT to arrive at dp/dp = krT = ¢?), one arives at:

dA  dp 9 dv 9
A_pUQ(l M?) = v(l M?). (54)

Therefore, for subsonic network flow an increasing cross section leads to
a decreasing velocity and an increasing pressure, whereas a decreasing cross
section leads to an increasing velocity and a decreasing pressure. This is similar
to what happens for incompressible flow in a tube.

For supersonic flow an increasing cross section leads to an increasing ve-
locity and a decreasing pressure whereas a decreasing cross section leads to a
decreasing velocity and an increasing pressure.

Sonic conditions can only occur if dA = 0, in reality this corresponds to
a minimum of the cross section. Therefore, if we assume that the network
elements are characterized by a uniformly increasing or decreasing cross section
sonic conditions can only occur at the end nodes. This is important information
for the derivation of the specific network element equations.

Using the definition of entropy per unit mass s satisfying T'ds = dq and the
definition of enthalpy the first law of thermodynamics for reversible processes
runs like

dh = Tds + . (55)
P
Therefore
dh  dp

For an ideal gas dh = ¢,(T)dT and p = prT and consequently
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ds = ¢,(T) T r; (57)
or
T.
2 dT D2
S9 — 81 = cp(T)— —rln—. 58
2 — S1 /T1 »(T) 77 P (58)

Since all variables in the above equation are state variables, it also applies
to irreversible processes. If the specific heat is temperature independent one
obtains

T P2
Sg—s1=¢pln T rln o (59)

linking the entropy difference between two states to the temperature and
pressure difference.

Typical material properties needed for a gas network are the specific gas
constant r (FSPECIFIC GAS CONSTANT] card), the heat capacity at constant
pressure ¢, and the dynamic viscosity p (both temperature dependent and to
be specified with the card).

A special case is the purely thermal gas network. This applies if:

e no TYPE is specified on any *FLUID SECTION card or
e the parameter THERMAL NETWORK is used on the *STEP card or
e all mass flow is given and either all pressures or given or none.

In that case only ¢, is needed.

A network element is characterized by a type of fluid section. It has to be
specified on the FELUID SECTIONI card unless the analysis is a pure thermo-
mechanical calculation. For gases, several types are available. At the start of the
description of each type the main properties are summarized: “adiabatic” means
that no heat is exchanged within the element; “isentropic” refers to constant
entropy, i.e. flow without losses; “symmetric” means that the same relations
apply for reversed flow; “directional” means that the flow is not allowed to be
reversed.

All entries and exits in the network have to be characterized by a node
with label zero. The element containing this node (entry and exit elements)
can be of any type. For entry and exit elements no element equations are set
up. The only effect the type has is whether the nonzero node is considered to
be a chamber (zero velocity and hence the total temperature equals the static
temperature) or a potential pipe connection (for a pipe connection node the total
temperature does not equal the static temperature). The pipe connection types
are GASPIPE, RESTRICTOR except for RESTRICTOR WALL ORIFICE and
USER types starting with UP, all other types are chamber-like. A node is a pipe
connection node if exactly two gas network elements are connected to this node
and all of them are pipe connection types.
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Figure 82: Geometry of the orifice fluid section

For chamber-like entry and exit elements it is strongly recommended to use
the type INOUT.

6.4.1 Orifice

Properties: adiabatic, not isentropic, symmetric only if physically symmetric
(i.e. same corner radius, corner angle etc.), else directional.

The geometry of the orifice fluid section is shown in Figure The axis
of the orifice goes through the center of gravity of the cross section A and is
parallel to the side walls. The orifice is allowed to rotate about an axis parallel
to the orifice axis and can be preceded by a swirl generating device such as
another orifice, a bleed tapping or a preswirl nozzle.

The orifice element is characterized by an end node well upstream of the
smallest section A (let’s call this position 1) and an end node 2 well downstream
of the smallest section (position 2). The smallest section of the gas stream is
called position m. This may be smaller than A due to a contraction of the gas
and will be written as CzA,Cy < 1.

In between position 1 and m the flow is assumed to be isentropic, conse-
quently

e the mass flow (7i) is constant
P 2

e the total temperature (ﬁ% + %) is constant

e p/p" is constant

where p is the static pressure. Furthermore v; < v,, is assumed, since the cross
section at position 1 is assumed to be large and consequently p;, = p1, T3, = 11.
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Starting from the constancy of the total temperature between position 1 and
m, inserting the isentropic relationship and neglecting v; leads to:

IRSIDINCN

Using the relationship m = p,, A vy, leads to:

] . (60)
wemfon (32) (2 - ()

1
] ) (61)
Using p1 = p1/(rT1) and setting A,, = C4A one arrives at:

2 Kk—1
11T 2 (pm)” <pm> .
— = — 1—(— . 62
CaAp1vE k—1\m;m p1 (62
or taking into account that at position 1 total and static quantities coincide:
/7T, 2 G =
ma/r m ) * o\ 7
oveton) G T @
CdAptl\/E R — 1 pt1 ptl

In between position m and 2 the flow is assumed to be adiabatic, however, all
kinetic energy from position m is assumed to be lost due to turbulence. Hence:

e the mass flow (7i2) is constant
e the total temperature is constant
e p; at position 2 is equal to p at position m.

Combining this leads to the following equation:

/1Ty, 2 (;Dt2 > G <pt2) =
CaApi, VK k—1\py Dty (64

Let us assume that Z% is being slowly decreased starting from 1. Then
1

the above equation will result in a steadily increasing mass flow rate up to a

maximum at (Figure B3))
P, 9\ mo1
Prs _ , 65
bt <H + 1) ( )

after which the mass flow rate starts to decrease again [69]. In reality, the de-
crease does not happen and the mass flow rate remains constant. Indeed, at
maximum corrected flow sonic conditions are reached (so-called critical condi-
tions). For lower values of %i the flow is supersonic, which means that waves
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Figure 83: Theoretical and choking behavior of the orifice

cannot travel upstream. Therefore, the information that the pressure ratio has
decreased below the critical ratio cannot travel opstream and the critical cor-
rected flow persists throughout. Consequently, for

Pta o ( 2 )_ (66)
p, — \k+1 ’
Equation (&) is replaced by
. T 1 — bl
ma/r "=
VIt <'$ * ) , (67)
CdAptl \/E 2
The orifice element is characterized by the following constants (to be speci-
fied in that order on the line beneath the FELUID SECTION] card):

e the cross section A.
e the orifice diameter d (not needed for Cyq = 1).
o the length L (not needed for Cyq = 1).

e the inlet corner radius r (mutually exclusive with «; not needed for Cy =

1).

e the inlet corner angle v in ° (mutually exclusive with r; not needed for
Cy=1).

e the orifice-to-upstream pipe diameter ratio 8 = d/D (only for TYPE=ORIFICE_PK_MS).

e the rotational velocity v, if the orifice is part of a rotating structure (not
needed for Cy = 1).
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e a reference network element (not needed for Cyq = 1).

Depending on the orifice geometry, an inlet corner radius or an inlet corner
angle (chamfered inlet) should be selected. They are mutually exclusive. The
corrections for a chamfered inlet are taken from [34].

The last constant, i.e. the number of a reference network element, is neces-
sary in case a rotating structure is preceded by a network element which diverts
the upstream air velocity from the axial (i.e. in the direction of the axis of
the orifice) direction (such as a preswirl nozzle). In that case, the rotational
velocity of the orifice has to be corrected by the circumferential component of
the velocity at the exit of the preceding element.

Notice that the only effect of all constants following the cross section is to
change the discharge coefficient Cy. Its calculation can be performed according
to different formulas. This is selected by the TYPE parameter:

e TYPE=ORIFICE_CD1 or just TYPE=ORIFICE: Cy; = 1.

e TYPE=ORIFICE_MS_MS: Basis formula by McGreehan and Schotsch,
rotational correction by McGreehan and Schotsch [55].

e TYPE=ORIFICE_PK_MS: Basis formula by Parker and Kercher [72], ro-
tational correction by McGreehan and Schotsch [55].

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids (only for C; = 1). In the absence of this parameter,
compressible losses are calculated.

Example files: linearnet, vortexl.

6.4.2 Bleed Tapping

A bleed tapping device is a special kind of static orifice (Figure [R4]), used to
divert part of the main stream flow. The geometry can be quite complicated
and the discharge coefficient should be ideally determined by experiments on
the actual device. The basic equations are the same as for the orifice, only the
discharge coefficient is different.

The discharge coefficients provided by CalculiX are merely a rough estimate
and are based on [45]. For this purpose the bleed tapping device must be
described by the following constants (to be specified in that order on the line
beneath the FELUID SECTION] TYPE=BLEED TAPPING card):

e the cross section A.

e the ratio of the upstream static pressure to the upstream total pressure
psl /ptl .

e the number of a curve.



144 6 THEORY

Tapping

Main stream

—_—

U

Figure 84: Geometry of the bleed tapping fluid section

Right now, two curves are coded: curve number 1 corresponds to a tapping
device with lip, curve number 2 to a tapping device without lip. More specific
curves can be implemented by the user, the appropriate routine to do so is
cd_bleedtapping.f. Alternatively, the user can enter an own curve in the input
deck listing Y = Cy versus X = (1 — ps,/pt,)/(1 — ps, /pt, ). In that case the
input reads

e the cross section A.

e the ratio of the upstream static pressure to the upstream total pressure
psl /pt1 .

e not used

e not used (internally: number of pairs)
o X,

e Y.

o Xo.

o V5.

e .. (maximum 16 entries per line; maximum of 18 pairs in total)

6.4.3 Preswirl Nozzle

A preswirl nozzle is a special kind of static orifice (Figure Bl), used to impart
a tangential velocity to gas before it enters a rotating device. That way, the
loss due to the difference in circumferential velocity between the air entering the
rotating device and the rotating device itself can be decreased. In the Figure
Vot 1S the rotational velocity of the orifice the preswirl nozzle is serving, v,ps is
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preswirl nozzle

rotating orifice Ly

Figure 85: Geometry of the preswirl nozzle fluid section and the orifice it serves

the absolute velocity of the air leaving the preswirl nozzle and v,.; is its velocity
as seen by an observer rotating with the orifice (the so-called relative velocity).
The velocity entering the calculation of the discharge coefficient of the rotating
orifice is the tangential component v of the velocity of the rotating device as
seen by the air leaving the preswirl nozzle (which is —v,;). This velocity can
be modified by a multiplicative factor kg.

The geometry of a preswirl nozzle can be quite complicated and the discharge
coefficient should be ideally determined by experiments on the actual device.
The basic equations are the same as for the orifice.

The discharge coefficients provided by CalculiX are merely a rough estimate
and are based on [45]. For this purpose the preswirl nozzle must be described
by the following constants (to be specified in that order on the line beneath the

FELUID SECTION, TYPE=PRESWIRL NOZZLE card):

e the cross section A.
0 (Figure [8H)) in °.

[ ] k¢.

o the number of a curve (0 for the predefined curve).

e not used (internally: circumferential velocity at the outlet)

The angle at the exit of the nozzle is used to determine the circumferential
velocity of the gas leaving the nozzle. This is stored for use in the (rotating)
device following the nozzle. The curve number can be used to distinguish be-
tween several measured curves. Right now, only one curve is coded (number =
0 to select this curve). More specific curves can be implemented by the user,
the appropriate routine to do so is cd_preswirlnozzle.f. Alternatively, the user
can enter an own curve in the input deck listing Y = Cy versus X = ps,/py, -
In that case the input reads

e the cross section A.

e ¢ (Figure[8H) in °.
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® ky.

e not used.

e not used (internally: circumferential velocity at the outlet).
e not used (internally: number of pairs).

o X;.

o Y.

o Xo5.

o Y5.

e .. (maximum 16 entries per line; maximum 17 pairs in total)

Example files: moehring, vortex1, vortex2, vortex3.

6.4.4 Straight and Stepped Labyrinth

A labyrinth is used to prevent the gas from leaking through the space between
a rotating and a static device and thus reducing the efficiency. The leaking air
is trapped in the successive stages of a labyrinth. It can be straight (Figure [86])
or stepped (Figure R7)). A stepped labyrinth is used if the gas is compressed or
expanded, leading to a decreasing and increasing diameter of the rotating device,
respectively. In a stepped labyrinth the static device (hatched in Figures 86l and
R7)) is usually covered by a honeycomb structure.

A LABYRINTH can be single (only one spike) or multiple (more than one
spike). Only in the latter case the distinction between a straight and stepped
labyrinth makes sense. Therefore, there are three kinds of labyrinths: single,
straight or stepped.

The geometry of a labyrinth can be fixed or flexible during a calculation.
For a fixed geometry the gap distance s is constant. For a flexible geometry
this gap is defined as the radial distance between two nodes (this feature only
works if the structure is defined as in the presence of axisymmetric elements, i.e.
the global x-axis is the radial direction, the global y-axis is the axial direction).
These nodes have to be genuine structural nodes and should not belong to the
fluid network. In a thermomechanical calculation this distance can vary during
the computation. Whether the geometry is fixed or flexible is defined by the
TYPE parameter.

The formula governing the flow through a labyrinth has been derived in [24]
and for the discharge coefficients use was made of [55], [50], [14] and [II3]. It
runs like
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Figure 86: Geometry of straight labyrinth

Figure 87: Geometry of stepped labyrinth
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where A =1 for n =1 and

- (=)

1= (22) (ion)

(69)

for n > 1 is called the carry-over factor. The meaning of the paramters n, s
and ¢ is explained underneath. Equation (68) has a similar form as the orifice
equation, i.e. for small downstream pressures the flow becomes supersonic and

choking occurs. To determine the pressure ration x = % at which choking

1
occurs the following implicit equation has to be solved:

2V/1+4+2n—1Ina? =1. (70)

The equations used in the code are slightly more complicated, making use
of the other parameters (r, X, Hst...) as well.

A fixed labyrinth is described by the following parameters (to be specified
in that order on the line beneath the FELUID SECTION| TYPE=LABYRINTH
SINGLE, TYPE=LABYRINTH STRAIGHT or TYPE=LABYRINTH STEPPED
card):

e t: distance between two spikes (only for more than 1 spike)
e s: gap between the top of the spike and the stator

not used

e D: Diameter of the top of the spike (for the stepped labyrinth a mean
value should be used; the diameter is needed to calculate the fluid cross
section as wDs).

e n: number of spikes

b: width of the top of the spike

e h: height of the spike measured from the bottom of the chamber

L: width of a honeycomb cell

r: edge radius of a spike

X: distance between the spike and the next step (only for more than 1
spike)

Hst: height of the step (only for a stepped labyrinth)

A flexible labyrinth is described by the following parameters (to be specified
in that order on the line beneath the FELUID SECTION, TYPE=LABYRINTH
FLEXIBLE SINGLE, TYPE=LABYRINTH FLEXIBLE STRAIGHT or TYPE=LABYRINTH
FLEXIBLE STEPPED card):
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e number of the first node defining the labyrinth gap

e number of the second node defining the labyrinth gap

e not used

e t: distance between two spikes (only for more than 1 spike)

e D: Diameter of the top of the spike (for the stepped labyrinth a mean
value should be used; the diameter is needed to calculate the fluid cross
section as wDs).

e n: number of spikes

b: width of the top of the spike

e h: height of the spike measured from the bottom of the chamber
L: width of a honeycomb cell

e 1: edge radius of a spike

e X: distance between the spike and the next step (only for more than 1
spike)

e Hst: height of the step (only for a stepped labyrinth)

Please look at the figures for the meaning of these parameters. Depending
on the kind of labyrinth, not all parameters may be necessary.

Example files: labyrinthstepped, labyrinthstraight.

6.4.5 Characteristic

Properties: adiabatic, not isentropic, symmetric

Sometimes a network element is described by its characteristic curve, ex-
pressing the reduced mass flow as a function of the pressure ratio (Figure [B8]).
This allows the user to define new elements not already available.

The reduced flow is defined by

ma/ T
Y = 28 (71)
bty
where 1 is the mass flow, T}, is the upstream total temperature and p;, is the

upstream total pressure. Here “upstream” refers to the actual flow direction,
the same applies to “downstream”. The abscissa of the curve is defined by

X = Pty — Pto : (72)

Dty

where p;, is the downstream total pressure. Notice that 0 < X < 1. It is
advisable to define Y for the complete X-range. If not, constant extrapolation
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Figure 88: Characteristic Curve

applies. Notice that zero and small slopes of the curve can lead to convergence
problems. This is quite natural, since the reduced flow corresponds to the
left hand side of Equation(@3l), apart from a constant. Zero slope implies a
maximum, which corresponds to sonic flow (cf. the discussion of Equation(3])).
In general, some sort of saturation will occur for values of X close to 1.

The characteristic curve is defined by the following parameters (to be speci-
fied in that order on the line beneath the FELUID SECTION, TYPE=CHARACTERISTIC
card):

e scaling factor (default: 1)

e not used (internally: number of pairs)
e not used (internally: set to zero)

e not used (internally: set to zero)

. X,

oY)

o X,

oY)

Use more cards if more than two pairs are needed (maximum 16 entries per
line, i.e. 8 pairs). No more than 10 pairs in total are allowed. In between
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Figure 89: Geometry of a carbon seal

the data points CalculiX performs an interpolation (solid line in Figure[88]). In
addition, the default point (0,0) is added as first point of the curve.
The scaling factor (first entry) is used to scale the ordinate values Y.

Example files: characteristic.

6.4.6 Carbon Seal

A carbon seal is used to prevent the gas from leaking through the space between
a rotating and a static device and thus reducing the efficiency (Figure [89).

The formula governing the flow through a carbon seal has been derived in
[81]. A carbon seal is described by the following parameters (to be specified in
that order on the line beneath the FELUID SECTIONITYPE=CARBON SEAL
card):

e D: largest diameter of the gap
e s: size of the gap between rotor and carbon ring

e L: length of the carbon seal

Please look at the figure for the meaning of these parameters.

Example files: carbonseal.

6.4.7 Gas Pipe (Fanno)

The gas pipe element of type Fanno is a pipe element with constant cross section
(Figure @0)), for which the Fanno formulae are applied [96].
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Figure 90: Geometry of the Gas Pipe element

The friction parameter is determined as

64

=g (73)
for laminar flow (Re < 2000) and
1 2.51 ks
— = —2.031 —_— . 74
Vi o (7o +57D) &

for turbulent flow. Here, ks is the diameter of the material grains at the
surface of the pipe and Re is the Reynolds number defined by

Re = ?, (75)

where U is the fluid velocity and v is the kinematic viscosity.

It is described by the following parameters (to be specified in that order
on the line beneath the FELUID SECTION|TYPE=GAS PIPE FANNO ADI-
ABATIC or FELUID SECTIONTYPE=GAS PIPE FANNO ISOTHERMAL
card):

e A: cross section of the pipe element

e D: diameter of the pipe element

e L: length of the pipe element

e k. grain diameter at the pipe surface
e form factor ¢

e 0il mass flow in the pipe (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)
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The default gas pipe is adiabatic, i.e. there is no heat exchange with the
pipe. Alternatively, the user may specify that the pipe element is isothermal.
This means that the static temperature does not change within the pipe. In
that case the energy equation in one of the two end nodes of the element is
replaced by an isothermal condition.

The form factor ¢ is only used to modify the friction expression for non-
circular cross sections in the laminar regime as follows:

64
f=eqe (76)

Values for ¢ for several cross sections can be found in [I3]. For a square
cross section its value is 0.88, for a rectangle with a height to width ratio of 2
its value is 0.97.

Instead of specifying a fixed diameter and length, these measures may also
be calculated from the actual position of given nodes. The version in which
the radius is calculated from the actual distance between two nodes a and b
is described by the following parameters (to be specified in that order on the
line beneath the FELUID SECTIONITYPE=GAS PIPE FANNO ADIABATIC
FLEXIBLE RADIUS or FELUID SECTIONITYPE=GAS PIPE FANNO ISOTHER-
MAL FLEXIBLE RADIUS card):

e node number a

e node number b

e L: length of the pipe

e k,: grain diameter at the pipe surface
e form factor ¢

e oil mass flow in the pipe (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

The version in which the radius is calculated from the actual distance be-
tween two nodes a and b and the length from the actual distance between nodes
a and c is described by the following parameters (to be specified in that order
on the line beneath the FELUID SECTIONITYPE=GAS PIPE FANNO ADIA-
BATIC FLEXIBLE RADIUS AND LENGTH or FELUID SECTIONITYPE=GAS
PIPE FANNO ISOTHERMAL FLEXIBLE RADIUS AND LENGTH card):

e node number a
e node number b
e node number ¢

e k,: grain diameter at the pipe surface
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Figure 91: Differential pipe element

e form factor ¢

e 0il mass flow in the pipe (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

Although a gas pipe looks simple, the equations for compressible flow in
a pipe are quite complicated. Here, the derivation is first presented for the
adiabatic case. Starting from the energy equation (6l and using the relation
dh = c,dT for an ideal gas one arrives at:

cpdT + vdv = 0. (77)
By means of the definition of the Mach number [#0) one gets
dT dv
Because of the ideal gas equation p = prT this can also be written as:
d, d
ﬁ3:7u+mnf1mﬁy§. (79)

Looking at Figure (@) the momentum equation can be derived by applying
Newton’s second law, which states that the sum of the forces is the change of
momentum (D is the diameter of the pipe, A its cross section):

_ pAvdt(v + dv) — pAvdt(v)

Ap — A(p + dp) — TnDdx = o , (80)

or, using Darcy’s law (X is the Darcy friction factor)

AP o
=—c 81
r=2L2 (51)
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dv? Ap o
p7+dp+ 55’0 dr = 0. (82)

One can remove the density by means of the gas equation arriving at:

dv dp X\ 5dx

— 4+ rT—+ —v°— =0. 83

" +r » + 5V D (83)
Combining this with what was obtained through the energy equation ([79)

leads to (removing p in this process):

dv KA M? dzx
—— | —— | — =0. 4
v 2 (1—M2> D 0 (84)

This equation contains both M and v. We would like to get an equation
with only one of these parameters. To this end the equation defining the Mach
number ([0) is differentiated and the energy equation in the form () is used
to remove T, leading to:

U2

dM  dv 1
— = —(1+z(k—1)M?*).
o= (14 - 0ar?) (55)
In that way, the previous equation can be modified its final form:
aM KkM? k—1 dx
— = 1 M? ) A= 86
] 2(1—M2)(+ 7 ) D (86)

expressing the Mach number as a function of the distance along the pipe. This
equation tells us that for subcritical flow (M < 1) the Mach number increases
along the pipe whereas for supercritical flow (M > 1) the Mach number de-
creases. Consequently, the flows tends to M = 1 along the pipe. Notice that by
assigning the sign of v to A\ the above equation also applies to negative velocities.
Substituting Z = M? and integrating both sides yields:

dzZ = A—. (87)

/22 1-Z 1 L de
Z1 K/ZQ (1+KT_1Z) 0 D

Since (partial fractions)

1-Z __n+1l+i+ k—1 k+1 1 (88)
7221+ 5522) 2 Z 22 2 2 ) (1+522)

one obtains finally

1/ 1 1 k41 1L+ 21 M2N /M2 L

2z = 1 2 —L)| =)= 89

/<;<M12 M22>+ 2K n[(lJr"“glMlQ M3 D’ (89)
linking the Mach number M; at the start of the pipe with the Mach number

M> at the end of the pipe, the pipe length L and the Darcy friction coefficient
A
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Notice that Equation (83]) can be used to calculate an estimate of the mass
flow due to a given pressure gradient by assuming incompressibility. For an
incompressibile medium in a pipe with constant cross section the velocity is
constant too (mass conservation) and Equation (83]) reduces to:

dp X\ ,dx
StV D (90)

Integrating yields:

or

2D
n=A\ — — 92
m L P(pl p2)7 ( )

which can finally also be written as:

2D

=AY/ T 7 01— p2) (93)
For an estimate of the mass flow in the gas pipe the above static variables p and
T are replaced by the total variables p; and T}, respectively. Equation (89)) is
the governing equation for an adiabatic gas pipe. In order to apply the Newton-
Raphson procedure (linearization of the equation) with respect to the variables
Ti1, Pe1, ™, Tyo and pyo, this equation is first derived w.r.t My and My (denoting
the equation by f; the derivation is slightly tedious but straightforward):

of _ 2 [ Mp-1 ] o)
OM,  rM,; | MZ(1+bM2) |’

and
of _ 2 [ 1-MZ ] (95)
5‘M2 HMQ _M22(1+bM22)_ ’

where b = (k — 1)/2. Now, M at position 1 and 2 is linked to T}, p; and m at
the same location through the general gas equation:

. apy 2Ne
m=—=M(1+bM"), 96
M1+ %) (96)

where a = A\/k/+/r and ¢ = —(k+1)/(2(k — 1)). Careful differentiation of this
equation leads to the surprisingly simple expression:
dm dpt th

dMZCf—ei‘i—
m

— 7
Dt 62Tt7 (9 )

where
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[ M1+ bM?)
T 1M1+ 20) ] (98)

Finally, the chain rule leads to the expressions looked for:

of  of oM

= . , 99
0Ty, OM; 0Ty (99)
etc.
For the isothermal pipe the ideal gas equation leads to:
d d
P (100)
p P
and from the mass conservation, Equation (&Il) one gets:
d d
@w_ 2 (101)
P v
Furthermore, the definition of the Mach number yields:
dv dM
il 102
~ - (102)
finally leading to:
d dM d, d
L % (103)

v M p p

By substituting these relationships and the definition of the Mach number one
can reduce all variables in Equation (83 by the Mach number, leading to:

dM  kAdx
1—kM?)— = =",
e VE R

This equation shows that for an isothermal gas pipe the flow tends to M = 1//k

and not to 1 as for the adiabatic pipe. Substituting Z = M? and integrating

finally yields:
1 1 1 M? L
== - == In(=—)=X\=. 1
(o) o (53) =5 1o

The above equation constitutes the element equation of the isothermal gaspipe.
Applying the Newton-Raphson procedure requires the knowledge of the deriva-
tives w.r.t. the basis variables. The procedure is similar as for the adiabatic
gas pipe. The derivative of the element equaton w.r.t. M; and M, is easily
obtained (denoting the left side of the above equation by f):

(104)

of 2

- = 2_
i Kﬂgﬂ“mﬁ 1) (106)

and
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af 2
aMg o I{M23

(1 — KkM3). (107)

The use of an isothermal gas pipe element, however, also requires the change
of the energy equation. Indeed, in order for the gas pipe to be isothermal heat
has to be added or subtracted in one of the end nodes of the element. The
calculation of this heat contribution is avoided by replacing the energy equa-
tion in the topologically downstream node (or, if this node has a temperature
boundary condition, the topologically upstream node) by the requirement that
the static temperature in both end nodes of the element has to be the same.
This is again a nonlinear equation in the basic unknowns (total temperature
and total pressure in the end nodes, mass flow in the middle node) and has to
be linearized. In order to find the derivatives one starts from the relationship
between static and total temperature:

T, = T(1 + bM?), (108)

where b = (k — 1)/2. Differentiation yields:

dTy = dT(1 4 bM?) + 26T MdM. (109)

Replacing dM by Equation ([@7) finally yields an expression in which dT is
expressed as a function of dT}, dp; and dm.

Example files: gaspipel0, gaspipe8-cfd-massflow, gaspipe8-oil.

6.4.8 Rotating Gas Pipe (subsonic applications)

In the present section a rotating gas pipe with a varying cross section and friction
is considered. Although the gas pipe Fanno is a special case of the rotating
gas pipe, its governing equations constitute a singular limit to the equations
presented here. Therefore, for a gas pipe without rotation and with constant
cross section the equations here do not apply. The equivalent of Equation (88])
now reads ([30], Table 10.2 on page 515):

A Cp Tt

dM? 14 55102 dA  rw? (K41 Az,
MQ{ T ][ < >dw+D/€M}, (110)

k—1

where r is the shortest distance from the rotational axis, w is the rotational
speed and A is the local cross section of the pipe. Assuming that the radius R
of the pipe varies linearly along its length 0 <=z <= L:

(L —z)Ry + xRs

R() = =D

(111)

one obtains for dA/A:
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ﬁ - 2<R2 — Rl)daz

A "~ (L-2)Ri + 2Ry (112)

Taking for r, R, D and T; the mean of their values at the end of the pipe
one obtains for the second term in Equation (II0) [« + SM?]dz where

wm DDy ()

L(D1+D2) cp(Ttl +Tt2) k—1
and
2)K
==\ 114
b Dy + Do (114)
Therefore, Equation (II0) can now be written as:
az [1+551Z7
e e A 11
7 - || s (115)
or (using partial fractions):
a b c
a = du, 116
Z avpz Tivstz " (116)
where
1
== 117
0=, (117)
2(a+B)B
b= 118
olats—1) - 27] )
and
(1 1—
e —A+rR)1 -k (119)
2[a(1 — k) + 27

From the above equations one notices that for a non-rotating pipe with
constant cross section &« = 0 and a and b become undeterminate. Therefore,
although the gas pipe Fanno is a special case, the present formulas cannot be
used for this element type. Integrating Equation (II6]) leads to:

Z2 b, a+BZy 2 1+ 5517,
=aln— + =1 = L. 120
S TR Ly e g =) (120)
Its derivatives are:
af a b c
=—|—+ + 2M 121
oM~ |7 atpzy)  (+5iz)) (121)
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and

of i+ b . c
(9M2 o Zo (OZ+5Z2) (1+HT_122)

Focussing on the subsonic range, one has 0 < 77, Z, < 1. Therefore, the only
term in Equation (I20) which may cause problems is the second term. This is
because a and 8 do not necessarily have the same sign, therefore the logarithm
may be undefined, i.e. the function o+ $Z may have a zero in between the ends
of the pipe. This boils down to the condition (cf. Equation (II0)) that in part
of the element the Mach number is increasing and in part decreasing.

In general, convergence of a pipe and friction leads to increasing Mach num-
bers, divergence and centrifugal forces to decreasing Mach numbers. Sonic con-
ditions should be avoided during the calculation. Especially if sonic conditions
are observed at the end of a converged calculation, the result may not be correct.

Although the rotating pipe is adiabatic, i.e. no heat is transported to the
envoronment, the total temperature changes due to conversion of rotational
energy into heat or vice versa. Centrifugal motion leads to a total temperature
increase, centripetal motion to a decrease. The change in total temperature
amounts to [30]:

2M,. (122)

2

T, = " dz. (123)
Cp
For a linear varying radius integration leads to:
OJ2 To —T1 x
Tt — Ttl = g |:’l"1 -+ < B > L:| x. (124)

Evaluating this expression for x = L yields the total temperature increase
across the pipe. In order to estimate the total pressure increase (e.g. to arrive
at sensible initial conditions) one can again use the formulas in [30] (discarding
the friction effect):

dpy K rw?
— = —dx. 125
j k—1c¢,T} v (125)

Substituting a linear relationship for r and the result just derived for T; leads
to:

% _ (K 5 1) W [r1 ot (re—r)a/L)de (126)

@ {Ti+ 2 [+ (557) §] 0}

() ke

207 2LcypTiq
+ ro—11 T+ w?(ro—ry)

K 2L1 2Lc, Ty
= dln |2? P . 128
(H—l) n[m +7‘2—7‘1x+w2(r2—7‘1) (128)
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Integrating finally leads to:

pis _ [1+ Lw? (m-ﬁ-m)}("ﬁl). (129)

Dt cpTiy 2

It is important to notice that the rotating gas pipe is to be used in the rela-
tive (rotational) system (since the centrifugal force only exists in the rotational
system). If used in the absolute system it has to be preceded by an absolute to
relative element and followed by a relative to absolute element.

The rotating gas pipe is described by the following parameters (to be speci-
fied in that order on the line beneath the *FLUID SECTION, TYPE=ROTATING
GAS PIPE card):

e Aj: cross sectional area at node 1 (first node of element description)
e As: cross sectional area at node 2 (third node of element description)
e [: length of the element

e k,: grain diameter at the pipe surface

e form factor ¢

e D;: diameter at node 1; if the form factor is 1 the diameter is calculated
form the area using the formula for a circle.

e D,: diameter at node 2; if the form factor is 1 the diameter is calculated
form the area using the formula for a circle.

e rq: distance from the rotational axis of node 1.
e ro: distance from the rotational axis of node 2.

e w: rotational speed (in rad/s).

Example files: rotpipel up to rotpipe?.

6.4.9 Restrictor, Long Orifice

Properties: adiabatic, not isentropic, symmetric, A; inlet based restrictor

Restrictors are discontinuous geometry changes in gas pipes. The loss factor
¢ can be defined based on the inlet conditions or the outlet conditions. Focusing
on the h-s-diagram (entalpy vs. entropy) Figure (02), the inlet conditions are
denoted by the subscript 1, the outlet conditions by the subscript 2. The entropy
loss from state 1 to state 2 is s —s;. The process is assumed to be adiabatic, i.e.
T;, = Tt,, and the same relationship applies to the total entalpy h;, denoted by
a dashed line in the Figure. E; denotes the kinetic energy part of the entalpy
v?/2, the same applies to Fy. Now, the loss coefficient ¢ based on the inlet
conditions is defined by
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S

Figure 92: h-s diagram showing the restrictor process
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S9 — 81
G=—""- (130)
Sinlet — S1
and based on the outlet conditions by
(o= —2751 (131)
Soutlet — 52

Sinlet 18 the entropy for zero velocity and isobaric conditions at the inlet, a similar
definition applies to outlet. So, for (; the increase in entropy is compared with
the maximum entropy increase from state 1 at isobaric conditions. Now we have
s1 = s4 and sy = sp4 consequently,

SB — SA

= 132
Cl Sinlet — SA ( )
and based on the outlet conditions by
Co = _SB 54 (133)
Soutlet — SB
Using Equation (59) one obtains:
S — 81 :rln&, (134)
P,
Sinlet — S1 = rln &a (135)
P
Soutlet — S2 = 7In &, (136)
b2

from which [84]

¢1 Gty
_ 1 K—1
P (pt1> - (1 + 2 Mf) (137)
Dty D1 2

if ¢ is defined with reference to the first section (e.g. for an enlargement, a bend

or an exit) and

G2 oty

—1 k=1

Py _ (%) = <1 +E M22> , (138)
Dty P2 2

if ¢ is defined with reference to the second section (e.g. for a contraction).
Using the general gas equation (4H]) finally leads to (for ¢1):

rk—1 (r+1)

Y T, 2 IS T 201k
myrin (“) T (pt> . (139)
Aptl\/E k—1 Pty bty

This equation reaches critical conditions (choking, M; = 1) for
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Figure 93: Geometry of a long orifice restrictor
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Similar considerations apply to (o.
Restrictors can be applied to incompressible fluids as well by specifying the
parameter LIQUID on the *FLUID SECTION card. In that case the pressure

losses amount to

2

A2F=(— 141
and
9 m?
ATF =(——— 142
1 <2gp2 A% i ( )
respectively.

A long orifice is a substantial reduction of the cross section of the pipe over
a significant distance (Figure 03]).

There are two types: TYPE=RESTRICTOR LONG ORIFICE IDELCHIK
with loss coefficients according to [38] and TYPE=RESTRICTOR LONG ORI-
FICE LICHTAROWICZ with coefficients taken from [50]. In both cases the long
orifice is described by the following constants (to be specified in that order on
the line beneath the FELUID SECTION] TYPE=RESTRICTOR LONG ORI-
FICE IDELCHIK or TYPE=RESTRICTOR LONG ORIFICE LICHTAROW-
ICZ card):

e reduced cross section A;.
e full cross section As.

e hydraulic diameter Dy, defined by Dy = 4A/P where P is the perimeter
of the cross section.
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Figure 94: Geometry of an enlargement

e Length L of the orifice.

e oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

A restrictor of type long orifice MUST be preceded by a restrictor of type
user with ( = 0. This accounts for the reduction of cross section from Ay to A;.

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: restrictor, restrictor-oil.

6.4.10 Restrictor, Enlargement

Properties: adiabatic, not isentropic, directional, inlet based restrictor

The geometry of an enlargement is shown in Figure It is described by
the following constants (to be specified in that order on the line beneath the
FFLUID SECTIONl TYPE=RESTRICTOR ENLARGEMENT card):

e reduced cross section Aj.
e full cross section As.

e hydraulic diameter Dy, of the reduced cross section defined by Dy, = 4A/P
where P is the perimeter of the cross section.
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Figure 95: Geometry of a contraction

oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

not used (internally: oil material number)

The loss coefficient for an enlargement is taken from [3§].

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: piperestrictor, restrictor, restrictor-oil.

6.4.11 Restrictor, Contraction

Properties: adiabatic, not isentropic, directional, outlet based restrictor
The geometry of a contraction is shown in Figure It is described by
the following constants (to be specified in that order on the line beneath the

FELUID SECTION] TYPE=RESTRICTOR CONTRACTION card):

full cross section Aj.
reduced cross section As.

hydraulic diameter Dy, of the reduced cross section defined by Dy, = 44/P
where P is the perimeter of the cross section.

chamfer length L.
chamfer angle « (°).

oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)
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Dh

Figure 96: Geometry of a bend

e not used (internally: oil material number)

The loss coefficient for a contraction is taken from [38].

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: piperestrictor, restrictor, restrictor-oil.

6.4.12 Restrictor, Bend

Properties: adiabatic, not isentropic, symmetric, inlet based restrictor

The geometry of a bend is shown in Figure There are three types: TYPE
= RESTRICTOR BEND IDEL CIRC, TYPE = RESTRICTOR BEND IDEL
RECT, both with loss coefficients according to [3§] and TYPE = RESTRICTOR
BEND MILLER with coefficients taken from [61]. In the first and last type the
bend is described by the following constants (to be specified in that order on
the line beneath the FELUID SECTION| TYPE = RESTRICTOR BEND IDEL
CIRC or TYPE = RESTRICTOR BEND MILLER card):

e cross section before the bend A.

e cross section after the bend A.

hydraulic diameter D;, = 4A/P, where P is the perimeter of the cross
section.

radius of the bend R.

bend angle a (°).
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oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

not used (internally: oil material number)

They apply to circular cross sections. For rectangular cross sections the
constants are as follows (to be specified in that order on the line beneath the

FELUID SECTIONI TYPE=RESTRICTOR BEND IDEL RECT card):

cross section before the bend A.
cross section after the bend A.

hydraulic diameter D, = 4A/P, where P is the perimeter of the cross
section.

radius of the bend R.
bend angle a.

height ag.

width bg.

oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

not used (internally: oil material number)

The loss coefficients are those published by Idelchik [38] and Miller [61].

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: restrictor, restrictor-oil.

6.4.13 Restrictor, Wall Orifice

Properties: adiabatic, not isentropic, directional, A-outlet based restrictor
The geometry of an wall orifice is shown in Figure It is described by
the following constants (to be specified in that order on the line beneath the

FELUID SECTION, TYPE=RESTRICTOR WALL ORIFICE card):

not used (internally: set to 100,000 A as upstream section)
reduced cross section A.

hydraulic diameter Dy, defined by D;, = 4A/P where P is the perimeter
of the cross section.

length L
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Figure 97: Geometry of a wall orifice
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e oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

The loss coefficient for a wall orifice is taken from [38].

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

6.4.14 Restrictor, Entrance

Properties: adiabatic, not isentropic, directional, A-outlet based restrictor

An entrance element is used to model the entry from a large chamber
into a gas pipe. For an entrance the value of ¢ is 0.5. It is described by
the following constants (to be specified in that order on the line beneath the

FELUID SECTIONI TYPE=RESTRICTOR ENTRANCE card):

e not used (internally: set to 100,000 A as upstream section)
e cross section of the entrance A.

e hydraulic diameter Dj, defined by D;, = 4A/P where P is the perimeter
of the cross section.

e not used (internally: set of 0.5 as pressure loss coefficient)

e oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

6.4.15 Restrictor, Exit

Properties: adiabatic, not isentropic,directional, A-inlet based restrictor

An exit element is used to model the exit from a gas pipe into a large
chamber. For an exit the value of ( is 1. It is described by the following con-
stants (to be specified in that order on the line beneath the FELUID SECTION]
TYPE=RESTRICTOR EXIT card):

e cross section of the exit A.
e not used (internally: set to 100,000 A as downstream section)

e hydraulic diameter Dy, defined by Dy = 4A/P where P is the perimeter
of the cross section.



6.4 Fluid Section Types: Gases 171

e number of the upstream element; this element must be of type GAS PIPE
FANNO

e oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

6.4.16 Restrictor, User

Properties: adiabatic, not isentropic, directional, inlet based restrictor if A; <
Ay and outlet based restrictor if Ay < Aj.
A user-defined restrictor is described by the following constants (to be speci-
fied in that order on the line beneath the FELUID SECTION, TYPE=RESTRICTOR
USER card):

e upstream cross section Aj.
e downstream cross section As.

e hydraulic diameter Dj, defined by Dy = 4A/P where A is the area of the
smallest cross section and P is the perimeter of the smallest cross section.

e loss coeflicient (.

e oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: restrictor, restrictor-oil.

6.4.17 Branch, Joint

Properties: adiabatic, not isentropic, directional, inlet based restrictor

In a joint the flow from two gas pipes is united and redirected through a third
pipe. So in principal three network elements of type GAS PIPE have one node
in common in a joint. The fluid elements of type BRANCH JOINT represent
the extra energy loss due to the merging of the flows and have to be inserted on
the incoming branches of the joint. This is represented schematically in Figure
O8 The filled circles represent end nodes of the fluid elements, the others are
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the midside nodes. For a joint to work properly the flow direction must be as
indicated in Figure If the solution of the equation system indicates that
this is not the case appropriate measures must be taken. For instance, if the
solution reveals that there is one inward flow and two outward flows, branch

split elements must be selected.
Several types of geometry are available.

A branch joint of type GE [102], Figure @9] is quite general and allows
arbitrary cross sections and angles (within reasonable limits). It is characterized
by the following constants (to be specified in that order on the line beneath the

FELUID SECTION, TYPE=BRANCH JOINT GE card):

e label of the gas pipe element defined as branch 0.
e label of the gas pipe element defined as branch 1.
e label of the gas pipe element defined as branch 2.
e cross section Ag of branch 0.

e cross section A; of branch 1.

e cross section A, of branch 2.

e angle oy (°).

e angle oy (°).

e oil mass flow in branch 1 (only if the OIL parameter is used to define the

kind of oil in the *FLUID SECTION card)
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Figure 99: Geometry of a joint fluid section type GE

e oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

A branch joint of type Idelchikl, Figure [00, can be used if one of the
incoming branches is continued in a straight way and does not change its cross
section [38]. It is characterized by the following constants (to be specified in that
order on the line beneath the FFLUID SECTIONI TYPE=BRANCH JOINT
IDELCHIK]1 card):

e label of the gas pipe element defined as branch 0.
e label of the gas pipe element defined as branch 1.
e label of the gas pipe element defined as branch 2.
e cross section Ag of branch 0.

e cross section A; = Ag of branch 0.

e cross section A, of branch 2.

e angle a; = 0°.

e angle as (°).

e oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)
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Figure 100: Geometry of a joint fluid section type Idelchik 1

not used (internally: oil material number)

A branch joint of type Idelchik2, Figure [I0I} can be used if one of the
incoming branches is continued in a straight way but may change its cross
section [38)]. It is characterized by the following constants (to be specified in that
order on the line beneath the FELUID SECTION| TYPE=BRANCH JOINT
IDELCHIK?2 card):

label of the gas pipe element defined as branch 0.
label of the gas pipe element defined as branch 1.
label of the gas pipe element defined as branch 2.
cross section Ag of branch 0.

cross section A; of branch 1.

cross section A, of branch 2.

angle a; = 0°.

angle as (°).

oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: branchjointl, branchjoint2, branchjoint3, branchjoint4.
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Figure 101: Geometry of a joint fluid section type Idelchik 2

6.4.18 Branch, Split

Properties: adiabatic, not isentropic, directional, inlet based restrictor

In a split the flow from a gas pipe is split and redirected through two other
pipes. So in principal three network elements of type GAS PIPE have one node
in common in a split. The fluid elements of type BRANCH SPLIT represent
the extra energy loss due to the splitting of the flow and have to be inserted in
the outward branches of the split. This is represented schematically in Figure
The filled circles represent end nodes of the fluid elements, the others are
the midside nodes. For a split to work properly the flow direction must be as
indicated in Figure If the solution of the equation system indicates that
this is not the case appropriate measures must be taken. For instance, if the
solution reveals that there are two inward flows and one outward flow, branch
joint elements must be selected.

Several types of geometry are available.

A branch split of type GE [102], Figure [[03] is quite general and allows
arbitrary cross sections and angles (within reasonable limits). It is characterized
by the following constants (to be specified in that order on the line beneath the

FELUID SECTION, TYPE=BRANCH SPLIT GE card):

e label of the gas pipe element defined as branch 0.
e label of the gas pipe element defined as branch 1.
e label of the gas pipe element defined as branch 2.
e cross section Ag of branch 0.
e cross section A; of branch 1.
e cross section A, of branch 2.

e angle a; (°).
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Figure 102: Element selection for a split

e angle ay (°).

e 0il mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e not used (internally: oil material number)

A branch split of type Idelchikl, Figure [[04], can be used if the incoming
branch is continued in a straight way and does not change its cross section [38].
It is characterized by the following constants (to be specified in that order on the
line beneath the FELUID SECTION, TYPE=BRANCH SPLIT IDELCHIK1
card):

e label of the gas pipe element defined as branch 0.
e label of the gas pipe element defined as branch 1.
e label of the gas pipe element defined as branch 2.
e cross section Ag of branch 0.

e cross section A; = Ag of branch 0.

e cross section A, of branch 2.

e angle a; = 0°.
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Figure 103: Geometry of a split fluid section type GE

e angle as (°).
e hydraulic diameter Dy of Ag.
e hydraulic diameter Do of As.

e oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e 0oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e (-correction factor ky for branch 1 (¢cyy = k1¢). This allows to tune the
¢ value with experimental evidence (default is 1).

e (-correction factor ky for branch 2 ((css = k2¢). This allows to tune the
¢ value with experimental evidence (default is 1).

e not used (internally: oil material number)

A branch split of type Idelchik2, Figure [[03] is used if the outward branches
make an angle of 90° with the incoming branch [38]. It is characterized by
the following constants (to be specified in that order on the line beneath the

FELUID SECTION, TYPE=BRANCH SPLIT IDELCHIK?2 card):

e label of the gas pipe element defined as branch 0.
e label of the gas pipe element defined as branch 1.
e label of the gas pipe element defined as branch 2.

e cross section Ag of branch 0.
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Figure 104: Geometry of a split fluid section type Idelchik 1

e cross section A; of branch 1.
e cross section A, of branch 2.
e angle a; = 90°.
e angle ag = 90°.

e oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

e (-correction factor ki for branch 1 (¢cyy = k1¢). This allows to tune the
¢ value with experimental evidence (default is 1).

e (-correction factor kg for branch 2 (¢cfy = k2¢). This allows to tune the
¢ value with experimental evidence (default is 1).

e not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: branchsplitl, branchsplit2, branchsplit3.

6.4.19 Cross, Split

Properties: adiabatic, not isentropic, directional, inlet based restrictor

This is an element, in which a gas mass flow is split into three separate
branches.(See FigI00]) It is characterized by the following constants (to be spec-
ified in that order on the line beneath the FELUID SECTION, TYPE=CROSS
SPLIT card):
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Figure 105: Geometry of a split fluid section type Idelchik 2

o label of the element defined as branch 0.

o label of the element defined as branch 1.

e label of the element defined as branch 2.

e label of the element defined as branch 3.

e cross section Ag of branch 0, whereas A; = Ag
e cross section As of branch 2, whereas Az = Ao
e angle oy = 90°.

e angle ay = 90°.

e hydraulic diameter dpg = dp1

e hydraulic diameter dp2 = dn3

(-correction factor ki for the main passage (Corr = k1()

e (-correction factor ko for the branches ((csr = k2()

6.4.20 Vortex

Properties: adiabatic, isentropic, asymmetric

A vortex arises, when a gas flows along a rotating device. If the inertia of
the gas is small and the device rotates at a high speed, the device will transfer
part of its rotational energy to the gas. This is called a forced vortex. It is
characterized by an increasing circumferential velocity for increasing values of
the radius, Figure [[07
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Figure 107: Forced vortex versus free vortex
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Figure 108: Geometry of a forced vortex

Another case is represented by a gas exhibiting substantial swirl at a given
radius and losing this swirl while flowing away from the axis. This is called a
free vortex and is characterized by a hyperbolic decrease of the circumferential
velocity, Figure[I07l The initial swirl usually comes from a preceding rotational
device.

The equations for the forced and free vortex are derived from:

e The radial equilibrium of an infinitesimal volumetric element of size rdy x
dr subject to a pressure on all sides of the form p(r) and centrifugal loading
for which w = Cy/r, where C; is the local circumferential velocity. This
leads to the equation

Loy _

p¥ e (143)

v, K Cy is assumed, i.e. the radial velocity is negligible w.r.t. the tangen-
tial velocity.

e the assumption that the flow is isentropic, i.e.

r

= constant, (144)
pKL

e.g. equal to the value at the inner or outer position.

e the assumption that the flow is adiabatic (T} is constant).
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e the assumption that the upstream and downstream nodes correspond to
big reservoirs, consequently the total and static pressure as well as the
total and static temperature coincide.

Integrating the differential equation ([[43)) from r; to r, (after substitution of
the isentropic assumption and separation of the variables p and r; the index “i”
stands for inner (smallest radius), “o” stands for outer (largest radius)) leads to

- _

To 2 R—1
pt°[1+ = / Ctdr} . (145)

Dt; cp1y, r

The forced vortex, Figure [I08], is geometrically characterized by its upstream
and downstream radius. The direction of the flow can be centripetal or centrifu-
gal, the element formulation works for both. The core swirl ratio K., which takes
values between 0 and 1, denotes the degree the gas rotates with the rotational
device. If K, = 0 there is no transfer of rotational energy, if K, = 1 the gas
rotates with the device. The theoretical pressure ratio across a forced vertex
satisfies (substitute Cy = K,.Cy,r/r; in Equation (I45]))

Kr )2 . 2 =T
(pt") = |14 EC) <r> -1 : (146)
Pt; /) theoretical QCPTti T

where p; is the total pressure, 7} the total temperature and C;, the circum-
ferential velocity of the rotating device. It can be derived from the observation
that the circumferential velocity of the gas varies linear with the radius (Figure
[I07). Notice that the pressure at the outer radius always exceeds the pressure
at the inner radius, no matter in which direction the flow occurs.

The pressure correction factor n allows for a correction to the theoretical
pressure drop across the vortex and is defined by

7

— Ap’real ,Ap _ Pt, — P, ] (147)
Aptheoretical Dt;

Finally, the parameter Th,s controls the temperature increase due to the
vortex. In principal, the rotational energy transferred to the gas also leads to
a temperature increase. If the user does not want to take that into account
Thag = 0 should be selected, else Tag = 1 or Tae = —1 should be spec-
ified, depending on whether the vortex is defined in the absolute coordinate
system or in a relative system fixed to the rotating device, respectively. A
relative coordinate system is active if the vortex element is at some point in
the network preceded by an absolute-to-relative gas element and followed by a
relative-to-absolute gas element. The calculated temperature increase is only
correct for K, = 1. Summarizing, a forced vortex element is characterized by
the following constants (to be specified in that order on the line beneath the

FELUID SECTION, TYPE=VORTEX FORCED card):

e 75: radius corresponding to the third node in the topology of the vortex
element
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e 71: radius corresponding to the first node in the topology of the vortex
element

e 7: pressure correction factor

e K,: core swirl ratio

e N: speed of the rotating device (rad/unit of time)
o Thag

e not used (internally: circumferential exit velocity in unit of length/unit of
time (for the downstream element))

For the free vortex the value of the circumferential velocity C; of the gas at
entrance is the most important parameter. It can be defined by specifying the
number n of the preceding element, usually a preswirl nozzle or another vortex,
imparting the circumferential velocity. In that case the value N is not used. For
centrifugal flow the value of the imparted circumferential velocity C theorical,i
can be further modified by the swirl loss factor K7 defined by

Ct,'r‘eal,i - Uz

K, = .
Ct,theoretical,i - Uz

(148)

Alternatively, if the user specifies n = 0, the circumferential velocity at en-
trance is taken from the rotational speed N of a device imparting the swirl to
the gas. In that case K; and U; are not used and C% yeq1,; = IN7;. The theoret-
ical pressure ratio across a free vertex satisfies (substitute Cy = Cy yeqi7i/7 in

Equation (I45)
Ct2 Iy r 2 ﬁ
I+t 11— (= 149
+ 2¢,T3, (7’0> ’ (149)

(pto ) B
Pt; / theoretical

where p; is the total pressure, T} the total temperature and C} the circum-
ferential velocity of the gas. It can be derived from the observation that the
circumferential velocity of the gas varies inversely proportional to the radius
(Figure [[07). Notice that the pressure at the outer radius always exceeds the
pressure at the inner radius, no matter in which direction the flow occurs.

Here too, the pressure can be corrected by a pressure correction factor n
and a parameter T, is introduced to control the way the temperature change
is taken into account. However, it should be noted that for a free vortex the
temperature does not change in the absolute system. Summarizing, a free vortex
element is characterized by the following constants (to be specified in that order
on the line beneath the FELUID SECTIONI TYPE=VORTEX FREE card):

e 75: radius corresponding to the third node in the topology of the vortex
element

e 71: radius corresponding to the first node in the topology of the vortex
element
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e 7: pressure correction factor
e Kj: swirl loss factor (only if n # 0 and N = 0)

e U;: circumferential velocity of the rotating device at the upstream radius
(only if n #£ 0 and N = 0)

e n: number of the gas element responsible for the swirl (mutually exclusive
with )

e N: speed of the rotating device (rad/unit of time, mutually exclusive with
n; if both n and N are nonzero, N takes precedence)

o Thag

e not used (internally: circumferential exit velocity in unit of length /unit of
time (for the downstream element))

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: vortexl, vortex2, vortex3.

6.4.21 Mohring

A Mohring element is a vortex element for which the characteristics are de-
termined by the integration of a nonlinear differential equation describing the
physics of the problem [64]. It basically describes the flow in narrow gaps be-
tween a rotating and a static device and is more precise than the formulation of
the forced and free vortex element. The geometry is shown in Figure and
consists of a minimum radius, a maximum radius, a value for the gap between
stator and rotor and the shroud radius. It is complemented by the label of the
upstream and downstream node, the rotating speed of the rotor and the value
of the swirl at entrance. The user must choose the centrifugal or centripetal
version of the Moehring element before start of the calculation, i.e. the user
must decide beforehand in which direction the flow will move. If the calculation
detects that the flow is reversed, an error message is issued.

The following constants must be entered (to be specified in that order on the
line beneath the FFLUID SECTION] TYPE=MOEHRING CENTRIFUGAL
card or FELUID SECTION], TYPE=MOEHRING CENTRIPETAL card):

o R,,in: minimum radius
o R4 maximum radius
e d: disk/stator gap

® Rinrouq: shroud radius
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Figure 109: Geometry of the Mohring element

e upstream node label

e downstream node label

e N: speed of the rotor (rad/unit of time)

e circumferential speed of the gas at entrance

e alternatively to the previous line, the upstream element number

e not used (internally: circumferential exit velocity in unit of length/unit of
time (for the downstream element))

Example files: moehring.

6.4.22 Change absolute/relative system

Sometimes it is more convenient to work in a relative system fixed to some
rotating device, e.g. to model the flow through holes in a rotating disk. In
order to facilitate this, two conversion elements were created: a relative-to-
absolute element and an absolute-to-relative element. The transformation takes
place at a given radius and the element has a physical length of zero. Input
for this element is the circumferential velocity of the rotating device and the
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Figure 110: Vector plot of the absolute/relative velocity

tangential gas velocity , both at the radius at which the transformation is to
take place. The gas velocity can be specified explicitly, or by referring to an
element immediately preceding the transformation location and imparting a
specific swirl to the gas.

Let U be the circumferential velocity of the rotating device at the selected
radius, C' the velocity of the gas at the same location and C; its circumferential
component (Figure [[T0). The velocity of the gas W in the rotating system
satisfies:

W=C-U. (150)

The total temperature in the absolute system is

CQ
T, =T+ — 151
K +20p’ (151)

whereas in the relative system it amounts to
tr ZCP ( )

Combining these equations and using the relationship between the length of the
sides of an irregular triangle (cosine rule) one arrives at:

U? - 2UC,
T, =T, (1 + m) . (153)

Assuming adiabatic conditions this leads for the pressure to:

2 _ 2 ﬁ
UUCt) _ (154)

= 1
Dty pt( + 20,1,
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Figure 111: Total temperature dependence on the circumferential component of
the incoming flow

Depending on the size of 2C; compared to the size of U the relative total
temperature will exceed the absolute total temperature or vice versa. This is
illustrated in Figure 111
Inversely, the relationships for the relative-to-absolute transformation amount
to:

U? - 2UC,
T.=T |1 — ———= | . 155
t tr ( 2Cthr ) ( )
and:
U% - 2UC,\ = *
= 1-— . 156
Pt = Dty ( 2¢,T;, ) ( )

These relationships are taken into account in the following way: the change
in total temperature is taken care of by creating a heat inflow at the downstream
node. For an absolute-to-relative change this heat flow amounts to:

U2 -2UC; .
—

The total pressure change is taken as element equation. For an absolute-to-
relative change it runs:

Prous U? - 2UCt) w1
(1 —0, 158
Ptin ( 2Cthin ( )

cp(Tyr — Ti)i = (157)

and for a relative-to-absolute change:
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Prous U? — QUCt) =T
Ptow _ ([ _ 2 =274t —0. 159
Ptin < 2Cthin ( )

For an absolute-to-relative element the input is as follows (to be specified
in that order on the line beneath the FELUID SECTION] TYPE=ABSOLUTE
TO RELATIVE card):

e U: circumferential velocity of the rotating device at the selected radius
e (,;: tangential gas velocity at the selected radius

e n: element immediately preceding the location of the transformation

C; is taken if and only if n = 0. In all other cases the exit velocity of the
element with label n is taken.

For an relative-to-absolute element the input is identical except that the
type of the element is now RELATIVE TO ABSOLUTE.

Example files: moehring, vortexl, vortex2, vortex3.

6.4.23 In/Out

At locations where mass flow can enter or leave the network an element with
node label 0 at the entry and exit, respectively, has to be specified.

Its fluid section type for gas networks can be any of the available types.
The only effect the type has is whether the nonzero node is considered to be
a chamber (zero velocity and hence the total temperature equals the static
temperature) or a potential pipe connection (for a pipe connection node the total
temperature does not equal the static temperature). The pipe connection types
are GASPIPE, RESTRICTOR except for RESTRICTOR WALL ORIFICE and
USER types starting with UP, all other types are chamber-like. A node is a pipe
connection node if exactly two gas network elements are connected to this node
and all of them are pipe connection types.

For chamber-like entries and exits it is strongly recommended to use the type
INOUT, to be specified on the FELUID SECTION| card. For this type there are
no extra parameters.

6.4.24 Mass Flow Percent

This is a loss-less element specifying that the mass flow through the element
should be a certain percentage of the sum of the mass flow through up to 10
other elements. This element may be handy if measurement data are available
which have to be matched.

The following constants must be entered (to be specified in that order on the
line beneath the FELUID SECTION, TYPE=MASSFLOW PERCENT card):

e value in per cent
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o first element

e second element (if appropriate)
e third element (if appropriate)

e fourth element (if appropriate)

e fifth element (if appropriate)

e sixth element (if appropriate)

e seventh element (if appropriate)
e cighth element (if appropriate)

e ninth element (if appropriate)

e tenth element (if appropriate)

Example files: .

6.4.25 Network User Element

The user can define and code his/her own gas network element. The process of
doing so requires the following steps:

e decide whether the element should be pipe-like (i.e. the total temperature
and static temperature at the end nodes differ) or chamber-connecting-
like (i.e. the element connects large chambers and the total and static
temperatures at the end nodes are equal).

e choose a type name. For a pipe-like element the name has to start with
“UP” followed by 5 characters to be choosen freely by the user (UPxxxxx).
For a chamber-connecting-like element it has to start with “U”, followed
by a character unequal to “P” and followed by 5 characters to be choosen
freely by the user (Uyxxxxx, y unequal to “P”).

e decide on the number of constants to describe the element. This number
has to be specified on the FELUID SECTION]card with the CONSTANTS

parameter.

e add an entry in the if-construct in subroutine user_network_element.f. No-
tice that the type labels in the input deck (just as everything else, except
file names) are converted into upper case when being read by CalculiX.

e write an appropriate user network element subroutine, e.g. user_network_element_pxxxxx.f
or user_network_element_yxxxxx.f. Details can be found in Section
This routine describes how the total pressure at the end nodes,the total
temperature at the end nodes and the mass flow through the element are
linked.
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e add an entry in the if-construct in subroutine calcgeomelemnet.f (marked
by START insert and END insert). This routine is used to determine the
cross section area of the element (is used to calculate the static tempera-
ture from the total temperature).

e add an entry in the if-construct in subroutine calcheatnet.f (marked by
START insert and END insert). This routine is used to calculate the heat
generation e.g. due to centrifugal forces.

6.5 Fluid Section Types: Liquids

A network element is characterized by a type of fluid section. It has to be
specified on the FELUID SECTIONI card unless the analysis is a pure thermo-
mechanical calculation.

Typical material properties needed for a liquid network are the density p
(temperature dependent, cf. the FDENSITY] card), the heat capacity ¢ = ¢, =
¢, and the dynamic viscosity p (both temperature dependent and to be specified
with the card).

A special case is the purely thermal liquid network. This applies if:

e no TYPE is specified on any *FLUID SECTION card or
e the parameter THERMAL NETWORK is used on the *STEP card or
e all mass flow is given and either all pressures or given or none.

In that case only ¢, is needed.

For liquids the orifice (only for Cy = 1), restrictor, branch, and vortex fluid
section types of gases can be used by specifying the parameter LIQUID on
the *FLUID SECTION card. In addition, the following types are available as
well (the coefficients for the head losses are taken from [I0], unless specified
otherwise):

6.5.1 Pipe, Manning

This is a straight pipe with constant section and head losses A?F defined by
the Manning formula:

n2m?L

2p —
AF = pRA2ZRA/3’

(160)

where n is the Manning coefficient (unit: time/length'/3), 7 is the mass
flux, L is the length of the pipe, p is the liquid density, A is the cross section of
the pipe and R is the hydraulic radius defined by the area of the cross section
divided by its circumference (for a circle the hydraulic radius is one fourth of
the diameter). The following constants have to be specified on the line beneath
the FELUID SECTION| TYPE=PIPE MANNING card (internal element label:
DLIPIMA):
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e area of the cross section (> 0)
e hydraulic radius of the cross section (area/perimeter, > 0)
e Manning coefficient n > 0

The length of the pipe is determined from the coordinates of its end nodes.
Typical values for n are n = 0.013S/m1/3 for steel pipes and n = 0.015s/m1/3
for smooth concrete pipes (these values are for water. Notice that, since the
dynamic viscosity does not show up explicitly in the Manning formula, n may
be a function of the viscosity).

By specifying the addition FLEXIBLE in the type label the user can cre-
ate a flexible pipe. In that case the user specifies two nodes, the distance
between them being the radius of the pipe. These nodes have to be genuine
structural nodes and should not belong to the fluid network. The distance is
calculated from the location of the nodes at the start of the calculation mod-
ified by any displacements affecting the nodes. Consequently, the use of the

PLED keyword allows for a cou-
pling of the deformation of the pipe wall with the flow in the pipe. The follow-
ing constants have to be specified on the line beneath the FELUID SECTION],
TYPE=PIPE MANNING FLEXIBLE card (internal element label: DLIPI-
MAF):

e node number 1 (> 0)
e node number 2 (> 0)

e Manning coefficient n > 0

Example files: arteryl, artery2, centheatl, centheat2, pipe, piperestrictor.

6.5.2 Pipe, White-Colebrook

This is a straight pipe with constant section and head losses A?F defined by
the formula:
.2

9 fm*L

F=——— 161

1 2gp2A2D’ ( )

where f is the White-Colebrook coefficient (dimensionless), 7 is the mass

flux, L is the length of the pipe, g is the gravity acceleration (9.81m/s?), A
is the cross section of the pipe and D is the diameter. The White-Colebrook
coefficient satisfies the following implicit equation:

2.51 ks

Here, k; is the diameter of the material grains at the surface of the pipe and
Re is the Reynolds number defined by

1

(162)
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D
Re — UT (163)

where U is the liquid velocity and v is the kinematic viscosity. It satisfies
v = u/p where p is the dynamic viscosity.

The following constants have to be specified on the line beneath the FELUID SECTION]
TYPE=PIPE WHITE-COLEBROOK card (internal element label: DLIPTWC):

e area of the cross section (> 0)

hydraulic diameter of the cross section (4 times the area divided by the
perimeter, > 0)

length of the pipe element; if this number is nonpositive the length is
calculated from the coordinates of the pipe’s end nodes.

e the grain diameter ks > 0

e form factor ¢ > 0 of the cross section

The gravity acceleration must be specified by a gravity type FDLOADI card
defined for the elements at stake. The material characteristics p and p can be
defined by a FDENSITY] and FELUID CONSTANTS| card. Typical values for
ks are 0.25 mm for cast iron, 0.1 mm for welded steel, 1.2 mm for concrete,
0.006 mm for copper and 0.003 mm for glass.

The form factor ¢ is only used to modify the friction expression for non-
circular cross sections in the laminar regime as follows (p = 1 for a circular
cross section):

64
f=ere (164)

Values for ¢ for several cross sections can be found in [I3]. For a square
cross section its value is 0.88, for a rectangle with a height to width ratio of 2
its value is 0.97.

By specifying the addition FLEXIBLE in the type label the user can cre-
ate a flexible pipe. In that case the user specifies two nodes, the distance
between them being the radius of the pipe. These nodes have to be genuine
structural nodes and should not belong to the fluid network. The distance is
calculated from the location of the nodes at the start of the calculation mod-
ified by any displacements affecting the nodes. Consequently, the use of the

keyword allows for a cou-
pling of the deformation of the pipe wall with the flow in the pipe. The follow-
ing constants have to be specified on the line beneath the FFLUID SECTION|
TYPE=PIPE WHITE-COLEBROOK FLEXIBLE card (internal element label:
DLIPIWCEF):

e node number 1 (> 0)
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Figure 112: Sudden Enlargement

node number 2 (> 0)

length of the pipe element; if this number is nonpositive the length is
calculated from the coordinates of the pipe’s end nodes.

the grain diameter ks > 0

e form factor ¢ > 0 of the cross section

Example files: pipe2.

6.5.3 Pipe, Sudden Enlargement

A sudden enlargement (Figure [[12)) is characterized by head losses A2 F of the
form:

mQ

AZF =
! C29p214%’

(165)
where ( is a head loss coefficient depending on the ratio A;/As, m is the
mass flow, g is the gravity acceleration and p is the liquid density. A; and As
are the smaller and larger cross section, respectively. Notice that this formula is
only valid for m > 0. For a reverse mass flow, the formulas for a pipe contraction
have to be taken. Values for ¢ can be found in file “liquidpipe.f”.
The following constants have to be specified on the line beneath the FFLUID SECTTION]
TYPE=PIPE ENLARGEMENT card (internal element label: DLIPIEL):

e A1 >0
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The gravity acceleration must be specified by a gravity type FDLOAD] card
defined for the elements at stake. The material characteristic p can be defined

by a FDENSITY] card.

Example files: centheatl, pipe.

6.5.4 Pipe, Sudden Contraction

A sudden contraction (Figure [[T3) is characterized by head losses A?F of the
form:
2 m”
ATF = <2gp2A§’ (166)

where ( is a head loss coefficient depending on the ratio Ay /A1, rn is the mass
flow, g is the gravity acceleration and p is the liquid density. A; and As are the
larger and smaller cross section, respectively. Notice that this formula is only
valid for m > 0. For a reverse mass flow, the formulas for a pipe enlargement
have to be taken. Values for ¢ can be found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the FELUID SECTION|
TYPE=PIPE CONTRACTION card (internal element label: DLIPICO):

e A >0
[} A2 (§A1,>0)

The gravity acceleration must be specified by a gravity type FDLOAD] card
defined for the elements at stake. The material characteristic p can be defined

by a FDENSITY] card.

Example files: centheatl, pipe.
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Figure 114: Entrance

6.5.5 Pipe, Entrance
A entrance (Figure [[T4) is characterized by head losses AF of the form:
m2

2
AI‘F‘ - C29p2A27

(167)
where ( is a head loss coefficient depending on the ratio Ag/A, rn is the mass
flow, g is the gravity acceleration and p is the liquid density. Ay and A are the
cross section of the entrance and of the pipe, respectively. Values for ¢ can be
found in file “liquidpipe.f”.
The following constants have to be specified on the line beneath the*FLUID SECTION|
TYPE=PIPE ENTRANCE card (internal element label: DLIPIEN):

e A>0

° AO (SA,>O)

The gravity acceleration must be specified by a gravity type FDLOADI card
defined for the elements at stake. The material characteristic p can be defined

by a FDENSITY] card.

Example files: pipe, piperestrictor.

6.5.6 Pipe, Diaphragm
A diaphragm (Figure [15)) is characterized by head losses A?F of the form:
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Figure 115: Diaphragm

m2
2gp2 A%’
where ( is a head loss coefficient depending on the ratio Ag/A, 1 is the mass
flow, g is the gravity acceleration and p is the liquid density. Ag and A are the
cross section of the diaphragm and of the pipe, respectively. Values for ¢ can
be found in file “liquidpipe.f”.
The following constants have to be specified on the line beneath the FELUID SECTION]
TYPE=PIPE DIAPHRAGM card (internal element label: DLIPIDI):

e A>0
L] AO (SA,>0)

A2F =¢ (168)

The gravity acceleration must be specified by a gravity type FDLOADI card
defined for the elements at stake. The material characteristic p can be defined

by a FDENSITY] card.

6.5.7 Pipe, Bend
A bend (Figure [[16]) is characterized by head losses A2 F of the form:

mQ
2gp2 A2’
where ( is a head loss coefficient depending on the bend angle « and the
ratio of the bend radius to the pipe diameter R/D, 1 is the mass flow, g is the
gravity acceleration and p is the liquid density. A is the cross section of the
pipe. Values for ¢ can be found in file “liquidpipe.f”.
The following constants have to be specified on the line beneath the FELUID SECTION]
TYPE=PIPE BEND card (internal element label: DLIPIBE):

A’F =¢ (169)
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Figure 116: Bend
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¢ denotes the roughness of the pipe: & = 0 applies to an extremely smooth
pipe surface, £ = 1 to a very rough surface. The gravity acceleration must be
specified by a gravity type FDLOADI card defined for the elements at stake. The
material characteristic p can be defined by a FDENSITY] card.

Example files: centheatl, pipe.

6.5.8 Pipe, Gate Valve
A gate valve (Figure [[T7)) is characterized by head losses A?F of the form:

2 1’
ATF =(——— 170
1 C 29P2A2 ’ ( )
where ( is a head loss coefficient depending on the ratio o = /D, 1h is the
mass flow, g is the gravity acceleration and p is the liquid density. A is the cross
section of the pipe, x is a size for the remaining opening (Figure [[T7) and D is
the diameter of the pipe. Values for ¢ can be found in file “liquidpipe.f”.
The following constants have to be specified on the line beneath the FELUID SECTION|
TYPE=PIPE GATE VALVE card (internal element label: DLIPIGV):
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e A>0

ea (0.125<a<1)

The gravity acceleration must be specified by a gravity type FDLOADI card
defined for the elements at stake. The material characteristic p can be defined
by a FDENSITY] card.

For the gate valve the inverse problem can be solved too. If the user defines a
value for a < 0, « is being solved for. In that case the mass flow must be defined
as boundary condition. Thus, the user can calculate the extent to which the
valve must be closed to obtain a predefined mass flow. Test example pipe2.inp
illustrates this feature.

Example files: pipe2, pipe, piperestrictor.

6.5.9 Pump

A pump is characterized by a total head increase versus total flow curve (Figure
[IT8]). The total head h is defined by:

h=z+L, (171)
P9
where z is the vertical elevation, p is the pressure, p is the liquid density and

g is the value of the earth acceleration. The total flow @ satisfies:

Q =m/p, (172)

where m is the mass flow. The pump characteristic can be defined under-
neath a *FLUID SECTION, TYPE=LIQUID PUMP by discrete data points on
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Figure 118: Pump Characteristic

the curve (internal element label: DLIPU). The data points should be given
in increasing total flow order and the corresponding total head values must be
decreasing. No more than 10 pairs are allowed. In between the data points Cal-
culiX performs an interpolation (solid line in Figure[IT8]). For flow values outside
the defined range an extrapolation is performed, the form of which depends on
the precise location of the flow (dashed lines in Figure [[18). For positive flow
values inferior to the lowest flow data point, the total head corresponding to
this lowest flow data point is taken (horizontal dashed line). For negative flow
values the total head sharply increases (o = 0.0001) to simulate the zero-flow
conditions of the pump in that region. For flow values exceeding the largest
flow data point the total head decreases sharply with the same tangent a.

The gravity acceleration must be specified by a gravity type FDLOADI card
defined for the elements at stake. The material characteristic p can be defined
by a FDENSITY] card.

The liquid is defined by the following parameters (to be specified in that or-
der on the line beneath the FELUID SECTION|, TYPE=LIQUID PUMP card):

e not used
e X,
[ ] Yl

o X
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e ... (maximum 16 entries per line, use more lines if you want to define more
than 7 pairs, maximum 9 pairs in total)

Example files: centheatl.

6.5.10 In/Out

At locations where mass flow can enter or leave the network an element with
node label 0 at the entry and exit, respectively, has to be specified. Its fluid
section type for liquid pipe networks must be PIPE INOUT, to be specified on
the FELUID SECTION] card. For this type there are no extra parameters.

6.6 Fluid Section Types: Open Channels

A network element is characterized by a type of fluid section. It has to be
specified on the FELUID SECTIONI card unless the analysis is a pure thermo-
mechanical calculation (no calculation of pressure, mass flow or fluid depth). For
an open channel network the boundary conditions for each branch are located
upstream (frontwater flow) or downstream (backwater flow). These boundary
conditions are made up of special elements, such as a sluice gate or a weir.
Nearly all of these elements actually consist of pairs of elements, which ref-
erence each other. For instance, adjacent and downstream of the sluice gate
element a sluice opening element has to be defined. The upstream element of
such a pair has an additional degree of freedom attached to its middle node
to accommodate the location of any hydraulic jump which might occur in the
downstream channel branch. Therefore, all elements downstream of a pair of
such boundary elements have to reference the upstream element of the pair. In
our example, this is the sluice gate element. The friction in all elements is mod-
eled by the White-Colebrook law, unless the parameter MANNING is specified
on the *FLUID SECTION card. For details on these laws the reader is referred
to Section

6.6.1 Straight Channel

The straight channel is characterized by a trapezoidal cross section with con-
stant width b and trapezoidal angle 6. This is illustrated in Figure [I9 The
following constants have to be specified on the line beneath the *FLUID SEC-
TION, TYPE=CHANNEL STRAIGHT card:

e the width b
e the trapezoid angle 6

e the length L (if L < 0 the length is calculated from the coordinates of the
end nodes belonging to the element)
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Figure 119: Channel geometry

e the slope Sy = sin¢ (if Sy < —1 the slope is calculated from the coordi-
nates of the end nodes belonging to the element)

e the grain diameter kg for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

Example files: channell, chansonl.

6.6.2 Sluice Gate

The sluice gate is the upstream element of a channel and is illustrated in Figure
0200 The element downstream of a sluice gate should be a straight channel
element. The interesting point is that the gate height h, may be part of the
backwater curve, but it does not have to. If the lower point of the gate is higher
than the fluid surface, it will not be part of the backwater curve.

If the gate door touches the water and the water curve is a frontwater curve
(curve A in Figure [[20) the volumetric flow @ is given by (assuming 6 = 0)

Q :bhg\/zq(h—hgm — 82), (173)

if the gate door does not touch the water and the water curve is a frontwater
curve the volumetric flow @ is given by

Q_bhc\/zg(h—hc,/l—sg), (174)

where h. is the critical depth. The critical depth is the value of h. in the
above equation for which @ is maximal. For a rectangular cross secton h. =
2h/3. If the gate door touches the water and the water curve is a backwater
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Figure 120: Sluice gate geometry

curve (governed by downstream boundary conditions, curve B in Figure [[20))
the volumetric flow is given by

Q:bhg\/zg(h—hdm—sg). (175)

Finally, if the gate door does not touch the water and the water curve is a
backwater curve the volumetric flow is given by

Q:bhd\/2g(h—hd,/1—sg). (176)

The following constants have to be specified on the line beneath the *FLUID
SECTION, TYPE=CHANNEL SLUICE GATE card (the width, the trapezoid
angle, the slope and the grain diameter should be the same as for the down-
stream element immediately next to the sluice gate; they are needed for the
calculation of the critical height and normal height):

e the width b

e the trapezoid angle 6

e not used

e the slope Sy = sin¢g,—1 < Sy < 1 (for this element the slope must be

given explicitly and is not calculated from the coordinates of the end
nodes belonging to the element)
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Figure 121: Weir geometry

e the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

o the height of the gate door hy

Example files: channell, chansonl.

6.6.3 Weir

A wear is a structure as in Figure [[21] at the upstream end of a channel. The
weir can occur in different forms such as broad-crested weirs (left picture in
the Figure) and sharp-crested weirs (right picture in the Figure). The wear
element in CalculiX can be used to simulate the part of the wear to the left of
the highest point, which is the point at which critical flow is observed. The part
to the right of this point (denoted by “L” in the figure) has to be modeled by
a straight channel element with high slope or by a step element with negative
step size (i.e. drop).
The volumetric flow @ can be characterized by a law of the form

Q = Cb(h — p)*/?, (177)

where C is a constant. For instance, in the formula by Poleni C' = 2Cy+/2¢/3,
where Cy is coefficient smaller than 1 to be measured experimentally [I1]. The
flow across a wear corresponds to the flow underneath a sluice gate with infinite
depth underneath the gate and critical conditions, therefore (Equation (I74),
for # = 0 and Sp = 0):

Q = C"bher/2g9(h — he), (178)
where C* now satisfies (by equating to the above equations and taking h. =
2h/3 and p = 0):
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* g 3/2
cr= 22" (179)

The following constants have to be specified on the line beneath the *FLUID
SECTION, TYPE=CHANNEL WEIR card:

the width b
not used
not used
not used

the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

the height of the weir p

the weir constant C

A wear can only be used at the upstream end of a channel. A wear in the
middle of a channel has to be modeled by a step followed by a drop.

Example files: channel7.

6.6.4 Reservoir

A reservoir is a downstream boundary condition. The element immediately
upstream should be a straight channel element. The following constants have
to be specified on the line beneath the *FLUID SECTION, TYPE=CHANNEL
RESERVOIR card:

the width b
the trapezoid angle 6
not used

the slope Sy = sing, —1 < Sy < 1 (for this element the slope must be
given explicitly and is not calculated from the coordinates of the end
nodes belonging to the element)

the grain diameter kg for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)
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The width, the trapezoid angle, the slope and the grain diameter are needed
to calculate the critical and normal depth. They should be the same as the
straight channel element immediately upstream of the reservoir.

The water depth in the downstream node of a reservoir element must be
defined by the user by means of a FBOUNDARY] card (degree of freedom 2).

Example files: channell, chansonl.

6.6.5 Contraction

The geometry of a contraction is shown in Figure (view from above). The
flow is assumed to take place from left to right. To calculate the fluid depth
following a contraction based on the fluid depth before the contraction (or vice
versa) the specific energy is used (cf. Section [EI.I8). At a contraction the
channel floor elevation does not change, so the specific energy after the contrac-
tion minus the specific energy before the contraction amounts to the head loss.
Assuming at first no head loss, the specific energies are the same.

Figure 123 shows Q(h) for a fixed specific energy before and after a contrac-
tion and assuming a rectangular cross section. Since for a rectangular section

Q = bhy/2g(E — hcos @), (180)

the curve after the contraction is just scaled in Q-direction. From the figure
we notice that due to the contraction the fluid depth increases if the flow is
supercritical and decreases if it is subcritical. The inverse is true for an enlarge-
ment. Writing the above expression before and after the contraction for the
more general case of a trapezoidal section:
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Figure 124: Specific energy increase to cope with the upstream volumetric flow

A1v/2g(E — hycosy) = Aar/2g(E — ha cos @), (181)

one arrives at:

Ay \/(E — hycosp)

A V/(E = hzcosp)

This means that if ho > h; then A > A; and vice versa. Due to the
conservation of mass we then find that if ho > hq then Us < Uy and vice versa.
So the fluid velocity decreases for supercritical flow and increases for subcritical
flow at a contraction.

Now, if the contraction is strong it can happen that the new specific energy
line does not have an intersection with the volumetric flow at stake (dashed
line in Figure [24]). Assume the flow before the contraction is supercritical
(point 1 in the figure). Then, to solve the problem of a lacking intersection
the specific energy after the contraction is increased so that the energy line
barely touches the volumetric flow. This takes place for the critical depth of
this energy line, since it is at this height that the flow is maximal and the flow
only increases its energy as much as barely needed. So after the contraction the
flow is characterized by point 2. In downstream direction it is the start of a
supercritical frontwater curve within the contraction. In upstream direction it
is the first point of a subcritical backwater curve, for which looking in upstream
direction the contraction looks like an enlargement. Therefore, the upstream

(182)
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condition of the contraction is now represented by point 1* (the width has
increased and the energy line is scaled by a factor exceeding one). This point
will be connected to the original frontwater curve ahead of the contraction by
a hydraulic jump.

Another way of looking at this is by realizing that the increased specific
energy needed to accomodate the given flow within the contraction can only
be obtained by decreasing the energy loss upstream of the contraction. This is
done by a decrease of the friction, obtained by lifting the supercritical flow to a
subcritical level. Indeed, a larger fluid depth corresponds to less friction.

The previous considerations did not take head losses into account. The
head loss at the contraction can be approximated by (obtained by experimental

evidence):
a (UF - U7)
m 2

where —7/2 < o < 0 is the contraction angle in radians (tan o = (by—b1)/L,
where L is the length of the contraction). For supercritical flow Us < Uy and
consequently:

AF = , (183)

a (U2 -U3)
AF = —— | L2/ 184
W( 29 ) (184)

leading to the following relation between the upstream and downstream spe-
cific energy:

U? aU? U; aU?
hicosp+ o + 220 _p e R ] 185
1cos<p+2g+7r29 gcos<p+29+729, (185)
or
a U? a U2
hicosp 4+ (1+ =)=~ = hycosp + (1 + =) == (186)

7w’ 2g 7' 2g°
This means that the head loss can be taken into account by replacing g in
the specific energy by 7g/(m + ).
For subcritical flow U; < Uy and g has to be replaced by wg/(m — ).
The following constants have to be specified on the line beneath the *FLUID

SECTION, TYPE=CHANNEL CONTRACTION card:
e width of the channel at node 1 (first node in the topology of the element)
e trapezoidal angle of the channel at node 1

width of the channel at node 3 (third node in the topology of the element)

trapezoidal angle of the channel at node 3

not used
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Figure 125: Geometry of an enlargement

e the length of the contraction. This is used to calculated the contraction
angle from tan o = (by — b1)/L (if L < 0 the length is calculated from the
coordinates of the end nodes belonging to the element).

e the slope Sy = sin¢g,—1 < Sy < 1 (for this element the slope must be
given explicitly and is not calculated from the coordinates of the end
nodes belonging to the element)

Example files: channel9, channelll.

6.6.6 Enlargement

The geometry of an enlargement is shown in Figure (view from above).
Similar to the case of a contraction, the fluid depth following an enlargement
is calculated based on the depth before the enlargement (for supercritical flow)
or vice versa (for subcritical flow) using the specific energy and Figure 123
can be reused by replacing “after contraction” by “before enlargement” and
“before contraction” by “after enlargement”. For supercritical flow the fluid
depth decreases and the velocity increases at an enlargement, for subcritical
flow the fluid depth increases and the velocity decreases. For subcritical flow,
for which the depth downstream of the enlargement is known, the enlargement
(which is a contraction when looking upstream) may be so large that there is
no intersection with the specific energy curve upstream (cf. Figure in which
“after contraction” is replaced by “before enlargement” etcetera). In that case
the specific energy upstream of the enlargement is increased up to the point
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that the curve barely touches the given volumetric flow (for the critical depth).
This will lead to supercritical flow within the enlargement and a subsequent
jump downstream. Another way of looking at that is that the friction in the
enlargement has to increase (by a smaller depth) in order to compensate the
higher specific energy upstream of the enlargement.

The head loss at an enlargement can be approximated by:

AF = ‘k (U“?;U%)> ’ . (187)

For supercritical flow this amounts to replacing g by g/(1+k) in the definition
of the specific energy and for subcritical flow by replacing g by g/(1—k). Values
of k are 0, 0.27, 0.41, 0.68, 0.87 and 0.87 for o = 0., 0.25, 0.32, 0.46, 0.79 and
/2, respectively [11]. In between, linear interpolation is applied. « is defined
by tana = (by — by)/L.

The following constants have to be specified on the line beneath the *FLUID
SECTION, TYPE=CHANNEL ENLARGEMENT card:

e width of the channel at node 1 (first node in the topology of the element)
e trapezoidal angle of the channel at node 1

e width of the channel at node 3 (third node in the topology of the element)
e trapezoidal angle of the channel at node 3

e not used

e the length of the contraction. This is used to calculated the contraction
angle from tana = (by — b1)/L (if L < 0 the length is calculated from the
coordinates of the end nodes belonging to the element).

e the slope Sy = sin¢g,—1 < Sy < 1 (for this element the slope must be
given explicitly and is not calculated from the coordinates of the end
nodes belonging to the element)

Example files: channel9, channelll.

6.6.7 Step

The geometry of a step is the inverse of the drop geometry. Although a step is
really a discontinuity, a small fictitious length an a slope have to be assigned.
For the slope one can take the mean values of the slopes of the adjacent channels.
The following constants have to be specified on the line beneath the *FLUID
SECTION, TYPE=CHANNEL STEP card:

e width of the channel

e trapezoidal angle of the channel section
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e not used
e not used

e height of the step (i.e. change in the bottom when going from node 1 to
node 3 in the element topology; if negative it is a drop)

e not used

e the slope Sy = sin¢g,—1 < Sy < 1 (for this element the slope must be
given explicitly and is not calculated from the coordinates of the end
nodes belonging to the element)

Example files: channell0, channell2.

6.6.8 Channel joint

This is not a channel element. Rather, the channel joint is modeled by using
three standard straight channel elements, in two of which the mass flow is en-
tering the joint (the “joining” elements) and in the remaining it is leaving the
joint. Within each of the joining elements the fluid depth is not assumed to
change. Therefore it is important that the length of all three elements is chosen
sufficiently small. No other elements are allowed in a joint (so also no In/Out
elements).

If a frontwater curve prevails in both the joining elements the frontwater
curve with the highest depth is pursued downstream (also a frontwater curve)
and the other curve either simply connected or connected through a jump. No
energy loss is taken into account.

If a frontwater curve prevails in only one of the joining elements this curve
is continued downstream (also a frontwater curve) and a backwater curve is
calculated for the other joining element. No energy loss is taken into account.

If a backwater curve prevails in both the joining elements also the down-
stream element is characterized by a backwater curve. Here, the Bernoulli
equation is assumed to contain a head loss in the following form [I1]:

U? Ug Uz U
hi+ -+ =h -0 il — =0 1
+ 2 o+ 2 + « 2 2 | (188)

where i = 1, 2 denotes one of the joining channels, and ¢; is the angle between
channel ¢ and the downstream channel, normalized by 7. Consequently, it takes
the value 0 for a; = 0 and 1 for a; = 7. It is assumed that the mass flow in
the upstream channels is known. In the downstream channel also the velocity
is known (the depth is known since it is a backwater curve). The velocities and
depths in the upstream channels, however, are unknown. Starting with a split
up of the downstream velocity proportional to the mass flow, the dept h; can
be calculated in each of the upstream channels. This allows for an update of
U,. This procedure is continued until convergence is reached.
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6.6.9 In/Out

At locations where mass flow can enter or leave the network an element with
node label 0 at the entry and exit, respectively, has to be specified. Its fluid
section type for liquid channel networks must be CHANNEL INOUT, to be
specified on the FELUID SECTIONI card. For this type there are no extra
parameters.

If this type of element is connected to exactly one other element type, the
entering mass flow has to be specified in the middle node using a
card and, if the calculation is thermal, the temperature at the downstream
node. If the mass flow is exiting the network nothing should be prescribed. If
a In/Out element is connected two elements not of the In/Out type the mass
flow always has to be specified, irrespective whether it is entering or leaving
the network. Furthermore, for a thermal calculation also the temperature has
to be specified as degree of freedom 0 or 11 at the middle node. This is an
exception to the rule that temperatures can only be defined in end nodes due
to the fact that the external end node of a In/Out element has node number
zero. A channel calculation is considered to be thermal if the above temperature
rules are satisfied. Furthermore, or thermal channel calculations the definition

of absolute zero using a FPHYSICATL, CONSTANTS| card is mandatory.

Example files: channell4, channeljointl.

6.7 Boundary conditions
6.7.1 Single point constraints (SPC)

In a single point constraint one or more degrees of freedom are fixed for a given
node. The prescribed value can be zero or nonzero. Nonzero SPC’s cannot
be defined outside a step. Zero SPC’s can be defined inside or outside a step.
SPC’s are defined with the keyword FBOUNDARY] The mechanical degrees of
freedom are labeld 1 through 6 (1 = translation in x, 2 = translation in y, 3 =
translation in z, 4 = rotation about x, 5 = rotation about y, 6 = rotation about
z), the thermal degree of freedom is labeled 11. Rotational degrees of freedom
can be applied to beam and shell elements only.

6.7.2 Multiple point constraints (MPC)

Multiple point constraints establish a relationship between degrees of freedom in
one or more nodes. In this section, only linear relationships are considered (for
nonlinear relations look at the keyword FMPC] and section B.7). They must be
defined with the keyword FEQUATION]before the first step. An inhomogeneous
linear relationship can be defined by assigning the inhomogeneous term to one
of the degrees of freedom (DOF) of a dummy node (using a SPC) and including
this DOF in the MPC, thus homogenizing it. The numbering of the DOF’s is
the same as for SPC’s (cf previous section). It is not allowed to mix thermal
and mechanical degrees of freedom within one and the same MPC.
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6.7.3 Kinematic and Distributing Coupling

In this section the theoretical background of the keyword FCOUPLING] fol-
lowed by FKINEMATIC or FDISTRIBUTING] is covered, and not the keyword
[DISTRIBUTING COUPLINGI

Coupling constraints generally lead to nonlinear equations. In linear calcu-
lations (without the parameter NLGEOM on the *STEP card) these equations
are linearized once and solved. In nonlinear calculations, iterations are per-
formed in each of which the equations are linearized at the momentary solution
point until convergence.

Coupling constraints apply to all nodes of a surface given by the user. In
a kinematic coupling constraint by the user specified degrees of freedom in
these nodes follow the rigid body motion about a reference point (also given
by the user). In CalculiX the rigid body equations elaborated in section 3.5 of
[23] are implemented. Since CalculiX does not have internal rotational degrees
of freedom, the translational degrees of freedom of an extra node (rotational
node) are used for that purpose, cf. FRIGID BODYl Therefore, in the case of
kinematic coupling the following equations are set up:

e 3 equations connecting the rotational degrees of freedom of the reference
node to the translational degrees of freedom of an extra rotational node.

e per node belonging to the surface at stake, for each degree of freedom
specified by the user (maximum 3) a rigid body equation.

This applies if no ORIENTATION was used on the *COUPLING card, i.e.
the specified degrees of freedom apply to the global coordinate system. If an
ORIENTATION parameter is used, the degrees of freedom apply in a local
system. Then, the nodes belonging to the surface at stake (let us give them
the numbers 1,2,3...) are duplicated (let us call these d1,d2,d3.....) and the
following equations are set up:

e 3 equations connecting the rotational degrees of freedom of the reference
node to the translational degrees of freedom of an extra rotational node.

e per duplicated node belonging to the surface at stake, a rigid body equa-
tion for each translational degree of freedom (i.e. 3 per duplicated node).

e per node an equation equating the by the user specified degrees of freedom
in the local system (maximum 3) to the same ones in the duplicated nodes.

The approach for distributing coupling is completely different. Here, the
purpose is to redistribute forces and moments defined in a reference node across
all nodes belonging to a facial surface define on a *COUPLING card. No kine-
matic equations coupling the degrees of freedom of the reference node to the
ones in the coupling surface are generated. Rather, a system of point loads
equivalent to the forces and moments in the reference node is applied in the
nodes of the coupling surface.
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To this end the center of gravity x., of the coupling surface is determined
by:

Teg = Za:iwi, (189)

where «; are the locations of the nodes belonging to the coupling surface
and w; are weights taking the area into account for which each of the nodes is
“responsible”. We have:

Z w; = 1. (190)
i
The relative position r; of the nodes is expressed by:

T, = X; — Teg, (191)

and consequently:
> riw; =0. (192)
i

The forces and moments {F,,, M, }defined by the user in the reference node
p can be transferred into an equivalent system consisting of the force F = F,
and the moment M = (p — x.y) X F, + M, in the center of gravity. Now, it
can be shown by use of the above relations that the system consisting of

F;:=F,p + F;y, (193)
where
and
(M X r’i)wi
M= 195
M ZZ ||r/i||2wi ( )
using the definition
i MM
7”1‘ =r,— w =:7r; — T‘”i (196)

is equivalent to the system {F, M} in the center of gravity. The vector r/;
is the orthogonal projection of r; on a plane perpendicular to M. Notice that
r/; M =0and r"”";, x M =0.

The proof is done by calculating >, F; and ), r; x F; and using the rela-
tionship @ x (b x ¢) = (a - ¢)b — (a - b)c. One obtains:

> Fip=F) w;=F. (197)
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Figure 126: Data used for the distribution of a bending moment

ZriXFiF:ZriXFwi:ZwiriXF:O- (198)

(M x r';)w; S (M X ry)w;
E Fiy = = L =0. 199
— M 2 S ilPws %, [ Pws (199)

%

S rx Fiag = 2i(ri - t’i)sz' EDYIGE ],V—’)?“'iwz'. (200)
- > Ir'illPw; > Ir'illPw;

The last equation deserves some further analysis. The first term on the right
hand side amounts to M since r; - 7’; = r’; - 7’;. For the analysis of the second
term a carthesian coordinate system consisting of the unit vectors eq || M, e
and eg is created (cf. Figure for a 2-D surface in the 1-2-plane). The
numerator of the second term amounts to:
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’ ” ’
E (T’ZM)’I"Z’LUZ: E (’I" ,LM)’I"ZU)Z
% %
2 : " ’
= ; Mr iW;
%
" ! " !
= g r; Mrseaw; + g r; Mrsesw;
4 4

= Mes Z ririyw; + Mes Z i risw;. (201)

These terms are zero (setting 7} = rj,) if >, ri1riow; = 0 and ), v} risw; =
0 i.e. if the carthesian coordinate system is parallel to the principal axes of
inertia based on the weights w;. Consequently, for Eq. ([I93) to be valid, eq,
es and eg have to be aligned with the principal axes of inertia! The equivalent
force and moment in the center of gravity are subsequently decomposed along
these axes.

Defining F' = Fje; and M = Mje; one can write:

F,=Fia; + M;b;, 202
J7 J77

where

a; = e;jw; (203)
and

(e xr')w;
b; : SACAETS (204)
Notice that the formula for the moments is the discrete equivalent of the
well-known formulas 0 = My/I for bending moments and 7 = T'r/J for torques
in beams [76].
Now, an equivalent formulation to Equation (202]) for the user defined force
F,, and moment M, is sought. In component notation Equation ([Z02)) runs:

(Fi)k = Fjaji + Mjbjp. (205)

Defining vectors o, and 3, such that (a); = a;r and (8;); = bji this can
be written as:

(Fir=ay F+B,-M (206)
or

(Fi)k:ak'FuJFﬂk'(MuJFTXFu)a (207)

where r := p — x.4. This is a linear function of F',, and M,;:
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(Fi)k =75 Fu+ By - M, (208)

where

(Yi)m = ()m + (Bi)q€qpmTp- (209)

The coefficients ~,, and 3, in Equation (208]) are stored at the beginning
of the calculation for repeated use in the steps (the forces and moments can
change from step to step). Notice that the components of F,, and M, have
to be calculated in the local coupling surface coordinate system, whereas the
result (F;) applies in the global carthesian system.

If an orientation is defined on the *COUPLING card the force and moment
contributions are first transferred into the global carthesian system before apply-
ing the above procedure. Right now, only carthesian local systems are allowed
for distributing coupling.

6.7.4 Mathematical description of a knot

Knots are used in the expansion of 1d and 2d elements into three dimensions,
see Sections [6.2.14] and

The mathematical description of a knot was inspired by the polar decom-
position theorem stating that the deformed state da of an infinitesimal vector
dX in a continuum can be decomposed into a stretch followed by a rotation
[23],[25]:

de=F-dX =R-U-dX, (210)

where F' is the deformation gradient, R is the rotation tensor and U is the
right stretch tensor. Applying this to a finite vector extending from the center
of gravity of a knot g to any expanded node p; yields

(pi+ui) —(g+w)=R-U - (p; — q), (211)

where u; and w are the deformation of the node and the deformation of the
center of gravity, respectively. This can be rewritten as

ui=w+ (R-U-1I)(pi —q), (212)

showing that the deformation of a node belonging to a knot can be decomposed
in a translation of the knot’s center of gravity followed by a stretch and a rotation
of the connecting vector. Although this vector has finite dimensions, its size is
usually small compared to the overall element length since it corresponds to
the thickness of the shells or beams. In three dimensions U corresponds to a
symmetric 3 x 3 matrix (6 degrees of freedom) and R to an orthogonal 3 x 3
matrix (3 degrees of freedom) yielding a total of 9 degrees of freedom. Notice
that the stretch tensor can be written as a function of its principal values \;
and principal directions IN? as follows:
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U=> MN'@ N (213)

Beam knot The expansion of a single beam node leads to a planar set of
nodes. Therefore, the stretch of a knot based on this expansion is reduced to
the stretch along the two principal directions in that plane. The stretch in the
direction of the beam axis is not relevant. Let us assume that T3 is a unit vector
tangent to the local beam axis and E;, FE5 are two unit vectors in the expansion
plane such that E; - E5 = 0 and E, X E5 = T;. Then, the stretch in the plane
can be characterized by vectors To and T3 along its principal directions:

T, = £(E7 cos p + Easing) (214)

Ts = n(—E;sinp + E3 cos ) (215)

leading to three stretch degrees of freedom ¢, £ and 7. ¢ is the angle T> makes
with Ej, ¢ is the stretch along T3 and 7 is the stretch along T5. The right
stretch tensor U can now be written as:

U=T1oT+T20T:+TsT;s
=T, @Ty + (62 cos® p +n?sin p) By @ By + (£%sin” ¢ + 0% cos® p) By @ Ea
+ (& —n?) cos psinp(Eqr © Ez + E2 ® Ey). (216)

The rotation vector reads in component notation

R;; = 6;j cos 0 + sin Oe;ijni, + (1 — cos O)n;n,;. (217)

Here, 0 is a vector along the rotation axis satisfying @ = 6n, ||n| = 1. As-
suming that at some point in the calculation the knot is characterized by
(wo, B0, ¥0,&0,M0), a change (Aw,Al, Ap, A, An) leads to (cf. Equation
B12)):

uo + Au = wo + Aw+[R(6o + A0)-U(po+Ap,&+AE no+An)—1I]-(p—q).
(218)
Taylor expansion of R:

R(6p + AB) = R(6y) + 80—? A0+ .., (219)
6o

and similar for U and keeping linear terms only leads to the following equation:
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Au=Aw+| oo A0 U (0, &0:1m0) - (P — q)
o
ouUu oUu ouUu
[8 Ap +87§ Af‘f‘afnnoAn (p—a)
+wo + [R(6o (wo,ﬁoaﬁo)—l]'(P—Q) — Uo. (220)

The latter equation is a inhomogeneous linear equation linking the change in
displacements of an arbitrary node belonging to a knot to the change in the
knot parameters (translation, rotation and stretch). This equation is taken into
account at the construction phase of the governing equations. In that way the
expanded degrees of freedom, being dependent, never show up in the equations
to solve.

Shell knot The expansion of a shell node leads to a set of nodes lying on a
straight line. Therefore, the stretch tensor U is reduced to the stretch along
this line. Let T; be a unit vector parallel to the expansion and T3 and T3 unit
vectors such that Ty - T3 = 0 and Ty x T = T3. Then U can be written as:
U:O[T1®T1+T2®T2+T3®T3 (221)
leading to one stretch parameter a. Since the stretch along Tz and T3 is imma-
terial, Equation (221)) can also be replaced by
U:aT1®T1 +O[T2®T2+04T3®T3:CYI (222)

representing an isotropic expansion. Equation ([220)) can now be replaced by

0]
09 |,
+ wo + [agR(60) — I] - (p — q) — wo. (223)

. AO] (P—q)+AaR(bo) - (p—q)

Consequently, a knot resulting from a shell expansion is characterized by 3
translational degrees of freedom, 3 rotational degrees of freedom and 1 stretch
degree of freedom.

Arbitrary knot A knot generally consists of one or more expansions of one
and the same node, leading to a cloud of nodes p;. In the previous two sections
knots were considered consisting of the expanded nodes of just one beam element
or just one shell element. Generally, a knot will be the result of several beam and
shell elements leading to a cloud of nodes in three-dimensional space. In order to
determine the dimensionality of this cloud the first and second order moments
of inertia are calculated leading to the location of the center of gravity and the
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second order moments about the center of gravity. The principal values of the
second order moment matrix can be used to catalogue the dimensionality of the
nodal cloud: if the lowest two principal values are zero the dimensionality is one
(i.e. the nodes lie on a line as for the shell knot), if only the lowest one is zero the
dimensionality is two (i.e. the nodes lie in a plane as for a beam knot). Else,
the dimensionality is three. If the dimensionality corresponds to the highest
dimensionality of the single elements involved, the formulation corresponding
to that dimensionality is used.

If the dimensionality of the nodal cloud exceeds the highest dimensionality
of the single elements, the shell knot formulation (isotropic expansion) is used.
The reason for this is that the knot is supposed to be physically rigid, i.e. the
relative angular position of the constituing elements should not change during
deformation. Using the beam knot formulation leads to anisotropic stretching,
which changes this relative angular position.

6.7.5 Node-to-Face Penalty Contact

General considerations Contact is a strongly nonlinear kind of boundary
condition, preventing bodies to penetrate each other. The contact definitions
implemented in CalculiX are a node-to-face penalty method, a face-to-face
penalty method and a mortar method, all of which are based on a pairwise
interaction of surfaces. They cannot be mixed in one and the same input deck.
In the present section the node-to-face penalty method is explained. For details
on the penalty method the reader is referred to [I05] and [47].

Each pair of interacting surfaces consists of a dependent surface and an
independent surface. The dependent surface (= slave) may be defined based
on nodes or element faces, the independent surface (= master) must consist of
element faces (Figure [[27)). The element faces within one independent surface
must be such, that any edge of any face has at most one neighboring face.
Usually, the mesh on the dependent side should be at least as fine as on the
independent side. As many pairs can be defined as needed. A contact pair is
defined by the keyword card FCONTACT PAIRI

If the elements adjacent to the slave surface are quadratic elements (e.g.
C3D20, C3D10 or C3D15), convergence may be slower. This especially applies
to elements having quadrilateral faces in the slave surface. A uniform pressure
on a quadratic (8-node) quadrilateral face leads to compressive forces in the
midnodes and tensile forces in the vertex nodes [23] (with weights of 1/3 and
-1/12, respectively). The tensile forces in the corner nodes usually lead to di-
vergence if this node belongs to a node-to-face contact element. Therefore, in
CalculiX the weights are modified into 24/100 and 1/100, respectively. In gen-
eral, node-to-face contact is not recommended for quadratic elements. Instead,
face-to-face penalty contact or mortar contact should be used.

In CalculiX, penalty contact is modeled by the generation of (non)linear
spring elements. To this end, for each node on the dependent surface, a face
on the independent surface is localized such that it contains the orthogonal
projection of the node. If such is face is found a nonlinear spring element is
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Figure 127: Definition of the dependent nodal surface and the independent
element face surface

B SLAVE

g

l ) MASTER

Figure 128: Creation of a node-to-face penalty contact element
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generated consisting of the dependent node and all vertex nodes belonging to the
independent face (Figure[I28). Depending of the kind of face the contact spring
element contains 4, 5, 7 or 9 nodes. The properties of the spring are defined
by a[FSURFACE INTERACTION]| definition, whose name must be specified on
the *CONTACT PAIR card.

The user can determine how often during the calculation the pairing of the
dependent nodes with the independent faces takes place. If the user specifies
the parameter SMALL SLIDING on the FCONTACT PAIRI card, the pairing is
done once per increment. If this parameter is not selected, the pairing is checked
every iteration for all iterations below 9, for iterations 9 and higher the contact
elements are frozen to improve convergence. Deactivating SMALL SLIDING is
useful if the sliding is particularly large.

The *SURFACE INTERACTION keyword card is very similar to the FMATERIAT]
card: it starts the definition of interaction properties in the same way a *MATE-
RIAL card starts the definition of material properties. Whereas material prop-
erties are characterized by cards such as *DENSITY or *ELASTIC, interaction
properties are denoted by the FSURFACE BEHAVIORI and the FFRICTION]
card. All cards beneath a *SURFACE INTERACTION card are interpreted
as belonging to the surface interaction definition until a keyword card is en-
countered which is not a surface interaction description card. At that point, the
surface interaction description is considered to be finished. Consequently, an in-
teraction description is a closed block in the same way as a material description,
Figure Bl

The *SURFACE BEHAVIOR card defines the linear (actually quasi bilinear
as illustrated by Figure[I[30)), exponential, or piecewice linear normal (i.e. locally
perpendicular onto the master surface) behavior of the spring element. The
pressure p exerted on the independent face of a contact spring element with
exponential behavior is given by

p = poexp(Bd), (224)

where pg is the pressure at zero clearance, 8 is a coefficient and d is the
overclosure (penetration of the slave node into the master side; a negative pene-
tration is a clearance). Instead of having to specify 3, which lacks an immediate
physical significance, the user is expected to specify ¢y which is the clearance at
which the pressure is 1 % of pg. From this 8 can be calculated:

. 1n100. (225)

Co

The pressure curve for pg = 1 and ¢y = 0.5 looks like in Figure A large
value of ¢y leads to soft contact, i.e. large penetrations can occur, hard contact
is modeled by a small value of ¢g. Hard contact leads to slower convergence than
soft contact. If the distance of the slave node to the master surface exceeds cg
no contact spring element is generated. For exponential behavior the user has
to specify ¢y and py underneath the *SURFACE BEHAVIOR card.
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In case of a linear contact spring the pressure-overclosure relationship is
given by

p=Kd [; + %tan*l (f)} , (226)

were € is a small number. The term in square brackets makes sure that the
value of p is very small for d < 0. In general, a linear contact spring formulation
will converge more easily than an exponential behavior. The pressure curve for
K = 10% and ¢ = 1072 looks like in Figure A large value of K leads to
hard contact. To obtain good results K should typically be 5 to 50 times the
E-modulus of the adjacent materials. If one knows the roughness of the contact
surfaces in the form of a peak-to-valley distance d,, and the maximum pressure
Pmaz 1O €xpect, one might estimate the spring constant by K = ppaa/dp,. The
units of K are [Force]/[Length]3.

Notice that for a large negative overclosure a tension o results (for d — —oco
), equal to Ke/m. The value of o has to be specified by the user. A good
value is about 0.25 % of the maximum expected stress in the model. CalculiX
calculates € from o, and K.

For a linear contact spring the distance beyond which no contact spring
element is generated is defined by cg+/spring area if the spring area exceeds
zero, and 10719 otherwise. The default for ¢y is 1073 (dimensionless) but may
be changed by the user. For a linear pressure-overclosure relationship the user
has to specify K and o, underneath the *SURFACE BEHAVIOR card. cq is
optional, and may be entered as the third value on the same line.

The pressure-overclosure behavior can also be defined as a piecewise linear
function (PRESSURE-OVERCLOSURE=TABULAR). In this way the user can
use experimental data to define the curve. For a tabular spring the distance be-
yond which no contact spring element is generated is defined by 10~3/spring area
if the spring area exceeds zero, and 10710 otherwise. For tabular behavior the
user has to enter pressure-overclosure pairs, one on a line.

The normal spring force is defined as the pressure multiplied by the spring
area. The spring area is assigned to the slave nodes and defined by 1/4 (linear
quadrilateral faces) or 1/3 (linear triangular faces) of the slave faces the slave
node belongs to. For quadratic quadrilateral faces the weights are 24/100 for
middle nodes and 1/100 for corner nodes. For quadratic triangular faces these
weight are 1/3 and 0, respectively.

The tangential spring force is defined as the shear stress multiplied by the
spring area. The shear stress is a function of the relative displacement |||
between the slave node and the master face. This function is shown in Figure
[[3T1 It comsists of a stick range, in which the shear stress is a linear function
of the relative tangential displacement, and a slip range, for which the shear
stress is a function of the local pressure only. User input consists of the friction
coefficient p which is dimensionless and usually takes values between 0.1 and
0.5 and the stick slope A which has the dimension of force per unit of volume
and should be chosen about 100 times smaller than the spring constant.
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stick slip 11t]|

Figure 131: Shear stress versus relative tangential displacement

The friction can be redefined in all but the first step by theFCHANGE FRICTION]
keyword card. In the same way contact pairs can be activated or deactivated in

all but the first step by using the FMODEL CHANGE] card.

If CalculiX detects an overlap of the contacting surfaces at the start of a
step, the overlap is completely taken into account at the start of the step for
a dynamic calculation (*DYNAMIC or *MODAL DYNAMIC) whereas it is
linearly ramped for a static calculation (*STATIC).

Finally a few useful rules if you experience convergence problems:

e Deactivate NLGEOM (i.e. do not use NLGEOM on the *STEP card).
e Try SMALL SLIDING first, and then large sliding, if applicable.

e Try a linear pressure-overclosure relationship first (instead of exponential),
with a stiffness constant about 5 to 50 times Young’s modulus of the
adjacent materials.

e Define your slave surface based on faces, not on nodes. This can be espe-
cially helpful if you use quadratic elements.

e Make sure that the mesh density on the slave side is at least as fine as on
the master side, preferably finer.

e Deactivate friction first.

Notice that the parameter CONTACT ELEMENTS on the FNODE FILEL
FEL FILE NODE OUTPUT] or FELEMENT OUTPUT]card stores the contact

elements which have been generated in each iteration as a set with the name
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contactelements_sta_inf_aty-itd (where « is the step number, 8 the increment
number, v the attempt number and § the iteration number) in a file jobname.cel.
When opening the frd file with CalculiX GraphiX this file can be read with the
command “read jobname.cel inp” and visualized by plotting the elements in the
appropriate set. These elements are the contact spring elements and connect
the slave nodes with the corresponding master surfaces. In case of contact these
elements will be very flat. Moving the parts apart (by a translation) will improve
the visualization. Using the screen up and screen down key one can check how
contact evolved during the calculation. Looking at where contact elements have
been generated may help localizing the problem in case of divergence.

The number of contact elements generated is also listed in the screen output
for each iteration in which contact was established anew, i.e. for each iteration
< 8 if the SMALL SLIDING parameter was not used on the FCONTACT PAIR|
card, else only in the first iteration of each increment.

Normal contact stiffness A node-to-face contact element consists of a slave
node connected to a master face (cf. Figure [[28]). Therefore, it consists of
1 + n,, nodes, where n,, is the number of nodes belonging to the master face.
The stiffness matrix of a finite element is the derivative of the internal forces in
each of the nodes w.r.t. the displacements of each of the nodes. Therefore, we
need to determine the internal force in the nodes.

Denoting the position of the slave node by p and the position of the projec-
tion onto the master face by g, the vector connecting both satisfies:

r=p-—gq. (227)

The clearance r at this position can be described by

r—1.m (228)

where n is the local normal on the master face. Denoting the nodes belonging
to the master face by q;,7 = 1,n,, and the local coordinates within the face by
& and 7, one can write:

a=>Y ¢;i&ngj, (229)
J
dqg 0
m = a—g x 87‘; (230)
and

m
__m 231
] (231)

m is the Jacobian vector on the surface. The internal force on node p is now
given by

F, = —f(r)na,, (232)
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where f is the pressure versus clearance function selected by the user and a,, is
the slave area for which node p is representative. If the slave node belongs to
N contact slave faces ¢ with area A;, this area may be calculated as:

N
ap =Y Ai/ng;. (233)
=1

The minus sign in Equation (232)) stems from the fact that the internal force
is minus the external force (the external force is the force the master face exerts
on the slave node). Replacing the normal in Equation (232)) by the Jacobian
vector devided by its norm and taking the derivative w.r.t. w;, where ¢ can be
the slave node or any node belonging to the master face one obtains:

1 0F, m__Jf { ( m 7‘)] _f om f " ||lm||
0 0us ~ Tl © or | \mi ol Bz B ™ ® s
Since

0 ( m ) 1 om  r 9|m| m  Or (235)
u; \ [|m| [m| "~ Ou;  |[m| Oui  |m| Ou;’
the above equation can be rewritten as
10F,  (of 1 me | 8m+m or 7T8Hm||
ap, Ou; ar ||m||? ou; ou; ou;
f Ilm|  om
— — . 2

Consequently, the derivatives which are left to be determined are dm/Ou;,
Or/Ou; and 9||m||/Ou;.

The derivative of m is obtained by considering Equation (230), which can
also be written as:

Oy, 0
SR B

Derivation yields (notice that £ and 7 are a function of u;, and that dg;/0u; =
5ij I) .
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The derivatives ¢ /0u; and 9n/dwu; on the right hand side are unknown and
will be determined later on. They represent the change of ¢ and n whenever
any of the w; is changed, k being the slave node or any of the nodes belonging
to the master face. Recall that the value of £ and 7 is obtained by orthogonal
projection of the slave node on the master face.

Combining Equations [227)) and (229)) to obtain 7, the derivative w.r.t. u;
can be written as:

ﬁ 5T dq 85 0q  On
811,,; S 8§ 877 8u,

+ (pl(l - (Slp)I s (239)
where p represents the slave node.
Finally, the derivative of the norm of a vector can be written as a function

of the derivative of the vector itself:

Im|| _ m Om

ou;  ||m|| Ou;’

(240)

The only derivatives left to determine are the derivatives of & and n w.r.t.
u;. Requiring that q is the orthogonal projection of p onto the master face
is equivalent to expressing that the connecting vector r is orthogonal to the
vectors 0q/9¢ and dq/dn, which are tangent to the master surface.

Now,

Oq
rl — 241
5 (241)
can be rewritten as
oq

or

Z%ﬁn ] [Za% ] —0. (243)

Differentation of the above expression leads to

[dp - Z (%‘? dn + %sz> Cqe+
82501 a a‘Pi o
" lZ ( ez 9IS+ G el + )] =0 (244)

where g¢ is the derivative of ¢ w.r.t. {&. The above equation is equivalent to:
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(dp — qedé — q,dn — > idq;) - qe+

0 -
D€ dg;) = 0. (245)

7 (qeedé + ey dn + )

One finally arrives at:

—q;-dp+ Z [(%‘% - %%ir) : in:| (246)

and similarly for the tangent in 7-direction:

(—q¢ g, +7-Gq¢,)dE + (—q, - q, + 7 q,,)dn=

i
—q, dp+Y |:((Piq7, ~ a—"f?r) : dqz} (247)

From this 0¢/dq;, 0¢/0p and so on can be determined. Indeed, suppose that
all dg;,i = 1,..,n, = 0 and dp, = dp. = 0. Then, the right hand side of the
above equations reduces to —q¢, dp, and —gy, dp, and one ends up with two
equations in the two unknowns 9¢/9p, and 9n/9dp,. Once O¢/Op is determined
one automatically obtains 0§/0u, since

9 _ %
op  Oup’

(248)

and similarly for the other derivatives. This concludes the derivation of 0F),/0u;.
Since

Fj = _<Pj(§a77)Fm (249>

one obtains:

OF; Op; 0§  Oyp; On 0F,
D P96 dus oy ous| ¥ 0w,

for the derivatives of the forces in the master nodes.

(250)

Tangent contact stiffness To find the tangent contact stiffness matrix,
please look at Figure [[32] part a). At the beginning of a concrete time in-
crement, characterized by time t,, the slave node at position p,, corresponds
to the projection vector g,, on the master side. At the end of the time incre-
ment, characterized by time ¢,,11 both have moved to positions p,,,; and q,, 1,
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Figure 132: Visualization of the tangential differential displacements
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respectively. The differential displacement between slave and master surface
changed during this increment by the vector s satisfying:

s = (pn-‘rl - qn+1) - (pn - qn) (251)

Here, gn1 satisfies
Qo1 = D05 (&0 ) s (252)
J

Since (the dependency of ¢; on § and 7 is dropped to simplify the notation)

Py = X + Unp, (253)
Ppi1 =X +Upq, (254)
q, = Z 0 [ X5 + (uj)n], (255)
J
Qpi1 = Z 0; [ X5 + (wj)na], (256)

J

this also amounts to

§=Upy1 — Z ‘pj(uj)n-&-l - |Un — Z @j(uj)n . (257)
J J

Notice that the local coordinates take the values of time ¢, (the superscript
m denotes iteration m within the increment). The differential tangential dis-
placement now amounts to:

t=tnt1=1tn+s—sn, (258)
where
s=s-n. (259)

Derivation w.r.t. u; satisfies (straightforward differentiation):

ot O0s 0s on
6ui N 8u,~ -n 8ui B Sau,- (260)
0s s Om s O|ml| m  0s
95 _ s om : (261
dui ~ ml oui Tl i ml Ous )
and
on 1 om 1 8||m|| (262)

dui  [lm]l du;  m]P? u;
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The derivative of s w.r.t. wu; can be obtained from the derivative of r
w.r.t. u; by keeping ¢ and 7 fixed (notice that the derivative is taken at t,1,
consequently, all derivatives of values at time ¢, disappear):

Js

— =L — i (1 — ) 1. 263

S = T = 0i(1 = b1) (263)
Physically, the tangential contact equations are as follows (written at the

location of slave node p):

e an additive decomposition of the differential tangential displacement in
stick t¢ and slip t? :
t=1°+4tP. (264)

o a stick law (K; = Aap, where A is the stick slope and a,, the representative
slave area for the slave node at stake) defining the tangential force exerted
by the slave side on the master side at the location of slave node p:

Fr = K;t°. (265)
e a Coulomb slip limit:
|1 Fr| < ullFull (266)
e a slip evolution equation:
. Fr
b
=Y (267)
| Fr||

First, a difference form of the additive decomposition of the differential tan-
gential displacement is derived. Starting from

t=1t°+1tP, (268)
one obtains after taking the time derivative:
t=1i°+ P (269)

Substituting the slip evolution equation leads to:

. Fr .
gL f_ e, (270)
I Fr|
and after multiplying with K;:
F . .
Kiy—L = Kt — K¢ (271)

IFrl|
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Writing this equation at ¢,41, using finite differences (backwards Euler), one
gets:

F
KtA'Y'rH»lM = KtAthrl — Ktten+1 + Ktten, (272)
HFTn-HH

where Avy,4+1 = Yp+1At and At 11 = t, 11 —t,,. The parameter K; is assumed
to be independent of time.

Now, the radial return algorithm will be described to solve the governing
equations. Assume that the solution at time t,, is known, i.e. t¢, and tP,, are
known. Using the stick law the tangential forc Fr,, can be calculated. Now
we would like to know these variables at time ¢,,11, given the total differential
tangential displacement ¢,41. At first we construct a trial tangential force
FTfﬁall which is the force which arises at time ¢,,41 assuming that no slip takes
place from t,, till ¢,,41. This assumption is equivalent to tP,,;1 = tP,,. Therefore,
the trial tangential force satisfies (cf. the stick law):

FT;Tiall = Ki(tn1 — tPn). (273)

Now, this can also be written as:

Frilid = Ki(tps1 — to +t, — t7,). (274)
or
FTflerall = KtAthrl + Ktten. (275)

Using Equation (272) this is equivalent to:

riq F n
FT;+1Z = KtA'VnH& + Kt 1, (276)
(P Y|

or

ria 1
Frifith = (KA1 + D) Frpg. 277)
| Fr 11l
From the last equation one obtains
Friii || Pry (278)

and, since the terms in brackets in Equation ([277) are both positive:

1Pry | = KiAvynsr + | Froall. (279)

The only equation which is left to be satisfied is the Coulomb slip limit. Two
possibilities arise:
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L Pyl < pll Fivga |-

In that case the Coulomb slip limit is satisfied and we have found the
solution:

Fr,i, = FszTJﬁl = Ki(tny1 — tPn) (280)
and
F:
OFrni1 _ K,I. (281)
8tn-‘,—l

No extra slip occurred from ¢,, to £,41.

trial
IFry (T > pll Fnngll-
In that case we project the solution back onto the slip surface and require

|Frpi1ll = pl|lFNpiill- Using Equation ([279) this leads to the following
expression for the increase of the consistency parameter ~:

ial
1 3l — el Fnpa

- , (282)

A"Yn—i-l =

which can be used to update P (by using the slip evolution equation):

FT L F t7ioil
AP = Ay L Ay g L (283)
[P | | Ertid|
The tangential force can be written as:
Froos = Proall 2220 o ey, | 225 (os)
n+l = n+ill w7 = n+1
* FFr ] TE
Now since
| all a OJa
2 = 285
ob |al| " 0b (285)
and

Sl () &

where a and b are vectors, one obtains for the derivative of the tangential
force:
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OFrn41 _ LE Fnyi1 OFNpy
Oty e I FNniill  Otnga
[ Fn | OFr, 14
+ —t,  DE, ] L 287
MHFTZTﬁlH[ 3 +1 3 +1] tnst, (287)
where
FTtriall
Epp1 = (288)
Py S
One finally arrives at (using Equation (281])
OFr,, OFnN,
Tn+l _ jEy © [_ N +1]
auin+1 8uzn+1
| FN |l Ot 11
—— ] — ® Ky — 289
HFT:;Z_?ZH [ §n+1 671-&-1] t 8uin+1~ ( )

All quantities on the right hand side are known now (cf. Equation (230])
and Equation (260)).

In CalculiX, for node-to-face contact, Equation (25I)) is reformulated and
simplified. It is reformulated in the sense that q,,, is assumed to be the
projection of p,, ,, and g,, is written as (cf. Figure [I32 part b))

n = Z‘Pj(f?+1a7777?+1)an' (290)
J

Part a) and part b) of the figure are really equivalent, they just represent
the same facts from a different point of view. In part a) the projection on
the master surface is performed at time t,, and the differential displace-
ment is calculated at time t¢,41, in part b) the projection is done at time
tn+1 and the differential displacement is calculated at time t,,. Now, the
actual position can be written as the sum of the undeformed position and
the deformation, i.e. p = (X + v)® and g = (X + v)™ leading to:

s = (X+v); 11— (X+v)0 1 (§nt 1 Mo r) — (X +0) 5 (X +v)7 (001 77(77{11))-
291

Since the undeformed position is no function of time it drops out:

§=1vpq — UvT+1(§:1n+1a 7721-5-1) — vy, + U?(fﬁ-la 777T+1) (292)
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EZ;

vFam

le MASTER

Figure 133: Creation of a face-to-face penalty contact element

or:

s = ”751+1 - ”:Ln+1(§;n+1a 77;”4-1) — v, + v (6 n") (293)
+ R (En 1 M) — v (€05 ) (294)

Now, the last two terms are dropped, i.e. it is assumed that the differential
deformation at time ¢, between positions (&, ;") and (£, m 1) is
neglegible compared to the differential motion from ¢,, to ¢,,+1. Then the
expression for s simplifies to:

s=v511 — v (E ) — vy H R (& M) (295)
and the only quantity to be stored is the difference in deformation be-
tween p and q at the actual time and at the time of the beginning of the
increment.

6.7.6 Face-to-Face Penalty Contact

General considerations In the face-to-face penalty contact formulation the
spring element which was described in the previous section is now applied be-
tween an integration point of a slave face and a master face (spring in Figure
[[33). The contact force at the integration point is subsequently transferred to
the nodes of the slave face. This results in contact spring elements connecting
a slave face with a master face (full lines in Figure [[33]). The integration points
in the slave faces are not the ordinary Gauss points. Instead, the master and
slave mesh are put on top of each other, the common areas, which are polygons
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Figure 134: Integration points resulting from the cutting of one master face (big
square) with several slave faces (small, slanted squares)

(sides of quadratic elements are approximated by piecewise linear lines), are
identified and triangulated. For each triangle a 7-node scheme is used (Figure
[[34). This can result to up to 100 or more integration points within one slave
face. It usually leads to a very smooth pressure distribution. Furthermore, it is
now irrelevant which side is defined as master and which as slave. In the present
formulation the following approximations are used:

e the linear pressure-overclosure relationship is truly bilinear, i.e. zero for
positive clearance and linear for penetration (and not quasi bilinear as for
node-to-face penalty). The value of ¢ is zero.

e the matching between the slave faces and master faces, the calculation
of the resulting integration points and the local normals on the master
surface is done once at the start of each increment. This information is
not changed while iterating within an increment. The same applies to the
calculation of the area for which the slave integration point is representa-
tive.

e whether a contact element is active or not is determined in each iteration
anew. A contact element is active if the penetration is positive.

Due to the freezing of the match between the slave and master surface within
each increment, large deformations of the structure may require small incre-
ments.

The contact definition in the input deck is similar to the node-to-face penalty
contact except for:

e The contact surfaces (both slave and master) must be face-based.
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e On the FCONTACT PAIR] card the parameter TYPE=SURFACE TO
SURFACE must be specified.

e The SMALL SLIDING parameter on the *CONTACT PAIR card is not
allowed.

e The *SURFACE BEHAVIOR card for a linear pressure-overclosure rela-
tionship needs only one parameter: the spring constant.

e The *FRICTION card is needed to specify the friction coefficient and the
stick slope.

In addition, a new pressure-overclosure relationship is introduced with the
name TIED. It can be used to tie surfaces and usually leads to a significantly
smoother stress distribution than the MPC’s generated by the *TTE option.
For the TIED pressure-overclosure relation only two parameters are used: the
spring stiffness K (> 0, required), and the stick slope A (> 0, optional). The
friction coefficient is irrelevant.

Weak formulation The contribution of the face-to-face penalty contact to
the weak formulation corresponds to the first term on the right hand side of
Equation (2.6) in [23], written for both the slave and master side. This amounts
to (in the material frame of reference):

» S(US —UM) - T(nydA, (296)

or, in the spatial frame of reference:

/ O(u® —u™) - t(n)da. (297)
As

Making a Taylor expansion for #(,), which is a function of us — ™ and
keeping the linear term only (the constant term vanishes since zero differential
displacements leads to zero traction) one obtains:

s m at(") s m
/Aﬁé(u —u™)- Su° (u® —u™)da. (298)

Notice that the integral is over the slave faces. The corresponding positions
on the master side are obtained by local orthogonal projection. The displace-
ments within a face on the slave side can be written as a linear combination of
the displacements of the nodes belonging to the face (n, is the number of nodes
belonging to the slave face):

and similarly for the displacements on the master side (n!, is the number of
nodes belonging to the master face m!):
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= l
=3t (30
J

Substituting the above expressions in Equation (298]) one obtains:

Nns Mg an
39 ST IR

s i=1j=1

AN Ot i
*ZZ;;M [/N 7 a;s)wéda] U

LN Ot(n e
fZZ;;(su V 12 ] :
*ZZ%%M V Ma;(? ].u;“l. (301)

=1 j=1

where “AL” is the part of the slave face s, the orthogonal projection of which
is contained in the master face m!. This leads to the following stiffness contri-
butions (notice the change in sign, since the weak term has to be transferred to
the left hand side of Equation (2.6) in [23]:

ot o
[K]e(irc)(iar) = / ©i 6(2) p;da, i€S,j€S (302)
(K]oir0005 :Z/ w.at(")leda i€S,jeM (303)
e(iK)(jM) l al Za'UISM 54, ;
ot , _
[Kleqiro)ary = Z/ i 8;”) jda, ieM,jes (304)

Ot(n . )
[K]e(iry(jm) = Z/ Yl 3; )" wlda ie M, jeM (305)

S is the slave face “s” at stake, M' is the master face to which the orthogonal
projection of the infinitesimal slave area da belongs. The integrals in the above
expression are evaluated by numerical integration. Omne could, for instance,
use the classical Gauss points in the slave faces. This, however, will not give
optimal results, since the master and slave faces do not match and the function
to integrate exhibits discontinuities in the derivatives. Much better results are
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obtained by using the integration scheme presented in the previous section and
illustrated in Figure[I34l In this way, the above integrals are replaced by:

8t(n)K at(n)K
- " @imwjda = 7Z@i(gsk?nsk)@j(gsmnsk) ou® HJ”kwk’
s k §sk,nsk
(306)
Ot | . Oty
/Al Pi ou® as wjda = zk:%(fskﬂls;c)%(fmmnmk) ou® HJkalﬁ
s Eskmsk
(307)
Ot (my® Oty &
198(n) ! (n)
i ida = i\Smp IIm j\Ssws sy J ’
gy ertn = o) ZEL Wl
s Esk:nsk
(308)
Oty & Oty &
190 g l l (n)
7\/Al % ous ur wjda = 7Z¢i(§mkanmk)wj(€mmnmk) ou® ”Jkaka
s k Esp o Msy,
(309)

where k is the number of the integration point; (&5, ,7s,) are the local coor-
dinates of the slave integration point; (&, ,7m,) are the local coordinates of
the orthogonal projection of the slave integration point onto the master surface
w.r.t. the master face to which the projection belongs; ||J||; is the norm of the
local Jacobian vector at the integration point on the slave face and wy is the
weight. As noted before the projection of integration points within the same
slave face may belong to different master faces. Each slave integration point
k leads to a contact element connecting a slave face with a master face and
represented by a stiffness matrix of size 3(ns + n,) x 3(ns + ny,) made up of
contributions described by the above equations for just one value of integration
point k.

From this one observes that it is sufficient to determine the 3x3 stiffness
matrix

Ot ()™

8USM
sy, oMsy,

(310)

at the slave integration points in order to obtain the stiffness matrix of the
complete contact element. It represents the derivative of the traction in an
integration point of the slave surface with respect to the displacement vector at
the same location.



6.7 Boundary conditions 241

Normal contact stiffness The traction excerted by the master face on the
slave face at a slave integration point p can be written analogous to Equation

232):

tm) = f(r)n. (311)

For simplicity, in the face-to-face penalty contact formulation it is assumed
that within an increment the location (&, ,7m, ) of the projection of the slave
integration points on the master face and the local Jacobian on the master face
do not change. Consequently (cf. the section [.7.5):

om o€ an

= = =0. 12
Oup, Oup, Ouyp (312)
and
or
— =1 1
6'Ulp ) (3 3)
which leads to
Oty Of
= L . 14
oup ar wn (314)

This is the normal contact contribution to Equation (BI0).

Tangent contact stiffness Due to the assumption that the projection of
the slave integration point on the master surface does not change during and
increment, and that the local normal on the master surface does not change
either, the equations derived in the section on node-to-face contact simplity to:

ot 0s
(I — L2 1
7u, ( nen) Py’ (315)
where
Os
= I. 1
oup (316)

Equation ([289) now reduces to

(), Ot(ny,
aiﬂ =p€p1 @ |1 87“
Uppt1 Up,, 11
ﬂﬁu = &1 ®&n 4] ‘Ktai+1 (317)
Ht(‘r)n+1 || upn+1.

Be careful to distinguish t(n) s and L) g which are tractions, from ¢,1,
which is a tangential differential displacement.



242 6 THEORY

6.7.7 Face-to-Face Mortar Contact

This is a face-to-face contact formulation using extra Lagrange multipliers to
model the contact stresses. It can be used for hard contact (infinite stress at
the slightest penetration) or soft contact (gradually increasing stress the larger
the penetration as in materials with a definite surface roughness). Due to the
Lagrange multipliers the stress-penetration relationship satisfied in a weak sense.
This is different from the face-to-face penalty method, in which the knowledge
of the penetration uniquely leads to the contact stresses. Due to this property
the convergence of the mortar method is somewhat better than in the face-to-
face penalty method, i.e. less iterations are needed. However, the cost of one
iteration is higher. For details the reader is referred to [91]-[94].

The implementation in CalculiX uses dual basis functions for the Lagrange
multiplier. Dual basis functions are in a weak sense orthogonal to the standard
basis functions used for the displacements. Due to the use of dual basis functions
the Lagrange multiplier degrees of freedom can be easily eliminated from the
resulting equation system and therefore the number of unknowns in the system
is in each iteration not larger than without contact. Because the negative parts
of the standard basis functions for quadratic elements can cause problems, sev-
eral options to circumvent these problems have been implemented. Right now,
the user can choose between TYPE=MORTAR, TYPE=LINMORTAR and
TYPE=PGLINMORTAR on the®CONTACT PAIRl|card. For TYPE=MORTAR
the standard dual basis functions are used for the Lagrange multiplier. For
TYPE=LINMORTAR linear dual basis functions are used, i.e. the Lagrange
multiplier at the midnodes (if any) is not taken into account. For linear elements
MORTAR and LINMORTAR coincide. In case of TYPE=PGLINMORTAR the
variation of the Lagrange multiplier is done using linear standard basis functions
(PG stands for Petrov-Galerkin). The following rules apply when using Mortar
contact:

e The mortar method is only available for the FSTATIC] procedure. Conse-
quently, it can not be used for dynamic calculations, heat transfer calcu-
lations or (un)coupled temperature-displacement calculations, to name a
few.

e It is advised to use the mortar method for contact between genuine 3-
dimensional elements only. Usage for contact in between 1-d or 2-d el-
ements will cause problems. In general, the mortar method is not well
suited if the contact areas are too much constrained by extra multiple
point constraints.

e The mortar method cannot be combined with the penalty method in one
input file. Also a single mortar method (MORTAR or LINMORTAR or
PGLINMORTAR) has to be choosen for all contact pairs in one input file.

e Using the FCYCLIC SYMMETRY MODEL] option, one has to make sure

that a one-to-one connection is made if hte slave surface touches the cyclic
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symmetry boundary. If non-matching meshes are used, one has to make
sure that the contact surfaces touching the cyclic symmetry boundary are
removed from the slave surface definition.

e One must not apply extra multiple point constraints to edge nodes on the
slave surface. Please apply extra mounting MPC’s only to corner nodes
on the slave surface.

e Define different contact pairs for different contact zones (contact search
algorithm is faster)

e Define contact surfaces only as large as needed (contact search algorithm
is faster)

e One must not use the same contact surface in more than one contact
definition

e Make sure that the contact surfaces do not touch pretension sections

e Make sure that there is not gap between the bodies for force driven quasi-
static calculations (may lead to huge accelerations since no mass is defined
and consequently no contact is found)

e Make sure that you choose a small first increment in the step if you expect
large relative displacements in tangential direction. A minimum of four
increments is recommeded. Recall that the direction of the normal and
tangential directions and the surface segmentation is only performed once
per increment.

Shrink is always active in CalculiX, i.e. overlaps are resolved increment-
wise across the step.

e Sometimes the adpative time stepping using mortar contact is too senstive.
Try *STEP,DIRECT in that case.

6.7.8 Massless Node-to-Face Contact

The massless node-to-face contact formulation has been introduced in CalculiX
in order to model perfectly hard contact within explicit dynamic calculations.
The implementation closely follows [66].

For the sake of simplicity, frictionless contact is taken as example. Let g
denote the gap, A is the contact force.

For a zero contact force the gap can be any positive real number including
zero (R{), for a strictly positive force the gap is zero and a negative contact
force is not plausible (i.e. no adhesion is assumed). These dependencies can be
represented in the form of g(A) as in Figure For dynamic calculations with
friction the gap velocity v = ¢ is used in the contact laws. In principle, the
gap velocity can be positive or negative. Indeed, if an object is approaching an
obstacle the gap decreases and the velocity is negative. After collision the gap
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0 A

Figure 135: Normal hard contact

is increasing and the velocity is positive. However, at collision (i.e. g =0)~y >0
is satisfied (the gap remains zero for static equilibrium or is increasing after a
collision) and now Figure also applies for v(A). In order for the velocity to
be strictly positive, the force has to be zero.

Now, a couple of mathematical concepts are introduced. For further details
the reader is referred to [49] and [99].

e A function is set-valued if it can have more than one value for a given
argument. For instance, the gap velocity function satisfies

A=0 = 0<y<o (318)
A>0 = =0 (319)

The admissible set on which v is defined is Ry .

e A set C is convex if any linear combination of elements x; and x5 of the
form (1 — @)z + axa,0 < a < 1 also belongs to C. For instance, the
interior of a circle in two-dimensional space is convex. This also applies
to the interior supplemented by the boundary of the circle. The interior
of a ring is not convex. Ry is convex.

e The indicator function 1 for a set C is defined by:

0 if zeC
d}c(w):{oo if #&C

So the indicator function is zero for all elements included in the set and
infinity else. The indicator function for Ry is shown in Figure [36] (bold
line)

(320)
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Figure 136: Indicator function for R

e A function C — R is convex when {(x,y)|y > f(x);x € C} is a convex set.
For instance, for a function on a set in the two-dimensional domain R?
this means that the three-dimensional volume above the function values
has to be a convex set. Since the indicator function ¢ is zero everywhere
in the set C it is clear that the indicator function of a convex set is convex.

e Now, the concept of subdifferential can be explained, which is a gener-
alization of the differential for functions with kinks.

The subdifferential
Of (x) of a convex function f(x) is defined by:

Of(x) ={ylf(x*) = f(x) +y - (x" —x); V& € C}, (321)
for f(x) < +oo, where “” is the inner product. This means that all
function values have to exceed a “tangent” straight line with the subdif-
ferential as slope. As shown in Figure [I37] the subdifferential at point b,
where the function is continuous differentiable, coincides with the deriva-
tive. In point a, where the function is continuous but not differentiable,
the subdifferential consists of all tangent lines in between the left and right
derivative at that point. Thus, the subdifferential in a is multivalued and a
set-valued function. The same applies to the origin in Figure (dashed

lines). Indeed, by comparing Figures [[35] and [I36 one observes that the
subdifferential of the indicator function of Ry coincides with —y:



246

6 THEORY

X x* X

Figure 137: Subdifferential at several positions

Qs = (322
From analysis it is well known that for a continuous differentiable function
a minimum requires that the derivative is zero. From Figure [I37 it is
obvious that for a minimum of a Cy-continuous function
0€df(x) (323)

has to be satisfied. For the indicator function v the definition of subdif-
ferential reduces to:

e (x) = {yl0 >y - (™ — x);Va* € C}, (324)
since the indicator function is zero in C.

Now, the normal cone of C in « is defined by:

Ne(z) ={yly - (z* —x) <0;Va* € C;x € C}, (325)

i.e. it is the set of all vectors which make an angle > 90° with all vectors
connecting x € C with any other point «* € C.

Looking at Figure [[38 the normal cone in a is {0} , in b it is (the vectors
on) a straight line locally orthogonal to C and in ¢ it is (the vectors within)
a cone bordered by the dashed lines. By comparing Equations (824]) and
B23) it is clear that:

Me(x) = Ne(x). (326)
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Figure 138: Normal cone at several positions

This establishes a relationship between the subdifferential and the normal
cone concept.

e Next, the concept of proximal point is introduced. The proximal point of
z w.r.t. C is defined by:

proxe(z) = argming«c ¢}z — |, (327)

i.e. it is the point within C which is closest to z. For instance, looking at
Figure the proximal point of b* is b and the proximal point of ¢* is
c. Now, the concept of proximal point can be linked to the normal cone
and subdifferential definitions. Indeed:

x = proxe(z) (328)
Sz = argming«ccoyfz* — 2| (329)
1
ST = argming«c o [2”:1:* - z||2} (330)
. 1 * 2 *
& x = argmin 5”1: — z||* + e (x™) (331)

Notice that by adding the indicator function the constraint {x* € C} was
removed and a convex constrained minimization problem is turned into a
convex unconstrained minimization problem. A minimum is obtained if
zero belongs to the subdifferential, i.e.:
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0 € 0 %Hw—z||2+wc(w) (332)
<0 € x—z+ 0Yc(x) (333)
Sz—x € OYe(x) (334)
Sz—x € Ne(x) (335)
This means that one can write:
¢ eNe(z) & o = proxe (€ + ). (336)

This finishes the mathematical excursion.

Applying this to the relationship between the gap velocity v and the normal
contact force A one can write:

-7 € aT/ﬁRO* (A& —ve N]RO* (A &A= prOXRg(_’Y +A), (337)

which turns a set relationship into a nonlinear equation, which is easier to
solve. Notice that solving for a proximal point usually boils down to a projection
on the admissable set.

If friction is present the feasible domain consists of the positive real numbers
(including zero) for the normal contact, and a disk with a radius equal to the
friction coefficient times the normal force:

€ Ngs(hn) (338)
7t € Ns,(At) (339)
Sp = AAe [ IAell < pAn} (340)

Notice that the feasible domain is split into a normal and a tangential do-
main. Therefore, also the projection is split: in normal direction the projection
is on ]Rar , in tangential direction on Sp.

In the following a node-to-face contact definition is assumed (cf. Section
623 . For the gap definition one can start from MPC’s connecting a slave
node with the opposite master face, e.g. for node a in Figure

uq = 0.5up + 0.5u., (341)

where u represents the displacement field. In the more general case the
coefficients have to be determined from the shape functions of the master face.
The gap vector can now be written as (assuming the gap is at the beginning of
the calculation zero):

g = ug — 0.5up — 0.5uc. (342)
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Figure 139: Contact area

This vector can be transformed in a {n,t} coordinate system leading to a
normal component and two tangential components for the gap. This can be
done for all slave nodes leading to the relationship:

{9} = W)™ {Us} + {g0(t)}. (343)

{g} contains the gap in local coordinates. Its length is 3 times the number of
slave nodes in the model (for three-dimensional applications). {Uy} is a vector
containing the displacements of all contact boundary nodes, i.e. slave nodes and
master nodes, in the global orthogonal coordinate system. {go(t)} represents the
initial gap. Assuming small sliding and small deformations, the matrix [W3] can
be assumed constant. Taking the derivative w.r.t. time of the above equation
yields:

{7} = W]V} + {a0()}, (344)

where {V,} denotes the velocity of all contact boundary nodes. Now, the
equations of motion are written thereby neglecting the mass and damping terms
for the contact boundary nodes (the index i denotes the internal nodes):

AR S R R TR S R R RS
(345)

or

(Kop {Us} + [Kpi{Ui} = {Fo()} + [Wp]{\} (346)

and
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[Mii){Vi} + [Dul{Vi} + [Ku{U:} + [Ka){Us} = {Fi(t)}- (347)

Here, {\} represent the contact forces in the slave nodes in a local coordinate
system. The size of this vector is three times the number of slave nodes. [W3]{A}
are the contact forces in all nodes (slave and master) in global coordinates. The
motivation for neglecting the inertia terms at the contact boundary comes from
the fact that these forces were observed to lead to substantial scatter in the
solution in the contact area.

From Equation ([B340) one obtains for the displacements at the boundary
nodes for time increment k:

{Un}* = [Ku] ™" ({Fp (1)} = [Ki{U:}* + [WR]{A}Y) (348)

Now, a Verlet scheme in its leapfrog form [66] is proposed based on the
trapezoidal rule and a shifted grid. This means that displacements are evaluated
at times t* and t**1, while velocities are evaluated at times t*~% and th+3.
Evaluating Equation (344 at time step k and using vF~% one obtains:

{0} —{U}*)

{7} =" At +{go(t")}. (349)
and after substituting {Uy}*:
= ST R )

é[Wb]T (K] ({F (1)} = [ {U) — {Un})

{90(")}, (350)
or, introducing the symmetric matrix [G] and vector {c}:

{1 = 1GHAY +{c}. (351)

So the contact constraint at time ¢* (also called an inclusion problem):

—* e Ne(AF) (352)

now amounts to:
— ([GH{AY* + {e}) € Ne({A}), (353)
(A} = proxe [{AY = ([GHAY +{c})] - (354)

The latter equation can be solved in an iterative way [99]:

{Mn = proxe [{A}; = II(GHAY, +{c))], (355)
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where [r] is a diagonal matrix with relaxation factors and n is the iteration
index. The relaxation factors are taken to be

" Jii#
w
re o= 2 i Gu< S G (357)
Zj»j?éi Gij jg;;z ’

where 0 < w < 2 is a relaxation parameter.
Summarizing, the contact displacements in time step t* are solved using the
following steps (knowing {F,(t*)} , go(t*), {U;}* and {Uy}F~1):

e determine [G] and {c} using Equations B50) and B5I))
e solve for {\}* using Equation (B55) with {\}*~! as initial guess.
e solve for {U,}* using Equation (348).

The solution of the contact problem, however, is restricted to the active con-
tact degrees of freedom. Indeed, only for the nodes in contact the gap velocity
is positive and Figure applies. The procedure to determine these active
contact degrees of freedom is called an active set strategy. Two cases are con-
sidered. For the initially open case (i.e. no contact at t*~1) the gap is calculated
at t* by substituting Equation (348) for {A\}* = 0 into Equation ([343)). The
active degrees of freedom are those for which the gap is nonpositive. For the
preloaded case (i.e. the contact forces at t*~! are positive) the preload is cal-
culated from Equation (348) assuming sticking contact, i.e. {U}* = {U,}*~L.
Then, the active degrees of freedom are those, for which this sticking contact
is changing, i.e. either the normal preload is negative or the tangential preload
exceeds the sticking range and slip occurs. For details the reader is referred to
[66].

Once {U,}* is calculated {V;}*+2 can be calculated by substituting {V;}¥ =
({Viy#+s —{Vi}k=2) /At and {Vi}* = ({Vi}*2 +{Vi}*"2)/2 in Equation (317)

expressed at time t* leading to:

(MZt] + [D2}> (Vi = {F(t")} - [Ka{U}* - [Kal{Us}*
N <[]\ZZZ] - [D;-]> {Viyh-s. (358)

The solution of this set of equations requires a linear equation solver. The
mass matrix does not change during the calculation. If the damping matrix
does not change either, the factorization step in the linear equation solver can
be done just once at the start of the calculation. This drastically reduces the
computation time. Knowing {Vi}k“‘% the value of the displacements in the
internal nodes can be obtained from:



252 6 THEORY

(U = {U}F + (VY2 AL (359)

Consequently, the overall algorithm can be summarized as follows, knowing
{Fo(t5)} 5 go(t5), {U}*, {U3E1, {A}E T and {V;}F—3:

e Determine the active set

— If the active set is empty {\}* = {0} for an initially open contact,
and {\}* = {\P*} for a preloaded contact.

— If the active set is not empty, determine {\}* from Equation (B53)
with {A\}*~! as starting value.

e Determine {U,}* from Equation (348).
e Determine {V;}*+2 from Equation (B53).

e Determine {U;}**! from Equation (359).

In the first increment (k=1) {U;}*, {U,}° and {V;}2 have to be known.

6.8 Materials

A material definition starts with a FMATERIAL key card followed by material

specific cards such asFELASTIC| FEXPANSION] FDENSITY] FIYPERELASTIC]
FHYPERFOAM| FDEFORMATION PLASTICITY] FPLASTIC] FCREEP] or
FUSER MATERIALL To assign a material to an element, theFSOLID SECTIONI
card is used. An element can consist of one material only. Each element in the
structure must have a material assigned. Some types of loading require specific
material properties: gravity loading requires the density of the material, tem-
perature loading requires the thermal expansion coefficient. A material property
can also be required by the type of analysis: a frequency analysis requires the
material’s density.

Some of the material cards are mutually exclusive, while others are interde-
pendent. Exactly one of the following is required: *ELASTIC, *HYPERELAS-
TIC, *HYPERFOAM, *DEFORMATION PLASTICITY and *USER MATE-
RIAL. The keyword *PLASTIC must be preceded by *ELASTIC(,TYPE=ISO).
The same applies to the *CREEP card. A *PLASTIC card in between the
*ELASTIC and *CREEP card defines a viscoplastic material. The other key-
words can be used according to your needs.

6.8.1 Linear elasticity

Linear elastic materials are characterized by an elastic potential of which only
the quadratic terms in the strain are kept. It can be defined in a isotropic,
orthotropic or fully anisotropic version. Isotropic linear elastic materials are
characterized by their Young’s modulus and Poisson’s coefficient. Common
steels are usually isotropic. Orthotropic materials, such as wood or cubic single



6.8 Materials 253

crystals are characterized by 9 nonzero constants and fully anisotropic materials
by 21 constants. For elastic materials the keyword FELASTIC] is used.

A linear elastic material, as implemented in CalculiX simulates a linear elas-
tic relationship between the Lagrange strain and the Piola-Kirchhoff stress of
the second kind (PK2). For small strains and rotations, the Lagrange strain
reduces to the linear strain and the PK2 stress to a generic stress tensor. For
large strains and/or rotations one can prove that a linear elastic connection
of the Lagrange strain and the PK2 stress does not make physically sense (cf.
next section), and other relationships derived from stored-energy functions are
preferred.

In Abaqus, a linear elastic material expresses a linear elastic relationship
between the logarithmic strain and the Cauchy stress. If the Cauchy-Green
tensor is written as

C =) NM, (360)

where \; are the three principal stretches and M ; are the structural tensors
(cf. [23], Equation (1.121), here reduced for a global rectangular system) then
the logarithmic strain satisfies:

3
Eyn =Y In(\)M;. (361)
=1

By defining a linear elastic material in user subroutine umat_abaqusnl.f
one can simulate this behavior. In fact, the material coded as an example
in umat_abaqusnl.f is exactly such material.

For finite strain (visco)plasticity, triggered by the keywords *PLASTIC and/or
*CREEP in combination with the paramter NLGEOM on the *STATIC card,
a hyperelastic-type potential is used for the elastic range. For details the reader
is referred to [23], Section 6.3.1.

6.8.2 Linear elasticity for large strains (Ciarlet model)

In [23] it is explained that substituting the infinitesimal strains in the classical
Hooke law by the Lagrangian strain and the stress by the Piola-Kirchoff stress
of the second kind does not lead to a physically sensible material law. In par-
ticular, such a model (also called St-Venant-Kirchoff material) does not exhibit
large stresses when compressing the volume of the material to nearly zero. An
alternative for isotropic materials is the following stored-energy function devel-
oped by Ciarlet [I8] (¢ and X are Lamé’s constants):

A
$= (e ~Inlllc 1) + g(IC —InITIc - 3). (362)

The stress-strain relation amounts to (S is the Piola-Kirchoff stress of the
second kind) :
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S = %(detC —-NC~t+pu(I-Cc™h, (363)

and the derivative of S with respect to the Green tensor E reads (component
notation):

dSIJ

= Xdete)C " 4+ 20 — MdetC — D)]CY 0 (364)

This model was implemented into CalculiX by Sven Kalbohm. The defini-
tion consists of a *MATERIAL card defining the name of the material. This
name HAS TO START WITH ”"CIARLET_EL” but can be up to 80 characters
long. Thus, the last 70 characters can be freely chosen by the user. Within the
material definition a FUSER_MATERIAT] card has to be used satisfying:

First line:

e *USER MATERIAL
e Enter the CONSTANTS parameter and its value, i.e. 2.

Following line:

e E (Young’s modulus).
e v (Poisson’s coefficient).

e Temperature.

Repeat this line if needed to define complete temperature dependence.
For this model, there are no internal state variables.

Example:

*MATERIAL ,NAME=CTARLET_EL
*USER MATERIAL,CONSTANTS=2
210000.,.3,400.

defines an isotropic material with elastic constants £=210000. and v=0.3 for a
temperature of 400 (units appropriately chosen by the user). Recall that

__F (365)
F=501)
and
Ao VE (366)

1+v)(1-2v)
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6.8.3 Linear elasticity for rotation-insensitive small strains

This is a material formulation for very special applications. Small strains (i.e.
linearized strains) are large rotation sensitive, i.e. they become nonzero if you
apply a large rigid body rotation to a structure (cf [23]).

The Lagrange strain tensor satisfies:

2E=FTF —1I, (367)

which can also be written as:

2E=(F—I)" +(F—-I)+ (F —I)"(F —I). (368)

F' is the deformation gradient and the expressions in parentheses are the
gradient of the displacements. Linearizing, only the first two terms on the right
hand side of the above equation are kept. This linearization, however, is not
large-rotation insensitive. In order to create a rotation-insensitive linear strain,
the deformation gradient is replaced by the right hand stretch tensor U (recall
that F' = RU, where R is the rotation tensor):

2E = (U —-DI)" + (U —1I). (369)

This strain is, although linear, large rotation insensitive. Now, what is this good
for? In some applications (e.g. in linear elastic fracture mechanics) you need
linear strains exhibiting the appropriate stress and strain singularities (e.g. at
the crack tip). However, you would still like to include appications with large
rotations. The above formulation takes care of exactly these requirements.

In order to apply this formulation in CalculiX, the user has to specify the
parameter NLGEOM on the *STEP card. In those elements, in which rotation-
insensitive linear strains should be used, the user has to replace the linear elastic
isotropic material he/she would usually apply by the user material coded in
routine umat_undo_nlgeom_lin_iso_el.f. To that end the user gives a new name
to the material starting with UNDO_NLGEOM_LIN_ISO_EL. The constants
of this user material are the Young’s modulus and Poisson’s coefficient of the
original material. Suppose the original material formulation was:

*MATERIAL ,NAME=EL
*ELASTIC
210000.,.3

Then, the new material is defined by:

*MATERIAL ,NAME=UNDO_NLGEOM_LIN_ISO_ELx
*USER MATERIAL,CONSTANTS=2
210000.,.3

where x can be whatever character string preferred by the user, minimum 0
characters, maximum 58 characters long. Only linear elastic isotropic materials
are allowed so far.
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6.8.4 Ideal gas for small pressure deviations

A special case of a linear elastic isotropic material is an ideal gas for small
pressure deviations. From the ideal gas equation one finds that the pressure
deviation dp is related to a density change dp by

d
dp = 22 porT, (370)
Po

where pg is the density at rest, r is the specific gas constant and T is the
temperature in Kelvin. Since pV = pgV{) one obtains at p = pg and V = Vj:

Vodp + podV =0 (371)

from which

dp _ av Vo(1+€11)(1 + €22)(1 4 €33) — Vo

-5 = . 372
Po Vo Vo (372)
From this one can derive the equations
—dp = dt11 = dtas = dtzz = (€11 + €22 + €33)porT (373)
and
dtiz = dt13 = diaz =0, (374)

where t denotes the stress and e the linear strain. This means that an
ideal gas can be modeled as an isotropic elastic material with Lamé constants
A = porT and p = 0. This corresponds to a Young’s modulus F = 0 and a
Poisson coefficient v = 0.5. Since the latter values lead to numerical difficulties
it is advantageous to define the ideal gas as an orthotropic material with D111 =
Do22p = D3333 = D1122 = D1133 = Dagzz = A and D212 = Di1313 = Dazoz = 0.

6.8.5 Ideal gas for large deformations

An ideal gas can also be modeled as a hyperelastic material. Indeed, the ideal
gas law

T
p=prT = por (375)
J
can also be written as
T
o=_" O; I, (376)

where o is the Cauchy stress and I is the identity tensor of second order.
The Piola-Kirchhoff stress .S amounts to:

S=JF "' o F1T=——pgTF ' F T =_pyoT(F' - F)~', (377)
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or

S = —porTC~ . (378)

Using Equation (4.156) from [23] it is not difficult to prove that this stress
can be derived from the free energy function

1
M= 7§p0rT]n(13) = 7P0’I"T1H(J)7 (379)

where I3 = J? is the third invariant of the Cauchy-Green tensor C. To
obtain the material stiffness 9S/0F Equation (4.163) from [23] can be used.

In CalculiX this law can be used in any mechanical calculation provided the
temperature is known. It is coded as a user material in routine umat_ideal_gas.f.
In order to use this material, the constant pgr should be given underneath a
*USER MATERIAL,CONSTANTS=1 card. The name of the material has to
start with IDEAL_GAS, the remaining 71 characters are at the free disposal of
the user (a material name can be maximum 80 characters long). In addition,
the parameter NLGEOM must be used on the FSTEP] card. Furthermore, the
FPOYSICAL CONSTANTS card should be used to define the value of absolute

zero temperature.

6.8.6 Hyperelastic and hyperfoam materials

Hyperelastic materials are materials for which a potential function exists such
that the second Piola-Kirchhoff stress tensor can be written as the derivative of
this potential with respect to the Lagrangian strain tensor. This definition in-
cludes linear elastic materials, although the term hyperelastic material is usually
reserved for proper nonlinear elastic materials. One important class constitutes
the isotropic hyperelastic materials, for which the potential function is a func-
tion of the strain invariants only. All rubber material models presently included
in CalculiX are of that type (Arruda-Boyce, Mooney-Rivlin, Neo Hooke, Ogden,
Polynomial, Reduced Polynomial and Yeoh). They are selected by the keyword
FIYPERELASTICl Rubber materials are virtually incompressible (virtually no
dependence on the third Lagrangian strain invariant which takes values close
to 1). The dependence on the third invariant (the compressibility) is separated
from the dependence on the first two invariants and is governed by so called
compressibility coefficients, taking the value 0 for perfectly incompressible ma-
terials. Perfectly incompressible materials require the use of hybrid finite ele-
ments, in which the pressure is taken as an additional independent variable (in
addition to the displacements). CalculiX does not provide such elements. Con-
sequently, a slight amount of compressibility is required for CalculiX to work.
If the user inserts zero compressibility coefficients, CalculiX uses a default value
corresponding to an initial value of the Poisson coefficient of 0.475.

Another example of isotropic hyperelastic materials are the hyperfoam ma-
terials, which are also implemented in CalculiX (activated by the keyword

FOYPERFOAM]). Hyperfoam materials are very compressible.
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Other materials frequently simulated by a hyperelastic model are human tis-
sue (lung tissue, heart tissue..). To simulate these classes of materials anisotropic
hyperelastic models are used, in which the potential function depends on the
Lagrangian strain tensor components. No such models are implemented in Cal-
culiX, although their inclusion is not difficult to manage. For further informa-
tion the reader is referred to [§]. A very nice treatment of the large deformation
theory for hyperelastic materials is given in [S§].

6.8.7 Deformation plasticity

Deformation plasticity is characterized by a one-to-one (bijective) relationship
between the strain and the stress. This relationship is a three-dimensional
generalization of the one-dimensional Ramberg-Osgood law frequently used for
metallic materials (e.g. in the simple tension test) yielding a monotonic in-
creasing function of the stress as a function of the strain. Because tensile
and compressive test results coincide well when plotting the Cauchy (true)
stress versus the logarithmic strain, these quantities are generally used in the
deformation plasticity law. The implementation in CalculiX (keyword card

implicitly uses the Abaqus interface in Cal-
culiX for large deformations. The three-dimensional extension of the Ramberg-
Osgood law reads [1]:

n—1
Few = (1+v)s— (1—2)pi+ oa (q> s, (380)
2 ago
where ey, is the logarithmic strain (cf. beginning of Section [B]), o is the
Cauchy stress, © is the identity tensor in spatial coordinates, p := —o : ¢/3 is
the pressure, s = o +pt is the stress deviator and ¢ = 1/3s : 8/2 is the von Mises
stress. E and v are Young’s modulus and Poisson’s coefficient, respectively (cf.
FDEFORMATION PLASTICITY] for the one-dimensional form).
The user should give the Ramberg-Osgood material constants o, n and
« directly (by plotting a Cauchy stress versus logarithmic strain curve and
performing a fit).

6.8.8 Incremental (visco)plasticity: multiplicative decomposition

The implementation of incremental plasticity for nonlinear geometrical calcu-
lations in CalculiX follows the algorithms in [89] and [90] and is based on the
notion of an intermediate stress-free configuration. The deformation is viewed
as a plastic flow due to dislocation motion followed by elastic stretching and
rotation of the crystal lattice. This is synthesized by a local multiplicative
decomposition of the deformation gradient F = F°F? where Fyx = zp x in
Cartesian coordinates.

In the present implementation, the elastic response is isotropic and is de-
duced from a stored-energy function (hyperelastic response). Furthermore, the
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plastic flow is isochoric (the volume is conserved) and the classical von Mises-
Huber yield condition applies. This condition can be visualized as a sphere in
principal deviatoric stress space.

The hardening can consist of isotropic hardening, resulting in an expansion
or contraction of the yield surface, of kinematic hardening, resulting in a trans-
lation of the yield surface, or of a combination of both. The hardening curve
should yield the von Mises true stress versus the equivalent plastic logarithmic
strain (cf. deformation plasticity for its definition).

Incremental plasticity is defined by the FPLASTIC] card, followed by the
isotropic hardening curve for isotropic hardening or the kinematic hardening
curve for kinematic and combined hardening. For combined hardening, the
isotropic hardening curve is defined by the FCYCLIC HARDENINGI card. The
FPLASTIC| card should be preceded within the same material definition by an
FELASTIC| card, defining the isotropic elastic properties of the material.

By allowing the stress to leave the yield surface temporarily in order to
regain it with time, creep effects can be modeled [87]. The viscous part of the
viscoplastic law is defined by the FCREEP| card. Default is a Norton type law.
However, the user can also define his own law in user subroutine creep.f. If
the *CREEP card is not preceded by a *PLASTIC card, a zero yield surface
without any hardening effects is assumed. The *CREEP card must be preceded
by an *ELASTIC card defining the isotropic elastic properties of the material.
Notice that creep behavior is switched off in a FSTATIC| step.

For this model, there are 13 internal state variables:

e the accumulated equivalent plastic strain eP (1)

e the unit tensor minus the inverse plastic right Cauchy-Green tensor and
divided by two (I—CP~1)/2. For small deformations the resulting tensor
coincides with the infinitesimal plastic strain tensor €P (6)

e the back stress T (6)

These variables are accessible through the FEL_ PRINT (.dat file) and FEL FILE
(.frd file) keywords in exactly this order (label SDV).

By using the FCHANGE PLASTIC] FSTATICland
FVISCOQl cards the user can switch between a purely plastic and creep behavior.
The viscoplastic model implemented in CalculiX is an overstress model, i.e.
creep only occurs above the yield stress. For a lot of materials this is not realistic.
At high temperatures creep is frequently observed well below the yield stress. To
simulate this behavior one can set the yield stress to zero. In order to simulate
an initial large plastic deformation (e.g. due to forging or other machining
operations) followed by creep at high temperature at operation conditions one
can proceed as follows: one defines the material as a viscoplastic material using
the *PLASTIC and *CREEP card. To switch off the creep behavior in the
machining step one uses the *STATIC procedure. In a subsequent step at
operating conditions the viscous behavior is switched on using the *VISCO

procedure whereas the yield stress is set to zero by means of a *CHANGE
MATERIAL and *CHANGE PLASTIC card.
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6.8.9 Incremental (visco)plasticity: additive decomposition

The implementation of incremental plasticity for linear geometrical calculations
in CalculiX follows the algorithms in [23], section 5.3 and is based on an additive
decomposition of the strain tensor into an elastic and a plastic part. In Cal-
culiX, it is used in the absence of the NLGEOM parameter on the FSTEP] card.
The internal variables are the same as for the multiplicative decomposition (cf.
previous section) in their infinitesimal limit. It seems that the additive decom-
position exhibits less convergence issues than the multiplicative decomposition
(although this may also be attributable to the general nonlinear geometrical
setup).

6.8.10 Plasticity with Johnson-Cook hardening.

In some sense this is a special case of the previous section, however, since it has
been implemented as a Abaqus Material User Subroutine in CalculiX, establish-
ing a relationship between the corotational Cauchy stress and the corotational
logarithmic strain it can also be used for large deformations.

In principal, the Johnson-Cook model [40] proposes a yield curve for a con-
ventional plasticity model with isotropic hardening in the form:

Ovm = [A + Bey] {1 +Cln (z”)] [1—(T*)™], (381)
0
where
T = 0 forT <1y
T —T,
* = —_— < <

T <Tm_TO> forTo <T <T,,
T = 1 forT >1T,, (382)

Here, A, B,C,n,m, €y, Ty and T, are material constants. The constant T
has the physical meaning of transition temperature, i.e. the temperature above
which the yield surface starts to shrink and 7}, has the physical meaning of
melt temperature, i.e. the temperature above which the yield surface is reduced
to zero. The model is meant to describe highly dynamical phenomena such as
explosions, bird strike in a jet engine etc.

For é, < €y the logarithm becomes negative and also for small €, convergence
seems more difficult. Therefore, Bernhardi and co-workers [54] have modified
the above law to:



6.8 Materials 261

Figure 140: Mohr-Coulomb yield surface

o = D m ] [reom(2)] 50 620
L €0
Owm = [A+ Be)] [1+C<: - )] f(T*) €, <ép,ep >0
0
Owm = [A+Bed" 1l |1+C (6,” —~ >] F(T) ép<éoep <6 (383)
L €0

where f(T*) := 1—(T*)™ and ¢ is some small number. In CalculiX § = 10~
was taken.

In the input deck the Johnson-Cook model is activated by the HARDEN-
ING=JOHNSON COOK parameter on the FPLASTIC]| card. Underneath this
card the rate-independent terms are defined, i.e. the parameters A, B, n, m, T,,andTy.
If T,,, = Ty no temperature dependence is taken into account. The rate depen-
dence has to be defined using a FRATE DEPENDENT] card with the parameter
TYPE=JOHNSON COOXK, listing underneath the parameters C and €.

6.8.11 Mohr-Coulomb plasticity.

The theory and algorithms used to code the classical Mohr-Coulomb plasticity
model are primarily taken from [97] and [20] and the references therein.

The Mohr-Coulomb plasticity is non-associative with a piecewise linear yield
surface f an a piecewise linear plastic potential g. The basic idea is that the
shear stress at which plastic flow occurs increases with increasing pressure, sim-
ilar to contact sliding. This is illustrated in Figure 40 showing the shear stress
T versus normal stress o,. g1 > g9 > o3 are the principal stresses.

The yield surface satisfies:
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T =c— o, tang, (384)
where ¢ is the cohesion. This is equivalent to (cf. Figure [I40)

1+
o (W) gy 20 %Y _y (385)
1 —singp 1—sinep
or
koy — o3 — 2evVk =0, (386)
where
1+
A (387)
1 —singp

@ is called the friction angle. Similarly, the plastic potential is defined by:

g =moy — o3, (388)

where

1+ sin
m=-———.
1 —sine

1) is called the dilation angle. It describes to what extent the volume of the
material changes due to shear motion. For a positive value of ¢ the volume
increases, as for dense sand. For a negative value the volume decreases, as for
loose sand. In the latter case the grains fit better due to the motion. You can
easily illustrate this by pouring suger in a bowl. Shaking the bowl the volume
will decrease and more sugar will fit.

As mentioned, the yield surface is piecewise linear, so the gradient of the
surface is not continuous. This complicates matters. Now, looking at the yield
surface and plastic potential it can be observed that it contains only principal
stresses. Assuming the material to be elastically isotropic, this allows us to
perform all operations in principal stress space, thereby reducing the tensors to
vectors. This was first proposed in [19].

Replacing o1, 09,03 by «,y, z for simplicity, the yield surface as defined in
Equation (B86]) defines in three-dimensional space one of six faces of a irregular
pyramid with central axis in (1,1,1) direction. The other faces correspond to
sectors in which the order of o1, 09, o3 is different.

Figure [[41] shown a view on a plane orthogonal to the (1,1,1) axis and
through the origin. The six sectors are bordered by planes going through the
x-, y- and z- axes and containing the (1,1,1)-axis. The cross section of this
plane with the yield surface is an irregular hexagon (dashed line). Since the
principal stresses can always be rearranged such that = > y > z it is sufficient
to look at that sector (labeled 1) and the neighboring ones (labeled 6 and 2).

Figure shows the yield surface viewed from the apex and looking in the
direction of (=1, —1,—1). In the sectors of interest the normal to the surface a

(389)
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Figure 141: Section plane L (1,1,1) through (0,0,0)
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Figure 142: Pressure distribution in the lid-driven cavity
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is shown. For sector 1 this is immediately clear from Equation (B86) which can
be written as (k,0,—1) - (61, 09,03) — 2cv/k = 0. A vector along the interection
lines of the pyramid faces is obtained by taking the cross product of the normal
of the neighboring faces,e.g. r¢ = ag X a1. The apex of the pyramid is obtained
by substituting o1 = o3 in Equation (B86]): it yields

20\/%_ c
E—1 tanep

(390)

Sq =01 =02 =03 =

Therefore, the equation of the intersection line between section 6 and 1
satisfied (Sq, Sa, Sa) + A(1, k, k). Its intersection with the plane z +y + 2z = 0
leads to

384

= 391
1+ 2k’ (391)
yielding the location of point A in Figure 41l For point B one gets
384
= ) 392
2+k (392)

which is farther away from the origin since £ > 1. The normal to the plastic
potential surface is labeled b and amounts for sector 1 to (m,0,—1). Similar
expressions apply to the other sectors.

The governing equations of an elastic material with Mohr-Coulomb plasticity
read:

(i) Elastic stress-strain relations

o=D:¢€ (393)
(ii) Internal variable relationship
c(eP°Y) (394)
(iii) Yield surface
fle,e)=0sa-0—2cVE=0 (395)
(iv) Evolution equations
p_ 5 09(0,0) _ |
P=4y—=—"—~=4b 396
=== =1 (396)

Y20, flo,0) <0, Yf(o,c)=0 (397)
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(vi) Consistency condition

yf(o,c) =0. (398)

Notice that in the above equatons o and € are vectors in principal space.

In order to explain the numerical procedure it is assumed that all variables
are known at the end of increment n (corresponding to time t) and that their
values are sought at the end of increment n + 1 (corresponding to time t + At).
The input to the algorithm is a change on total strain Ae.

At first it is assumed that now plasticity occurs in the new increment, i.e.:

€ni1 =€, (399)
Cntl = Cn (400)
Yn+1 = Tn (401)
ont1 =D - (€5 + Ae€) (402)
If
a- -0, —2ep1VE <0, (403)

the solution is found. If not, Av,11 := Yn4+1 —¥n > 0 and due to the Kuhn-
Tucker equations f(o,c¢) = 0 is required. The stress at n + 1 can be written
as:

ont1 = D€, (404)
= D-(€n+1—€,41) (405)

D (ent1— €, + €, —€n,q) (406)

ot — D A€, (407)

= oy —MD- b (408)

In the last equation the evolution equation was used (flow rule). Defining
s := D - b, satisfying the yield surface now requires:

a- (o} = Aynra 8) = 2e(h ) VE =0, (409)
Notice that s points in the direction of the stress correction w.r.t. the trial
stress. In order to solve this equation a relationship between efffl and A~ is

needed. Now, €)% is defined as:

s =20l (110)
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from which:

t+At 2
an = [ B (a11)
0
t 2 t+At 2
- /\/>||ép||dt+/ \[épdt (412)
o V3 o Vs
2
= ey lad,) (113
2
= a2 ol (111
2
= 6%6(14_ gA’}/nJ’_l V 1+m2 (415)

Defining k* := 2vk and m* := /2(1 +m2)/3 the yield equation now

amounts to:

J=a- (00— Aypir 8) — KU+ Aypm®) = 0. (416)

This is a nonlinear equation in Av,4+1. Using the Newton-Raphson proce-
dure the first derivative is needed, which yields:

af dc
— = —a-s5—k'm*—c. 41
OAYn 41 @ " deny 0

Starting with an initial guess A9, ; = 0, one arrives at A%(llfll) = A%(ﬁgl +

AA'yflkﬁl by solving the equation:

k k k k k
FAAR +aM ) & F(aq)) + Faallnan ) =0, (18)
or
* % 86 k ria. k * ,(k
—a-s—k'm 9ePed | pea. (i) AA%(H)l =a- U':H-ll - A”Yr(HZlS —k C(Egiql( ))a
€nt1
(419)
where
i ® = e b mr Ayl (420)

This works as long a the return is to a face of the yield surface. Since the
return vector for sector 1 is s; = D - by one can graphically plot the region in
three-dimensional principal stress space which is returned to the yield face in
sector 1 (Figure [[43). It is the space for which
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Figure 143: Limits of the return regions for Mohr-Coulomb
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(o-ﬁffll —8q)(s1x7r1) >0 AND (Ufffll — 84) - (81 x1rg) <0. (421)

This is called region I. The space within sector 1 in between region I and
sector 2 and underneath the apex is mapped onto the intersection line of face 1
and face 2 of the yield surface (characterized by the equation s4 + Ar1, A € R).
It is characterized by the equations

(o2l —84) - (s1 x71) <0 AND (af{fll — Sq) - (81 X 82) <0. (422)
and is called region II of sector 1. Similary for the space in between region

I and sector 6 and underneath the apex satisfying
(ol — 8q) - (51 x16) >0 AND (o4 — s4) - (86 x 81) < 0. (423)

This is region III. Finally, the region above the apex corresponding to

(ol —84) - (81 x 82) >0 AND (072 —s,) - (s x 81) >0 (424)

is returned to the apex and is called region IV.

Returning the trial stress to the intersection line of two yield faces implies
that the final state has to satisfy both face equations. The equivalent plastic
strain now satisfies:

e = e m (A1 g1 + A2 n41) (425)

and the yield surface equations amount to:

ay - (U;ﬁfﬁl — Aving1 81— Ao npr 82) —Ec(ehy) = 0 (426)
az - (008 — Ayins1 S1— Ay i 82) — k*e(ehh) = 0. (427)

Applying Newton-Raphson now leads to:

k)
AAY
[A]- S Aakt = 1B, (428)
AA~
2 n+1
where
—aq-81 — k* _Oc_ —aq - o — k*m* 2
a]. 81 m depbed GPTlv(k) a]. 32 m depPed GPTi(k)
[A}: —ao - S1 — k*m Jdc " —ao - So — k*m* Jdc " (429)
2 1 Hepea eiTi(k) 2 2 Heped EiTl,(k)
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trial

k k " (K
ai- |(Opy1 — A'Yigb-usl - A'Yé,z-s-lSZ —k c(eﬁj?l( ))

(B} = (430)

ria k k * (K
az - 0'%4—11 - A’Yg,r)wrlsl - A7£,73+132 —k C(€2T1( ))

For a return to the apex the yield equations of sector 1, 2 and 6 have to be
satisfied yielding 3 equations in 3 unknowns.

To calculate the consistent tangent the change of stress due to a change in
total strain is needed. The change of stress in the present increment amounts
to:

d(Ao) = d(D-A€) (431)
d(D - Ae— D - A€P) (432)
99
= D -Ae— D -—=A 4
aD-Ac—D- P ay) (433)
9%g g
= D~dAe—D-@-dA0'A7—D~%dA’y (434)
= D-dAe— sdAy (435)

Now, a relationship between dA~ and dAe is needed. This is obtained from
the yield equation:

flon+ Ao, c(y+ Ay)) =0, (436)
from which
9f -dAo + o5 9¢ dAy = 0. (437)
90 |, Ao ¢ OV, 4ay

Substituting the previously obtained expression for d(Ao) yields (dropping
the bound of the derivatives to simplify the notation; the derivatives are to be
taken at the end of the present increment):

af of af oc B
5 D . dAe — 5 sdA~ + e 8PydA7 =0 (438)
from which
-D-dA
Ay = @ D-dAe (439)

a-s+k*m* agfeq
Finally one obtains for the elastoplastic consistent tangent

s®a-D
a-s+k*m*8g,iq

D =D — (440)

The derivation of the elastoplastic consistent tangent for a return to the in-
tersection between face 1 and face 2 is similar. Now, a change in stress increment
amounts to:
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dAc =D -dAe— D -bydAy, — D - badAv,. (441)

A relationship between the change in A~ and the change in Ae can again
be obtained by considering the adjacent yield faces (i=1,2):

filon + Ao, c(y+ Ay + Avy,)) =0, (442)
from which
O -dAo + 0f; e dA~, + 0f: ¢ dAy; =0
do ont+Ac de Oy Y+AY1+AY2 de 0y Y+AY1+Ay2
(443)
or

[al - 81 + k*m* B%Ceq ay - 8o + k*m* 2 } ) {dAvl} _ {al -D- dAe}

Deped
az-s1+k"m* 555 az-s2+k'm” ae%pceq dAys, ay-D-dAe
(444)

Denoting the inverse of the left hand matrix by [B] the solution of the above
system can be written as:

dA"Yl = B11a1 -D-dAe + 312(12 -D-dAe (445)
dA’}/Q = Blgal -D - dAe + ngag -D - dAE, (446)

leading to:

D°P :D*B1181®O/1'D*B1181®a2'D*Blls2®al'D*B1182®042'D. (447)

The derivation for the return to the apex is similar (now three equations
have to be satisfied).

The tangent derived here only applies to the normal directions. It has to be
complemented by a shear part 7" in the form [19]:

D 0
c- ) (448)
0 T
where
O1,n4+1—02 nt+1
o ey, 0 ’
- O1,n+1—03 n+1
7= 0 Tpii=cenp 0 (449)
1,n4+1 3,n+1
ag —03 .
0 0 2,n+1 3,n+1

trial _ trial
92,n4+1793,n+1

Finally, the tangent matrix C has to be transformed back into the global
system yielding C’:
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c'=A".C A, (450)

where A is the transformation matrix in equation (A5) in [I9]. Notice that
equation (A6) in [I9] is wrong and has to be replaced by the equation above.
Similarly the stress is to be transformed into the global system by:

o' =AT .o (451)

6.8.12 Tension-only and compression-only materials.

These are material models which can be used to simulate textile behavior
(tension-only) and concrete (compression-only). In essence, a one-dimensional
Hooke-type relationship is established between the principal stresses and prin-
cipal strains, thereby suppressing the compressive stress range (tension-only
materials) or tensile stress range (compression-only materials).

The Cauchy-Green tensor can be written as a function of its eigenvalues and
eigenvectors as follows:

3
C=> AM, (452)
=1

where M! are the structural tensors satisfying M! = N; ® N, N being the
principal directions [23]. From this, the second Piola-Kirchhoff stress tensor can
be defined by:

S=) flA)M, (453)

where, for tension-only materials,

f(A)=E (Ai; 1) E + %tan_l (A; 1)} , (454)

where E is an elastic modulus, the term within the first parentheses is a
Lagrange principal strain and the term within the square brackets is a correction
term suppressing the negative stresses (pressure). It is a function tending to zero
for negative strains (-0.5 being the smallest possible Lagrange strain), to one for
large positive strains and switches between both in a region surrounding zero
strain. The extent of this region is controlled by the parameter e: the smaller
its value, the smaller the transition region (the sharper the switch). It is a
monotonically increasing function of the strain, thus guaranteeing convergence.
The correction term is in fact identical to the term used to cut off tensile stresses
for penalty contact in Equation(226)) and Figure (I30). Replacing “overclosure”
and “pressure” by “principal strain” and “principal stress” in that figure yields
the function f. Although compressive stresses are suppressed, they are not
zero altogether. The maximum allowed compressive stress (in absolute value)
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amounts to Fe/m. Instead of chosing E and e the user defines E and the
maximum allowed compressive stress, from which € is determined.

The material definition consists of a *MATERIAL card defining the name of
the material. This name HAS TO START WITH "TENSION_ONLY” but can
be up to 80 characters long. Thus, the last 68 characters can be freely chosen
by the user. Within the material definition a FUSER_MATERIATI card has to
be used satisfying:

First line:

e *USER MATERIAL

e Enter the CONSTANTS parameter and its value. The value of this pa-
rameter is 2.

Following line:

o I,

e absolute value of the maximum allowed pressure.
e Temperature.

Repeat this line if needed to define complete temperature dependence.

For a compression-only materials the name of the material has to start with
”"COMPRESSION_ONLY” (maximum 64 characters left to be chosen by the
user) and the second constant is the maximum allowed tension. Examples are
leifer2 and concretebeam in the test example suite.

6.8.13 Fiber reinforced materials.

This is a model which was conceived by G. Holzapfel et al. [35] to model arterial
walls. It is an anisotropic hyperelastic model, consisting of an isotropic neo-
Hooke potential for the base material, complemented by exponential strenght-
ening terms in fiber direction. The mathematical form of the potential satisfies:

_ 7 1 2 Kvi T orpi(dn—1)2
U =Cuohi =3) + 5= (J = 1) > ‘[e 1} (455)

where (z) = 0 for < 0 and (z) = z for x > 0. Thus, the fibers do not take
up any force under compression. Although the material was originally defined
for arteries, it is expected to work well for other fiber reinforced materials too,
such as reinforced nylon. The material model implemented thus far can cope
with up to 4 different fibers. The material definition consists of a *MATERIAL
card defining the name of the material. This name HAS TO START WITH
"ELASTIC_FIBER” but can be up to 80 characters long. Thus, the last 67
characters can be freely chosen by the user. Within the material definition a

FUSER MATERIATI card has to be used satisfying:

First line:
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e *USER MATERIAL

e Enter the CONSTANTS parameter and its value. The value of this pa-
rameter is 2+4n, where n is the number of fiber directions.

Following line if one fiber direction is selected:
o Clo.

o D.

e 1,1: x-direction cosine of fiber direction.

e n,: y-direction cosine of fiber direction.

o koi.
e Temperature.

Repeat this line if needed to define complete temperature dependence. The z-
direction cosine of the fiber direction is determined from the x- and y-direction
cosine since the direction norm is one. If a local axis system is defined for an
element consisting of this material (with FORIENTATION])the direction cosines
are defined in the local system.

If more than one fiber direction is selected (up to a maximum of four),
the four entries characterizing fiber direction 1 are repeated for the subsequent
directions. Per line no more than eight entries are allowed. If more are needed,
continue on the next line.

Example:

*MATERIAL ,NAME=ELASTIC_FIBER

*USER MATERIAL,CONSTANTS=18
1.92505,0.026,0.,0.7071,2.3632,0.8393,0,-0.7071,
2.3632,0.8393,0.7071,0.,2.3632,0.8393,-0.7071,0.,
2.3632,0.8393

defines an elastic fiber materials with four different fiber directions (0,0.7071,0.7071),
(0,-0.7071,0.7071), (0.7071,0.,0.7071) and (-0.7071,0.,0.7071). The constants are
Cho = 1.92505, Dy = 0.026 and ky; = 2.3632, ko; = 0.8393 Vi € {1,2,3,4}.

6.8.14 The Cailletaud single crystal model.

The single crystal model of Georges Cailletaud and co-workers [58][59] describes
infinitesimal viscoplasticity in metallic components consisting of one single crys-
tal. The orientations of the slip planes and slip directions in these planes is gen-
erally known and described by the normal vectors n® and direction vectors 17,
respectively, where 8 denotes one of slip plane/slip direction combinations. The
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slip planes and slip directions are reformulated in the form of a slip orientation
tensor m? satisfying:
m’ = (0’ 21° +1° 2 n?)/2. (456)

The total strain is supposed to be the sum of the elastic strain and the plastic
strain:

€=¢€°+€P. (457)

In each slip plane an isotropic hardening variable ¢; and a kinematic harden-
ing variable go are introduced representing the isotropic and kinematic change
of the yield surface, respectively. The yield surface for orientation 5 takes the
form:

nP
hP = o-:mﬁJrqg’—rngZHﬂalﬁ:O (458)
a=1

where n? is the number of slip orientations for the material at stake, o is
the stress tensor, rg is the size of the elastic range at zero yield and Hpg, is a
matrix of interaction coefficients. The constitutive equations for the hardening
variables satisfy:

g = —0°Q%] (459)

and

¢ = —c’af (460)

where o and aj are the hardening variables in strain space. The constitu-
tive equation for the stress is Hooke’s law:

o=C:¢€ (461)

The evolution equations for the plastic strain and the hardening variables in
strain space are given by:

n?

éP = Z ¥PmPsgn(o : mP + qg), (462)
p=1
qﬂ
P =48 (14 Q—lﬁ (463)

and

Wb |8 5., o, Yo
ah =47 [ sgn(o:m” + ¢5) + 7| (464)
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The variable 47 is the consistency coefficient known from the Kuhn-Tucker
conditions in optimization theory [52]. It can be proven to satisfy:

B _

¥ &’

, (465)

where ¢?” is the flow rate along orientation 5. The plastic strain rate is
linked to the flow rate along the different orientations by

nh
=Y "mh. (466)
=1

The parameter ¢ in equation ([@64) is a function of the accumulated shear
flow in absolute value through:

WP =P+ (1— ¢P)e® Jo i dt (467)

Finally, in the Cailletaud model the creep rate is a power law function of the

yield exceedance:
8
: R \"
AP = <Kﬁ> : (468)

The brackets () reduce negative function values to zero while leaving positive
values unchanged, i.e. () =0if 2 <0 and (z) =z if z > 0.

In the present umat routine, the Cailletaud model is implemented for a Nickel
base single crystal. It has two slip systems, a octaeder slip system with three slip
directions < 011 > in four slip planes {111}, and a cubic slip system with two
slip directions < 011 > in three slip planes {001}. The constants for all octaeder
slip orientations are assumed to be identical, the same applies for the cubic slip
orientations. Furthermore, there are three elastic constants for this material.
Consequently, for each temperature 21 constants need to be defined: the elastic
constants Cq111, C1122 and Cia12, and a set {K'B,nﬁ,cﬂ,d6,¢5,(55,rg,@5,bﬂ}
per slip system. Apart from these constants 182 interaction coefficients need
to be defined. These are taken from the references [58][59] and assumed to be
constant. Their values are included in the routine and cannot be influence by
the user through the input deck.

The material definition consists of a *MATERIAL card defining the name
of the material. This name HAS TO START WITH ”"SINGLE_CRYSTAL” but
can be up to 80 characters long. Thus, the last 66 characters can be freely
chosen by the user. Within the material definition a FUSER MATERIAT] card
has to be used satisfying:

First line:

e *USER MATERIAL

e Enter the CONSTANTS parameter and its value, i.e. 21.
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Following lines, in sets of 3:

First line of set:

e Ciir.

o Chiza.

o Ciona.

e KP (octaeder slip system).

e 1P (octaeder slip system).

e ? (octaeder slip system).

e d? (octaeder slip system).

e % (octaeder slip system).
Second line of set:

e 5% (octaeder slip system).

. rg (octaeder slip system).

e Q7 (octaeder slip system).

e b7 (octaeder slip system).

e K? (cubic slip system).

e 1P (cubic slip system).

e ¢# (cubic slip system).

e d? (cubic slip system).
Third line of set:

e % (cubic slip system).

e 57 (cubic slip system).

. rg (cubic slip system).

Q" (cubic slip system).

b? (cubic slip system).

Temperature.
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Repeat this set if needed to define complete temperature dependence.

The crystal principal axes are assumed to coincide with the global coordinate
system. If this is not the case, use an FORIENTATION] card to define a local
system.

For this model, there are 60 internal state variables:

o the plastic strain tensor €? (6)
e the isotropic hardening variables qlﬁ (18)
e the kinematic hardening variables qg (18)

e the accumulated absolute value of the slip rate fg ~Bdt (18)

These variables are accessible through the FEL_ PRINT (.dat file) and FEL FILE
(.frd file) keywords in exactly this order (label SDV). The FDEPVARI card must
be included in the material definition with a value of 60.

Example:

*MATERIAL ,NAME=SINGLE_CRYSTAL

*USER MATERIAL,CONSTANTS=21
135468.,68655.,201207.,1550.,3.89,18.E4,1500.,1.5,
100.,80.,-80.,500.,980.,3.89,9.E4,1500.,
2.,100.,70.,-50.,400.

*DEPVAR

60

defines a single crystal with elastic constants {135468.,68655.,201207.}, oc-
taeder parameters {1550.,3.89, 18.F4, 1500.,1.5,100., 80., —80.,500.} and cubic
parameters {980.,3.89,9.F4,1500.,2.,100., 70., —50.} for a temperature of 400.

6.8.15 The Cailletaud single crystal creep model.

This is the Cailletaud single crystal model reduced to the creep case, i.e. the
yield surface is reduced to zero.

The material definition consists of a *MATERIAL card defining the name of
the material. This name HAS TO START WITH ”SINGLE_CRYSTAL_CREEP”
but can be up to 80 characters long. Thus, the last 60 characters can be freely
chosen by the user. Within the material definition a FUSER MATERIAL] card
has to be used satisfying:

First line:

e *USER MATERIAL
e Enter the CONSTANTS parameter and its value, i.e. 7.

Following line:
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e Ciin.

o Ciiza.

o Ciona.

e KP (octaeder slip system).
e 1P (octaeder slip system).
e K? (cubic slip system).

e 1P (cubic slip system).

e Temperature.

Repeat this line if needed to define complete temperature dependence.

The crystal principal axes are assumed to coincide with the global coordinate
system. If this is not the case, use an FORIENTATION] card to define a local
system.

For this model, there are 24 internal state variables:

e the plastic strain tensor €P (6)

e the accumulated absolute value of the slip rate f(f ’y.ﬁdt (18)

These variables are accessible through the FEL_ PRINT (.dat file) and FEL FILE
(.frd file) keywords in exactly this order (label SDV). The FDEPVARI card must
be included in the material definition with a value of 24.

Example:

*MATERIAL ,NAME=SINGLE_CRYSTAL

*USER MATERIAL,CONSTANTS=21
135468.,68655.,201207.,1550.,3.89,980.,3.89,400.
*DEPVAR

24

defines a single crystal with elastic constants {135468.,68655.,201207.}, oc-
taeder parameters {1550.,3.89} and cubic parameters {980.,3.89} for a temper-
ature of 400.

6.8.16 Elastic anisotropy with isotropic viscoplasticity.

This model describes small deformations for elastically anisotropic materials
with a von Mises type yield surface. Often, this model is used as a compromise
for anisotropic materials with lack of data or detailed knowledge about the
anisotropic behavior in the viscoplastic range.

The total strain is supposed to be the sum of the elastic strain and the plastic
strain:
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€=¢€°+¢€P. (469)

An isotropic hardening variable ¢; and a kinematic hardening tensor qg are
introduced representing the isotropic and kinematic change of the yield surface,
respectively. The yield surface takes the form:

= [|dev(o) + qz|| + \/z(ch —79) =0 (470)

where dev(o) is the deviatoric stress tensor, and 7 is the size of the elastic
range at zero yield. The constitutive equations for the hardening variables
satisfy:

¢ =—dion (471)
and
2
qz = —§d2az (472)

where a1 and g are the hardening variables in strain space. It can be shown
that

ay = Pl (473)

2% = €P°, (474)

where €P¢? is the equivalent plastic strain defined by

2
e \/; e (475)

and a9 is the equivalent value of the tensor az defined in a similar way.
Thus, the constitutive equations amount to

q1 = 7d1€peq (476)

and

0% = dpe”™d, (477)

3
1= /2 (a73)

has the meaning of an equivalent stress value or von Mises value. The
same applies to ¢;. Consequently, the constitutive equations assume a linear
relationship between the hardening stress and the equivalent plastic strain.
The constitutive equation for the stress is Hooke’s law:

where
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o=C:¢€" (479)

The evolution equations for the plastic strain and the hardening variables in
strain space are given by:

€P = An, (480)
. 2,
i =13, (481)
and
G = 9n, (482)
where
dev(o) + q2 (483)

n=-—m——————".
|dev(o) + az|

The variable 7 is the consistency coefficient known from the Kuhn-Tucker
conditions in optimization theory [52]. It can be proven to satisfy:

5= \/gépeq, (484)

Finally, the creep rate is modeled as a power law function of the yield ex-

ceedance and total time t:
: AN
ered = A 3 )t (485)

The brackets () reduce negative function values to zero while leaving positive
values unchanged, i.e. () =0if z <0 and (x) =z if x > 0.

In the present implementation orthotropic elastic behavior is assumed. Con-
sequently, for each temperature 15 constants need to be defined: the elastic
constants Cii11, Cr122, C2222,C1133, Ca233, C3333,C1212, Ci313, Casas, and the
viscoplastic constants rq, dy, ds, A, n, m.

The material definition consists of a *MATERIAL card defining the name
of the material. This name HAS TO START WITH ”ANISO_PLAS” but can
be up to 80 characters long. Thus, the last 70 characters can be freely chosen
by the user. Within the material definition a FUSER_MATERIAI] card has to
be used satisfying:

First line:

e *USER MATERIAL

e Enter the CONSTANTS parameter and its value, i.e. 15.
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Following lines, in sets of 2:

First line of set:

o Cii1-

e (2.

o (929

o (133

o (233

o (3333

o (212

o (313
Second line of set:

o (2323

® 7.

° d;.

® ds.

o A

e n.

e m.

e Temperature.

Repeat this set if needed to define complete temperature dependence.

The principal axes of the material are assumed to coincide with the global
coordinate system. If this is not the case, use an FORIENTATION card to
define a local system.

For this model, there are 14 internal state variables:

e the equivalent plastic strain e?°? (1)
e the plastic strain tensor €P (6)
e the isotropic hardening variable o (1)

e the kinematic hardening tensor az (6)

These variables are accessible through the FEL_ PRINT (.dat file) and FEL FILE
(.frd file) keywords in exactly this order (label SDV). The FDEPVAR] card must
be included in the material definition with a value of 14.
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Example:

*MATERIAL ,NAME=ANISO_PLAS

*USER MATERIAL,CONSTANTS=15
500000.,157200.,500000.,157200.,157200.,500000.,126200.,126200.,
126200.,0.,0.,0.,1.E-10,5,0.

*DEPVAR

14

defines a single crystal with elastic constants 500000., 157200., 500000.,
157200., 157200., 500000., 126200., 126200., 126200., and viscoplastic parame-
ters 79 = 0., d; = 0., dy = 0., A =10"1% n =5 and m = 0. Thus, the yield
surface has a zero radius and there is no hardening. Only creep is activated.

6.8.17 Elastic anisotropy with user defined isotropic creep.
This material model is similar to the previous one, except that
e 1o plasticity is assumed (yield surface coincides with the origine)

e the creep model is to be provided by a creep user subroutine

In the present implementation orthotropic elastic behavior is assumed. Con-
sequently, for each temperature 9 constants need to be defined: the elastic con-
stants Cr111, Ci122, C2222,C1133, Ca233, C3333,C1212, Ci313 and Cazos.

The material definition consists of a *MATERIAL card defining the name
of the material. This name HAS TO START WITH ”ANISO_CREEP” but can
be up to 80 characters long. Thus, the last 69 characters can be freely chosen
by the user. Within the material definition a FUSER_ MATERIAT] card has to
be used satisfying:

First line:

e *USER MATERIAL
e Enter the CONSTANTS parameter and its value, i.e. 9.

Following lines, in sets of 2:

First line of set:
e Ciini.
o (120
o (229
o Cli33.

o (oo33.
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o (3333

o Cro12.

o (313
Second line of set:

o Co303.

e Temperature.

Repeat this set if needed to define complete temperature dependence.

The principal axes of the material are assumed to coincide with the global
coordinate system. If this is not the case, use an FORIENTATION] card to
define a local system.

For this model, there are 7 internal state variables (recall that CalculiX
does not make a distinction between plastic strain and creep strain: the field €?
contains the sum of both):

e the equivalent plastic strain eP¢? (1)

e the plastic strain tensor €P (6)

These variables are accessible through the FEL_ PRINT (.dat file) and FEL FILE]
(.frd file) keywords in exactly this order (label SDV). The FDEPVARI card must
be included in the material definition with a value of 7.

The creep subroutine has to be provided by the user (cf. Section Bl). Since
the material is anisotropic the input to the creep routine is the equivalent devi-
atoric creep strain, the output is the von Mises stress and the derivative of the
equivalent deviatoric creep strain increment w.r.t. the von Mises stress.

Example:

*MATERIAL ,NAME=ANISO_CREEP

*USER MATERIAL,CONSTANTS=9
500000.,157200.,500000.,157200.,157200.,500000.,126200.,126200.,
126200.

*DEPVAR

7

defines a single crystal with elastic constants 500000., 157200., 500000.,
157200., 157200., 500000., 126200., 126200. and 126200.. The creep law has
to be provide by the user in the form of a creep.f subroutine.

6.8.18 User materials

Other material laws can be defined by the user by means of theFUSER MATERIAT]
keyword card. More information and examples can be found in section
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A user material card requires the coding of a user material subroutine, either
of the CalculiX type or the Abaqus type.

For a user material routine of the CalculiX type the routine umat_user.f can
be taken as example. The input primarily exists of the mechanical Lagrange
strain tensor at the beginning and end of the increment, requested output is the
Piola-Kirchhoff stress tensor of the second kind and the derivative of the Piola-
Kirchhoff stress of the second kind with respect to the mechanical Lagrange
strain tensor, both at the end of the increment. Details of other input fields is
given in the section referenced above.

For a user material routine of the Abaqus type there are two possibilities:
either the user wants to apply the routine to linear geometric calculations only.
Then, the kind of strain and stress going in or out of the routine is not important
and the previous paragraph applies. However, if the user would like to apply the
routine to geometrically nonlinear calculations, the strain entering the routine
is the corotational mechanical logarithmic strain and the required stress is the
corotational Cauchy stress. So CalculiX has to perform some conversions before
and after calling the Abaqus user material routine. For a prototype example of
a Abaqus user material routine the user is referred to umat.f, for limitations on
the use of the Abaqus interface fields section should be consulted.

Here, some information is given on how the fields used in CalculiX (mechani-
cal Lagrange strain and Piola-Kirchhoff stress of the second kind) are converted
into the fields required by Abaqus (corotational mechanical logarithmic strain
and corotational Cauchy stress) and vice versa. The conversions is coded in
umat_abaqusnl.f.

The mechanical logarithmic strain satisfies

e = AMn; @ n,, (486)
[

where MM are the eigenvalues of the mechanical deformation gradient M,
In calculiX, the mechanical deformation gradient is obtained by subtracting the
thermal expansion from the total deformation gradient, i.e.

FM=F —aATI (487)

for isotropic expansion. The rotation tensor R = n; ® IN; rotates the prin-
cipal vectors IN; of the motion in material coordinates in spatial coordinates
n;:

It is a two-point tensor with one leg in the material frame of reference and one
leg in the spatial frame of reference. The corotational mechanical logarithmic
strain then amounts to (recall that R is orthogonal, i.e. R™' = RT) :

e =R" e} R=> MMN;®N,. (489)

7
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)\ZM can be obtained from the eigenvalues of the mechanical Lagrange tensor
EM = (FMT . FM _ I)/2 and its eigenvectors are N;.
The Cauchy tensor satisfies

co=J'R-U-S-U" R", (490)

and consequently the corotational Cauchy tensor amounts to

6=R" . 0c-R=J'U-S-U". (491)

Here, J is the Jacobian determinant, S is the Piola-Kirchhoff stress of the
second kind and U is the right-stretch tensor. The latter is the square root
of the Cauchy-Green tensor C' and therefore it can also be derived from the
Lagrange tensor. However, in routine umat_abaqusnl.f the mechanical Lagrange
tensor is available and not the total one. So a relationships is needed between
the total right-stretch tensor and the mechanical right-stretch tensor. Since
U has the same eigenvalues as F' and the multiplicative decomposition of the
deformation gradient in a mechanical and thermal deformation gradient leads
to A = MM (1 + aAT) one obtains:

=J1UM. 8- (UMT(1+aAT)>. (492)

The latter equation assumes that the thermal expansion is isotropic. In
routine umat_abaqusnl.f S is known, U™ can be obtained from E™ and (1+
aAT) results from

(FT . F)y,

1+ aAT) =
( ) 2B +1

, (493)

where the index 17 refers to element (1,1) of the corresponding matrix. In
this way the corotational Cauchy stress is obtained from the Piola-Kirchhoff
stress of the second kind. The inverse relationship is used after returning from
the Abaqus material user subroutine:

S=Jut.ée-U". (494)

Now, 9S/ OEM is needed in CalculiX (i.e. total Lagrangian approach), how-
ever, the Abaqus routine returns 96 /9é;x!. Performing an exact transformation
is very tedious and nearly impossible. It would require an enormous computa-
tional effort and frequently results in an asymmetric 8S/0EM - matrix even
if 96/ aéﬁf is symmetric. To avoid longer computational times due to the use
of an asymmetric linear equation solver a symmetrization is usually performed
leading to an approximation anyway. Therefore, a simplified approach is taken
which reduced the computational effort to a minimum while leading to accept-
able convergence rates despite the approximations involved.

From the relationship between S and & one obtains (in Carthesian coordi-
nates)
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~ JU — | U 495
(5ar ) ~ o (G v (195)

(recall that U is symmetric). In the above equation the dependence of U!
on E™ has been neglected (first approximation). One can further write:

08 06 e
( 1 > ~JUy | o™ P9 Uy (496)
OE%, Oéiy pq OE%T,
or, approximating the corotational mechanical logarithmic strain él/:l/[ by the
corotational mechanical Eulerian strain &' (second approximation):

081 ) 1 [ O6unN 8éJI}’AQ 1
~ JU . UL (497)
(aEféL M oeltp, ) \ 0B, ) N

The Eulerian strain satisfies:

2e=F 1 .2E.-F ' (498)

which amounts to:

FM—T ~FM_1
 (1+aAT)?

) —FT. (FMT . FM(1+ aAT)? — I) CF(499)

This can be written as:

I — FPMTTORpMTN o
_ p-T. (FMT CFM _ I+2§FMT~FM> - F~Y1 + aAT)?, (500)

where
26 := 20AT + o (AT)>. (501)
This leads to:
eM el = FM T (BM 4 eoMy . FMT (502)
or
eM = pM™T M pMT (503)

Consequently, the corotational mechanical Eulerian strain amounts to:

N -1 1
épq = RprefsRsq = UM prERsUM g, (504)
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leading to (again using the first approximation for the inverse mechanical
right-stretch tensor)

aég@ M~L M1
gt |~ U™ pr(In)rsk U 50, (505)
KL
where
(Ir)rskr = (Orxdsr + OrLsK)/2. (506)

Due to the symmetry of the corotational mechanical Eulerian strain ten-
sor and the symmetry of the inverse right-stretch tensor, one can write after
substitution of Equation (B06) into Equation (B0O5):

okes VeSS -1 loles -1 -1
N U™Mor() s tUMgg = |~ | UM UM (507)
O€in pq 9€in,p

One finally obtains:

0Sr1; ) 06 MmN Agr—1prM—L g1
~J|——|U;;, U U U . 508
<8E§‘(’1L aémPQ MY N KP LQ (508)

This is the expresson which is used for the material tangent. The approx-
imations do not lead to a false result, they just slow down the convergence.
Since the wish to avoid asymmetric matrices precludes quadratic convergence
anyway the above approximations seem tolerable. This has been confirmed in
practical numerical simulations of e.g. the deformation plasticity model and
the Johnson-Cook model in implicit dynamic calculations (in explicit dynamic
calculations the material tangent is not needed).

6.9 Types of analysis

An analysis type applies to a complete step, which starts with a *STEP card
and ends with an *END STEP card. The analysis type, the loading and field
output requests must be defined in between.

6.9.1 Static analysis

In a static analysis the time dimension is not involved. The loading is assumed
to be applied in a quasi-static way, i.e. so slow that inertia effects can be
neglected. A static analysis is defined by the key word FSTATIC| A static step
can be geometrically linear or nonlinear. In both cases a Lagrangian point of
view is taken and all variables are specified in the material frame of reference
[25]. Thus, the stress used internally in CalculiX is the second Piola-Kirchhoff
tensor acting on the undeformed surfaces.

For geometrically linear calculations the infinitesimal strains are taken (lin-
earized version of the Lagrangian strain tensor), and the loads do not interfere
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with each other. Thus, the deformation due to two different loads is the sum
of the deformation due to each of them. For linear calculations the difference
between the Cauchy and Piola-Kirchhoff stresses is negligible.

For geometrically nonlinear calculations, the full Lagrangian strain tensor is
used. A geometrically nonlinear calculation is triggered by the parameter NL-
GEOM on the *STEP card. The step is usually divided into increments, and the
user is supposed to provide an initial increment length and the total step length
on the FSTATIC] card. The increment length can be fixed (parameter DIRECT
on the FSTATIC] card) or automatic. In case of automatic incrementation, the
increment length is automatically adjusted according to the convergence charac-
teristics of the problem. In each increment, the program iterates till convergence
is reached, or a new attempt is made with a smaller increment size. In each
iteration the geometrically linear stiffness matrix is augmented with an initial
displacement stiffness due to the deformation in the last iteration and with an
initial stress stiffness due to the last iteration’s stresses [I09]. For the output
on file the second Piola-Kirchhoff stress is converted into the Cauchy or true
stress, since this is the stress which is really acting on the structure.

Special provisions are made for cyclic symmetric structures. A cyclic sym-
metric structure is characterized by N identical sectors, see Figure [[44] and the
discussion in next section. Static calculations for such structures under cyclic
symmetric loading lead to cyclic symmetric displacements. Such calculations
can be reduced to the consideration of just one sector, the so-called datum sec-
tor, subject to cyclic symmetry conditions, i.e. the right boundary of the sector
exhibits the same displacements as the left boundary, in cylindrical coordinates
(NOT in rectangular coordinates!). The application of these boundary condi-
tions is greatly simplified by the use of the keyword cards FSURFACE] FTIE and
defining the nodes on left and right bound-
ary and the sector size. Then, the appropriate multiple point constraints are
generated automatically. This can also be used for a static preload step prior
to a perturbative frequency analysis.

6.9.2 Frequency analysis

In a frequency analysis the lowest eigenfrequencies and eigenmodes of the struc-
ture are calculated. In CalculiX, the mass matrix is not lumped, and thus a
generalized eigenvalue problem has to be solved. The theory can be found in
any textbook on vibrations or on finite elements, e.g. [I09]. A crucial point in
the present implementation is that, instead of looking for the smallest eigenfre-
quencies of the generalized eigenvalue problem, the largest eigenvalues of the
inverse problem are determined. For large problems this results in execution
times cut by about a factor of 100 (!). The inversion is performed by calling
the linear equation solver SPOOLES. A frequency step is triggered by the key
word and can be perturbative or not.

If the perturbation parameter is not activated on the FSTED] card, the fre-
quency analysis is performed on the unloaded structure, constrained by the
homogeneous SPC’s and MPC’s. Any steps preceding the frequency step do
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not have any influence on the results.

If the perturbation parameter is activated, the stiffness matrix is augmented
by contributions resulting from the displacements and stresses at the end of the
last non-perturbative static step, if any, and the material parameters are based
on the temperature at the end of that step. Thus, the effect of the centrifugal
force on the frequencies in a turbine blade can be analyzed by first performing
a static calculation with these loads, and selecting the perturbation parameter
on the FSTEP] card in the subsequent frequency step. The loading at the end
of a perturbation step is reset to zero.

If the input deck is stored in the file “problem.inp”, where “problem” stands
for any name, the eigenfrequencies are stored in the “problem.dat” file (notice
that the format of the storage depends on the symmetry of the stiffness ma-
trix; a nonsymmetric stiffness matrix results e.g. from contact friction and can
lead to complex eigenvalues). Furthermore, if the parameter STORAGE is set
to yes (STORAGE=YES) on the *FREQUENCY card the eigenfrequencies,
eigenmodes, stiffness matrix and mass matrix are stored in binary form in a
"problem.eig” file for further use (e.g. in a linear dynamic step).

All output of the eigenmodes is normalized by means of the mass matrix, i.e.
the generalized mass is one. The eigenvalue of the generalized eigenvalue prob-
lem is actually the square of the eigenfrequency. The eigenvalue is guaranteed
to be real (the stiffness and mass matrices are symmetric; the only exception
to this is if contact friction is included, which can lead to complex eigenfre-
quencies), but it is positive only for positive definite stiffness matrices. Due to
preloading the stiffness matrix is not necessarily positive definite. This can lead
to purely imaginary eigenfrequencies which physically mean that the structure
buckles.

Apart from the eigenfrequencies the total effective mass and total effective
modal mass for all rigid body modes are also calculated and stored in the .dat-
file. There are six rigid body modes, three translations and three rotations. Let
us call any of these {R}. It is a vector corresponding to a unit rigid body mode,
e.g. a unit translation in the global x-direction. The participation factors P;
are calculated by

P; = {U;}"[M{R}. (509)

They reflect the degree of participation of each mode in the selected rigid
body motion. Recall that the modes are mass-normalized, consequently the
unit of the mode is 1/4/mass, the unit of the rigid body motion is length. The
effective modal mass is defined by P?, the total effective modal mass by

> p? (510)

(unit: mass ~length2). The total effective mass is the size of the rigid motion,
i.e. it is the internal product of the rigid motion with itself:

{RYT[M{R}. (511)
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Figure 144: Cyclic symmetry structure consisting of four identical sectors

If one would calculate infinitely many modes the total effective modal mass
should be equal to the total effective mass. Since only a finite number of modes
are calculated the total effective modal mass will be less. By comparing the
total effective modal mass with the total effective mass one gains an impres-
sion whether enough modes were calculated to perform good modal dynamics
calculation (at least for the rigid motions).

A special kind of frequency calculations is a cyclic symmetry calculation for
which the keyword cards FSURFACEI FTIEl FCYCLIC SYMMETRY MODEIL
and FSELECT CYCLIC SYMMETRY MODES| are available. This kind of cal-
culation applies to structures consisting of identical sectors ordered in a cyclic
way such as in Figure [[44]

For such structures it is sufficient to model just one sector (also called datum
sector) to obtain the eigenfrequencies and eigenmodes of the whole structure.
The displacement values on the left and right boundary (or surfaces) of the
datum sector are phase shifted. The shift depends on how many waves are looked
for along the circumference of the structure. Figure shows an eigenmode
for a full disk exhibiting two complete waves along the circumference. This
corresponds to four zero-crossings of the waves and a nodal diameter of two. This
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Figure 145: Eigenmode for a full disk with a nodal diameter of two

nodal diameter (also called cyclic symmetry mode number) can be considered
as the number of waves, or also as the number of diameters in the structure
along which the displacements are zero.

The lowest nodal diameter is zero and corresponds to a solution which is
identical on the left and right boundary of the datum sector. For a struc-
ture consisting of N sectors, the highest feasible nodal diameter is N/2 for N
even and (N-1)/2 for N odd. The nodal diameter is selected by the user on the
FSELECT CYCLIC SYMMETRY MODES|card. On the[FCYCLIC SYMMETRY MODEL]
card, the number of base sectors fitting in 360° is to be provided. On the same
card the user also indicates the number of sectors for which the solution is to
be stored in the .frd file. In this way, the solution can be plotted for the whole
structure, although the calculation was done for only one sector. The rotational
direction for the multiplication of the datum sector is from the dependent surface
(slave) to the independent surface (master).

Mathematically the left and right boundary of the datum sector are cou-
pled by MPC’s with complex coefficients. This leads to a complex generalized
eigenvalue problem with a Hermitian stiffness matrix, which can be reduced to
a real eigenvalue problem the matrices of which are twice the size as those in
the original problem.

The phase shift between left and right boundary of the datum sector is given
by 2 N/M, where N is the nodal diameter and M is the number of base sectors
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in 360°. Whereas N has to be an integer, CalculiX allows M to be a real number.
In this way the user may enter a fictitious value for M, leading to arbitrary phase
shifts between the left and right boundary of the datum sector (for advanced
applications).

For models containing the axis of cyclic symmetry (e.g. a full disk), the
nodes on the symmetry axis are treated differently depending on whether the
nodal diameter is 0, 1 or exceeds 1. For nodal diameter 0, these nodes are fixed
in a plane perpendicular to the cyclic symmetry axis, for nodal diameter 1 they
cannot move along the cyclic symmetry axis and for higher nodal diameters they
cannot move at all. For this kind of structures calculations for nodal diameters
0 or 1 must be performed in separate steps.

The mass normalization of a sector subject to cyclic symmetry is done based
on the mass of the sector itself. If the normalization were done based on 360°
the modes corresponding to a nodal diameter of 0 and M/2 (if M is even) would
have to be devided by /M, the others by /M/2.

Adjacent structures with datum sectors which differ in size can be calculated
by tying them together with the *TIE,MULTISTAGE keyword. This works well
if the size difference of the datum sectors is not too large. This is illustrated by
file multistage.inp in the test examples.

FEigenmodes resulting from frequency calculations with cyclic symmetry can
be interpreted as traveling waves (indeed, all eigenmode solutions exhibiting a
complex nature, i.e. containing a real and imaginary part, are traveling waves).
Therefore, a circumferential traveling direction can be determined. This travel-
ing direction is determined in CalculiX and stored in the .dat-file together with
the axis reference direction.

To determine the traveling direction (cw or ccw) the displacement solution
at the center of each element is calculated:

u = upr-+iur
v = VRt
w = wpg+iwy, (512)

where u,v and w are the displacement components, the subscript R denotes
the real part, I the imaginary part. The sum of the square amounts to

u? 02 fw? = (uh v +wh —ut — v —w?)+2i(ugur +vrvr +wrwy) (513)
or

u? 4+ v+ w? = A(r, p, 2)e 92, (514)

In the latter equation A is the amplitude, 1) the phase angle, both of which
depend on the actual location, here described by the cylindrical coordinates r, ¢
and z. The motion of u? 4+ v? +w? is now focussed on in order to determine the
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traveling direction of the eigenmodes. Taking the frequency of the eigenmode
into account one arrives at:

(u? 4 0% + w?)e?™t = A(r, p, z)e! 2tV (re:2) (515)

From this expression the wave character of the response is obvious. For an
observer traveling around the axis (at constant r and z) with the local wave
velocity one has:

2wt + (r, ¢, z) = constant (516)
or
Y dy
bl ik )} 517
90 dt w, (517)
leading to
dy 2w
=% (518)
Op

From the last equation one finds that the traveling direction depends on the
sign of 9y/dp. If this quantity is positive the traveling direction is backwards
(or ccw when looking in the positive direction of the axis), else it is forwards.
The partial derivative of obtained by slightly moving the actual position in
positive p-direction out of the center of the element and reevaluating . This
procedure is repeated for all elements. For good accuracy the response from the
element for which |[u? + v? + w?|| is maximum (always evaluated at the center
of the element) is taken.

Finally one word of caution on frequency calculations with axisymmetric el-
ements. Right now, you will only get the eigenmodes corresponding to a nodal
diameter of 0, i.e. all axisymmetric modes. If you would like to calculate asym-
metric modes, please model a segment with volumetric elements and perform a
cyclic symmetry analysis.

6.9.3 Complex frequency analysis

This procedure is used to calculate the eigenvalues and eigenmodes taking the
Coriolis forces into account. The latter forces apply as soon as one performs
calculations in a rotating frame of reference. Therefore, using the FDLOADI card
to define a centrifugal speed in a step automatically requires to
take into account Coriolis forces. However, in a lot of applications the Coriolis
forces are quite small and can be neglected. They may be important for very
flexible rotating structures such as thin disks mounted on long rotating axes
(rotor dynamics).
The presence of Coriolis forces changes the governing equation into

[M]{U} + [C]{U} + [K]{U} = {0} (519)



294 6 THEORY

In a[FFREQUENCY|analysis the term with the Coriolis matrix [C’] is lack-

ing. Now, the solution to the above equation is assumed to be a linear combi-
nation of the eigenmodes without Coriolis:

{U@)} =3 b {Ui} e (520)

Substituting this assumption into the governing equation and premultiplying
the equation with {Uj}T leads to

CRCICE E= 21

Writing this equation for each value of j yields an eigenvalue problem of the
form

P (b} — i [C7] {8} — [Diag(u2)] {8} = {0} (522)

This is a nonlinear eigenvalue problem which can be solved by a Newton-
Raphson procedure. Starting values for the procedure are the eigenvalues of the
*FREQUENCY step and some values in between. In rare cases an eigenvalue
is missed (most often the last eigenvalue requested).

One can prove that the eigenvalues are real, the eigenmodes, however, are
usually complex. Therefore, instead of requesting U underneath theFNODE FILE]
card yielding the real and imaginary part of the displacements it is rather in-
structive to request PU leading to the size and phase. With the latter informa-
tion the mode can be properly visualized in CalculiX GraphiX. In addition, the
traveling direction is determined in CalculiX and stored in the .dat-file together
with the axis reference direction.

Finally, notice that no FDLOADI card of type CORIO is needed in CalculiX.
A loading of type CENTRIF in a preceding FSTATIC] step is sufficient. The
usual procedure is indeed:

1. a *STATIC step to define the centrifugal force and calculate the deforma-
tion and stresses (may contain NLGEOM, but does not have to).

2. a *FREQUENCY step with PERTURBATION to calculate the eigenfre-
quencies and eigenmodes taking the centrifugal forces, stress stiffness and
deformation stiffness into account. The *FREQUENCY card must include
the parameter STORAGE=YES.

3. a *COMPLEX FREQUENCY,CORIOLIS step to include the Coriolis
forces.
6.9.4 Buckling analysis

In a linear buckling analysis the initial stiffness matrix is augmented by the
initial stress matrix corresponding to the load specified in the FBUCKLE] step,
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multiplied with a factor. This so-called buckling factor is determined such that
the resulting matrix has zero as its lowest eigenfrequency. Ultimately, the buck-
ling load is the buckling factor multiplied with the step load. The buckling
factor(s) are always stored in the .dat file. The load specified in a FBUCKLE]
step should not contain prescribed displacements.

If the perturbation parameter is not activated on the FSTEP] card, the initial
stiffness matrix corresponds to the stiffness matrix of the unloaded structure.

If the perturbation parameter is activated, the initial stiffness matrix in-
cludes the deformation and stress stiffness matrix corresponding to the defor-
mation and stress at the end of the last static or dynamic step performed pre-
vious to the buckling step, if any, and the material parameters are based on the
temperature at the end of that step. In this way, the effect of previous loadings
can be included in the buckling analysis.

In a buckling step, all loading previous to the step is removed and replaced
by the buckling step’s loading, which is reset to zero at the end of the buckling
step. Thus, to continue a static step interrupted by a buckling step, the load
has to be reapplied after the buckling step. Due to the intrinsic nonlinearity of
temperature loading (the material properties usually change with temperature),
this type of loading is not allowed in a linear buckling step. If temperature load-
ing is an issue, a nonlinear static or dynamic calculation should be performed
instead.

6.9.5 Modal dynamic analysis

In a modal dynamic analysis, triggered by the FMODAL DYNAMIC key word,
the response of the structure to dynamic loading is assumed to be a linear com-
bination of the lowest eigenmodes. These eigenmodes are recovered from a file
”problem.eig”, where ”problem” stands for the name of the structure. These
eigenmodes must have been determined in a previous step (STORAGE=YES on
the *FREQUENCY card or on the *HEAT TRANSFER,FREQUENCY card),
either in the same input deck, or in an input deck run previously. The dy-
namic loading can be defined as a piecewise linear function by means of the
FAMPLITUDE key word. Initial conditions can be used for the displacement
and the velocity field (cf. FINITIAL CONDITIONS]). If the step is immediately
preceded by another *MODAL DYNAMIC step the displacement and veloc-
ity conditions at the end of the previous step are taken as initial conditions
for the present step. This only applies in the absence of the PERTURBA-
TION parameter. If the present step is a perturbation step (i.e. the parameter
PERTURBATION was used in the aforegoing *FREQUENCY and the present
*MODAL DYNAMIC step) the initial displacement field is taken to be zero.
The displacement boundary conditions in a modal dynamic analysis should
match zero boundary conditions in the same nodes and same directions in the
step used for the determination of the eigenmodes. This corresponds to what
is called base motion in ABAQUS. A typical application for nonzero bound-
ary conditions is the base motion of a building due to an earthquake. Notice
that in a modal dynamic analysis with base motion non-homogeneous multi-
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ple point constraints are not allowed. This applies in particular to single point
constraints (boundary conditions) in a non-global coordinate system, such as
a cylindrical coordinate system (defined by a FTRANSFORM] card). Indeed,
boundary conditions in a local coordinate system are internally transformed
into non-homogeneous multiple point constraints. Consequently, in a modal
dynamic analysis boundary conditions must be defined in the global Cartesian
coordinate system.

Nonzero displacement boundary conditions in a modal dynamic analysis
require the calculation of the first and second order time derivatives (velocity
and acceleration) of the temporarily static solution induced by them. Indeed,
based on the nonzero displacement boundary conditions (without any other
loading) at time ¢ a static solution can be determined for that time (that’s
why the stiffness matrix is included in the .eig file). If the nonzero displacement
boundary conditions change with time, so will the induced static solution. Now,
the solution to the dynamic problem is assumed to be the sum of this temporarily
static solution and a linear combination of the lowest eigenmodes. To determine
the first and second order time derivatives of the induced static solution, second
order accurate finite difference schemes are used based on the solution at times
t—At, t and t+ At, where At is the time increment in the modal dynamic step.
At the start of a modal dynamic analysis step the nonzero boundary conditions
at the end of the previous step are assumed to have reached steady state (velocity
and acceleration are zero). Nonzero displacement boundary conditions can by
applied by use of the FBOUNDARY] card or the FBASE MOTION] card.

Temperature loading or residual stresses are not allowed. If such loading
arises, the direct integration dynamics procedure should be used.

The following damping options are available:

e Rayleigh damping by means of the FMODAL DAMPING]| key card. It
assumes the damping matrix to be a linear combination of the problem’s
stiffness matrix and mass matrix. This splits the problem according to its
eigenmodes, and leads to ordinary differential equations. The results are
exact for piecewise linear loading, apart from the inaccuracy due to the
finite number of eigenmodes.

e Direct damping by means of the key card. The
damping coefficient ¢ can be given for each mode separately. The results
are exact for piecewise linear loading, apart from the inaccuracy due to
the finite number of eigenmodes.

e Dashpot damping by defining dashpot elements (cf. Section 6.2.39)).

A modal dynamic analysis can also be performed for a cyclic symmetric
structure. To this end, the eigenmodes must have been determined for all rel-
evant modal diameters. For a cyclic modal dynamic analysis there are two
limitations:

1. Nonzero boundary conditions are not allowed.



6.9 Types of analysis 297

2. The displacements and velocities at the start of a step must be zero.

For cyclic symmetric structures the sector used in the corresponding *FRE-
QUENCY step is expanded into 360° and the eigenmodes are rescaled based on
the mass of this expansion, i.e. they are divided by v/M (for nodal diameter 0
and M/2, the latter only if M is even) or \/M/2 (other nodal diameters). M is
the number of bases sectors in 360°.

Special caution has to be applied if 1D and 2D elements are used. Since
these elements are internally expanded into 3D elements, the application of
boundary conditions and point forces to nodes requires the creation of multiple
point constraints linking the original nodes to their expanded counterparts.
These MPC’s change the structure of the stiffness and mass matrix. However,
the stiffness and mass matrix is stored in the .eig file in the *FREQUENCY
step preceding the *MODAL DYNAMIC step. This is necessary, since the mass
matrix is needed for the treatment of the initial conditions ([23]) and the stiffness
matrix for taking nonzero boundary conditions into account. Summarizing,
the *MODAL DYNAMIC step should not introduce point loads or nonzero
boundary conditions in nodes in which no point force or boundary condition was
defined in the *FREQUENCY step. The value of the point force and boundary
conditions in the *FREQUENCY step can be set to zero. An example for the
application of point forces to shells is given in shellf.inp of the test example set.

Special effort was undertaken to increase the computational speed for modal
dynamic calculations. If time is an issue for you, please take into account the
following rules:

e Time varying loads slow down the execution.

e Loads applied in many elements slow down execution. Together with the
previous rule this means that e.g. a constantly changing centrifugal load
is very detrimental to the performance of the calculation.

e Nonzero displacements, centrifugal loads and gravity loads involve load
changes in the complete mesh and slow down execution.

e Point loads act very local and are good for the performance.

e Use the parameter NSET on the *NODE FILE and *EL FILE card to
limit output to a small set of nodes in order to accelerate the execution.

e Requesting element variables in the frd output slows down execution. So
does requesting nodal forces, since these are derived from the stresses
in the integration points. Limiting output to displacements (U) is very
beneficial.

e Using the user subroutine cload.f (Section B.Z2)) slows down the execution,
since this routine provides the user with the forces in the nodes at stake.

Summarizing, maximal speed will be obtained by applying a constant point
load (Heaviside step function) in one node and requesting the displacements
only in that node.
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6.9.6 Steady state dynamics
In a steady state dynamics analysis, triggered by the FSTEADY STATE DYNAMICY|

key word, the response of the structure to dynamic harmonic loading is as-
sumed to be a linear combination of the lowest eigenmodes. This is very similar
to the modal dynamics procedure, except that the load is harmonic in na-
ture and that only the steady state response is of interest. The eigenmodes
are recovered from a file ”problem.eig”, where ”problem” stands for the name
of the structure. These eigenmodes must have been determined in a previous
step (STORAGE=YES on the *FREQUENCY card or on the *HEAT TRANS-
FER,FREQUENCY card), either in the same input deck, or in an input deck
run previously. The dynamic harmonic loading is defined by its amplitude us-
ing the usual keyword cards such as FCLOAD| and a frequency interval specified
underneath the *STEADY STATE DYNAMICS card. The load amplitudes can
be modified by means of a FAMPLITUDE] key word, which is interpreted as
load factor versus frequency (instead of versus time).

If centrifugal loading (cf. FDLOAD)) is found, it is assumed that the complete
calculation (eigenmode calculation inclusive) has been performed in a relative
coordinate system attached to the rotating structure. The centrifugal loading
is kept fixed and is not subject to the harmonic excitation. Coriolis forces
are activated for any part subject to centrifugal loading. The resulting response
(displacements, stresses etc.) from the steady state calculation is in the rotating
(relative) system, without the static centrifugal part.

The displacement boundary conditions in a modal dynamic analysis should
match zero boundary conditions in the same nodes and same directions in the
step used for the determination of the eigenmodes. They can be defined using
FBOUNDARY] cards or FBASE MOTION] cards. The latter can also be used to
define an acceleration. Temperature loading or residual stresses are not allowed.
If such loading arises, the direct integration dynamics procedure should be used.

One can define loading which is shifted by 90° by using the parameter LOAD
CASE = 2 on the loading cards (e.g. FCLOAD)).

The frequency range is specified by its lower and upper bound. The num-
ber of data points within this range n can also be defined by the user. If no
eigenvalues occur within the specified range, this is the total number of data
points taken, i.e. including the lower frequency bound and the upper frequency
bound. If one or more eigenvalues fall within the specified range, n — 2 points
are taken in between the lower frequency bound and the lowest eigenfrequency
in the range, n — 2 between any subsequent eigenfrequencies in the range and
n — 2 points in between the highest eigenfrequency in the range and the up-
per frequency bound. In addition, the eigenfrequencies are also included in the
data points. Consequently, if m eigenfrequencies belong to the specified range,
(m+1)(n—2)4+m+2=mnm—m+n data points are taken. They are equally
spaced in between the fixed points (lower frequency bound, upper frequency
bound and eigenfrequencies) if the user specifies a bias equal to 1. If a different
bias is specified, the data points are concentrated about the fixed points.

The following damping options are available:
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e Rayleigh damping by means of the FMODAL DAMPING] key card. It

assumes the damping matrix to be a linear combination of the problem’s
stiffness matrix and mass matrix. This splits the problem according to its
eigenmodes, and leads to ordinary differential equations.

e Direct damping by means of the FMODAIL DAMPING] key card. The
damping coefficient ¢ can be given for each mode separately.

e Structural damping by means of the FDAMPINGI key card. The struc-
tural damping is a material characteristic and has to be specified as such
underneath a *MATERIAL card.

e Dashpot damping by defining dashpot elements (cf. Section [6:2:39)).

For nonharmonic loading, triggered by the parameter HARMONIC=NO on
the *STEADY STATE DYNAMICS card, the loading across one period is not
harmonic and has to be specified in the time domain. To this end the user can
specify the starting time and the final time of one period and describe the loading
within this period with *AMPLITUDE cards. Default is the interval [0.,1.]
and step loading. Notice that for nonharmonic loading the *AMPLITUDE
cards describe amplitude versus TIME. Internally, the nonharmonic loading is
expanded into a Fourier series. The user can specify the number of terms which
should be used for this expansion, default is 20. The remaining input is the
same as for harmonic loading, i.e. the user specifies a frequency range, the
number of data points within this range and the bias. The comments above for
harmonic loading also apply here, except that, since the loading is defined in
the time domain, the LOAD CASE parameter does not make sense here, i.e.
LOAD CASE = 1 by default.

A steady state dynamic analysis can also be performed for a cyclic sym-
metric structure. To this end, the eigenmodes must have been determined for
all relevant modal diameters. For a cyclic steady state dynamic analysis the
following limiations apply:

1. Nonzero boundary conditions are not allowed.

2. The displacements and velocities at the start of a step must be zero.
3. Dashpot elements are not allowed.

4. Structural damping is not allowed.

5. If centrifugal forces apply, the corresponding Coriolis forces are not taken
into account. The user has to assure that they are small enough so that
they can be neglected.

For cyclic symmetric structures the sector used in the corresponding *FRE-
QUENCY step is expanded into 360° and the eigenmodes are rescaled based on
the mass of this expansion, i.e. they are divided by v M (for nodal diameter 0
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and M/2, the latter only if M is even) or \/M/2 (other nodal diameters). M is
the number of bases sectors in 360°.

The output of a steady state dynamics calculation is complex, i.e. it consists
of a real and an imaginary part. Consequently, if the user saves the displace-
ments to file, there will be two entries: first the real part of the displacement,
then the imaginary part. This also applies to all other output variables such as
temperature or stress. For the displacements, the temperatures and the stresses
the user can request that these variables are stored as magnitude and phase
(in that order) by selecting beneath the FNODE FILE card PU, PNT and PHS
instead of U, NT and S respectively. This does not apply to the *NODE PRINT
card.

Special caution has to be applied if 1D and 2D elements are used. Since
these elements are internally expanded into 3D elements, the application of
boundary conditions and point forces to nodes requires the creation of multiple
point constraints linking the original nodes to their expanded counterparts.
These MPC’s change the structure of the stiffness and mass matrix. However,
the stiffness and mass matrix is stored in the .eig file in the *FREQUENCY
step preceding the *STEADY STATE DYNAMICS step. This is necessary,
since the mass matrix is needed for the treatment of the initial conditions ([23])
and the stiffness matrix for taking nonzero boundary conditions into account.
Summarizing, the *STEADY STATE DYNAMICS step should not introduce
point loads or nonzero boundary conditions in nodes in which no point force
or boundary condition was defined in the *FREQUENCY step. The value of
the point force and boundary conditions in the *FREQUENCY step can be set
to zero. An example for the application of point forces to shells is given in
shellf.inp of the test example set.

6.9.7 Direct integration dynamic analysis

In a direct integration dynamic analysis, activated by the FDYNAMIC| keyword,
the equation of motion is integrated in time using the a-method developed by
Hilber, Hughes and Taylor [62] (unless the massless contact method is selected,;
this method is treated at the end of this section). The method is implemented
exactly as described in [23]. The parameter « lies in the interval [-1/3,0] and con-
trols the high frequency dissipation: a=0 corresponds to the classical Newmark
method inducing no dissipation at all, while a=-1/3 corresponds to maximum
dissipation (default is a=-0.05). The user can choose between an implicit and
explicit version of the algorithm. The implicit version (default) is uncondition-
ally stable.

In the explicit version, triggered by the parameter EXPLICIT on the *DY-
NAMIC keyword card, the mass matrix is lumped, and a forward integration
scheme is used so that the solution can be calculated without solving a sys-
tem of equations. This corresponds to section 2.11.5 in [23]. The mass matrix
only has to be set up once at the start of each step and no stiffness matrix
is needed. Indeed, the terms in equation (2.475) in [23] in which the [K] ma-
trix is used correspond to the internal forces. They can be calculated directly
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from the stresses without need to set up the stiffness matrix. Therefore, each
increment is much faster than with the implicit scheme. Furthermore, in the ex-
plicit method no iterations are performed, so each increment consists of exactly
one iteration. However, the explicit scheme is only conditionally stable: in the
a-method, which in CalculiX is also used for explicit calculations (unless the
massless contact method is selected), the maximum time step At is dictated
by:

QC’I‘
At ~ , (523)

wmaz

where Q, is given by Equation (2.477) in [23] and wy,4., which is the highest
natural frequency of an element, satisfies for volumetric elements:

c

; (524)

w. ~ 2

mar h’rnin

where ¢ is the velocity of sound for the material at stake and h;,;, is the
minimum height of the element. For an isotropic material ¢ satisfies [65]:

B E(l1-v) A+ 2p
C‘\/<1+u><1—2u>p‘\/ o 29

It corresponds to the wave speed of longitudinal waves, which are faster than
transversal waves, for which the speed amounts to \/u/p. For the special case
of single crystal materials, which are anistropic materials characterized by three
independent elastic contants, the derivation is more intricate [65]. Here, the
derivation will be given for general anisotropic materials.

First, the difference between the phase velocity and group velocity of a wave
is explained. A one-dimensional wave is described by

f = cos(kx — wt), (526)

in which k is the wave number and w the angular frequency. For constant
values of k and w the wave has a constant amplitude for kx — wt constant or a
wave speed satisfying:

dr  w
=—=—. 527
‘Tat & (527)
Now, adding to this wave a wave with slightly different wave number and
angular frequency one obtains:

g = cos(kr —wt)+ cos[(k + 0k)x — (w + dw)t]

JA 0A dA 0A
= cos [(A—i— 2) —2} + cos [(A—i— 2> +2}

A A
= 2cos(A+ %)COS %, (528)
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where

A= kx — wt, (529)
and

0A := dkx — dwt. (530)

The result in the last line of Equation (528]) is the original wave (cos(A +
0A/2) ~ cos A) with the so-called phase velocity

w+ow/2  w
=— & — 531
PRk Tk (531)
modulated by a wave whose velocity amounts to the so-called group velocity:
w  Ow
= — &~ —. 532
5k Ok (532)

The function w versus k is called the dispersion relationship. If this relation-
ship is linear the phase and group velocity coincide. If not, they differ.

To obtain the phase velocity in three dimensions for an arbitrary material
the expression for a three-dimensional planar wave:

uj = AApjei(k:,,”wmfu.nf)7 (533)

where u is the displacement vector, A is the amplitude, p is the polarization
vector and k is the wave number vector, is substituted in the general homoge-
neous equation of motion:

Oiji = plj, (534)

where o is the stress tensor, a comma denotes differentiation w.r.t. space and
a dot denotes differentiation w.r.t. time. Indeed, using the elastic relationship

Oij = Lijhi€hi, (535)

the definition of linear strain

ent = (ups +wk)/2, (536)

and the symmetry properties of the elasticity tensor

ikt = Xjikl = Xijik = Zlij, (537)

one obtains the following form for the equation of motion:

Yijkiuk 1 = pij. (538)

Sustitution of the wave equation now yields:

— Eijklklkipk = —pwzpj. (539)
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Setting k; := kn; and k; := kn; one obtains the eigenvalue problem

[Simmnil{pk} = pc*{p;}, (540)

where ¢ = w/k is the phase velocity we are looking for. Since (denoting the
matrix on the left hand side by C):

Cir = Lijrmuni = Sijriani = Sgijung = S = Chj (541)

the left hand matrix is symmetric. Furthermore, for an arbitrary vector «
one obtains:

DN T Ty = Mgk Tin TEny > 0, (542)

since X;jki€i5€k = o€l > 0 (linear elastic energy) and z;n; can be consid-
ered as the components of a fictitious strain tensor & ® n. This now means that
C' is positive definite. Therefore, the eigenvalues are real and positive.

For an isotropic linear elastic material the elasticity tensor satisfies ([23]):

Yijkt = X0ijOrr + p(0ikdj1 + 0:10jk), (543)

and component jk of the matrix C' amounts to:

Cik = Zijrimuni = (A + p)njng + pdp. (544)

Therefore, C' can be thought of consisting of the following row vectors (or
column vectors, since it is a symmetric matrix):

(A + pnin + pey
C=|(A+pnn+ pues| . (545)
(A + p)nzn + pes

Setting the determinant of the eigenvalue matrix to zero amounts to:

|C=¢I] = [(A+p)mn+(u—8)er] {[(A+p)nan+pes] X [(A+p)nsn+pes]} = 0.
(546)
Multiplying out the different terms leads to:

A+ pwnz(p—€)%er - (n x e3)
([1, — 5)361 . (62 X 63) = 0. (547)

A+ p)ni(p—&)>*n- (e x e3)

Jr
+ A+ pns(p—&)%er - (ea xn) +

Using identities such as e; - (e3 x n) = n - (e; X es) finally leads to:

A+ (p =82+ (u—£€)° =0, (548)
which leads to a double root £ = p and a single root £ = A 4+ 2u. Since
& = pc? the corresponding phase velocities are ¢ = \/pu/p and ¢ = /(A + 2u)/p.
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The polarization vectors are the eigenvectors of the system and are obtained
by substituting the eigenvalues in the eigenvalue system C = &I. This leads
to the polarization vectors (n2, —n1,0) and (ng, 0, —ny) for the double root and
(n1,ng,ng) for the single root. The former eigenvectors are orthogonal to the
propagation direction of the wave n and therefore these are transversal waves,
whereas the latter eigenvector is parallel to the wave vector and corresponds to
a longitudinal wave.

In order to obtain an expression for the group velocity of the wave the deriva-
tive of the angular frequency w w.r.t. the wave number vector k is needed. Mul-
tiplying the eigenvalue Equation [540] with the normalized polarization vector
p; yields:

Sijkikikiprp; = pw?. (549)
Taking the derivative w.r.t. k4 leads to:

8(1(:1/61) Oow

Syt ) ) i = D 550
ikl 8l<:q PrDj Pwakq ( )
or
Oow
Yijri[ki10iq + O1gkilpep; = 2pw—. (551)
ok,
This amounts to:
Oow
Ygirikiprp; + Lijrgkibrp; = QPW%~ (552)
q

Since Xijrg = Lkqij = Dqkij = Dqkji the term Xij.0kiprp; equals Xy nikipipr,
i.e. it is identical with the first term in the equation. Therefore:
Ow
Ygjkikiprp; = pwo—, (553)
Okq

or

ow
Sijrkiprp; = P (554)
which amounts to:
Oow  XijuipiPrmu
(cg)i = - = 7 ‘
ok; pe

The latter equation expresses the group velocity as a function of the polar-
ization vector, the wave vector and the phase velocity.
Substituting the isotropic elasticity tensor from Equation [543] leads to:

(555)

ow
Ok;

1
= (\pipr; + ppipina + pn). (556)
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For the longitudinal wave, knowing that cr, := ¢ = /A + 2u/p, n|p, |n|] =1
and ||p|| = 1 one gets

ow  (A+2p)
6[@1 = anZ = Crn;. (557)

For the transversal waves ¢ := ¢ = /u/p and n L p. Therefore:

Ow
ok pCLTn,- = crn;. (558)

Consequently, for an isotropic elastic material the phase and group veloc-
ity coincide. For an anisotropic material, such as a single crystal, this is not
necessarily the case.

Now, coming back to the original question of a stable time step in an explicit
dynamic procedure it is clear that the maximal group speed is to be taken. For
an isotropic material this is the longitudinal wave speed. For an anisotropic
material the group speed may depend on the wave vector n. So for a given
wave vector Equation [540] has to be solved to yield the phase velocities ¢ and
the corresponding polarization vectors p. The latter ones have to be substituted
in Equation [E55] to find the group velocities. Now, the wave vector direction
has to be varied so as to find the maximum group velocity feasible for a material
characterized by the specific elastic tensor o;;,;. This velocity is then used to
calculate wy,qz and Atg,.

For the contact spring elements, the idealization of a spring with spring
constant k connecting two nodes with nodal masses M; and M, is used. For
such a system one obtains:

Wmag = | LY 2) (559)
mimso

where my = M7/2 and mgo = M, /2. For node-to-face penalty contact and
face-to-face penalty contact the nodal mass on the facial sides can be obtained
by using the shape functions at the spring location.

To accelerate explicit dynamic calculations mass scaling can be used [70].
It was introduced in CalculiX in the course of a Master Thesis [22]. Applying
mass scaling the time increment can be increased, which reduces the overall
computational time. In the mass scaling procedure the lumped mass matrix of
each element is augmented by a fully populated matrix. The resulting compu-
tational increase is, however, neglegible, since the LU-decomposition has only
to be performed once at the start of the calculation. Mass scaling is triggered
by specifying the minimum time increment which the user wants to allow un-
derneath the FDYNAMIC] keyword (third parameter). If for any volumetric
element the increment size calculated by CalculiX (based on the wave speed)
is less than the minimum, the mass of this element is automatically scaled
and redistributed such that the total mass of the element does not change.
This is obtained by moving mass from the off-diagonal positions of the element
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mass matrix onto the diagonal. If any mass scaling takes place, a message is
printed and the elements for which the mass was redistributed are stored in file
“jobname_WarnElementMassScaled.nam”. This file can be read in any active
cgx-session by typing “read jobname_ WarnElementMassScaled.nam inp” and
the elements can be appropriately visualized. For spring elements the mimi-
mum time increment specified by the user is obtained by reducing the spring
stiffness. CalculiX stores the maximum spring stiffness reduction to standard
output.

Without a minimum time increment no mass scaling nor spring stiffness
reduction is applied.

The following damping options are available:

e Rayleigh damping by means of the keyword card underneath
a FMATERIAT] card. It assumes the damping matrix to be a linear com-
bination of the problem’s stiffness matrix and mass matrix. Although
possibly defined for only one material, the coefficients of the linear com-
bination apply to the whole model. For explicit calculations the damping
matrix is allowed to be mass matrix proportional only.

e Dashpot damping by defining dashpot elements (cf. Section 239 for
implicit dynamic calculations only).

e Contact damping by defining a contact damping constant and, option-

ally, a tangent fraction using the FCONTACT DAMPING] keyword card

(implicit dynamic calculations only).

For explicit dynamic calculations an additional hard contact formulation has
been coded within a procedure characterized by:

e the formulation of the contact condition as a set-valued force law [99].

e a reduction of the dynamic equations to static equations (discarding the
inertia) for all contact degrees of freedom (master and slave).

e a Verlet time integration scheme.

From now on the method will be called the massless contact method. Its
implementation closely follows the frictional flow diagram in [66]. From this
publication it is clear that the contactless stiffness matrix is needed. The sub-
matrix related to the contact degrees of freedom (master and slave) is used to
set up and solve an inclusion problem in an implicit way. The other subma-
trices are used to calculate the right hand side of the dynamic equations. The
left hand side of these equations is made up of a combination of the mass and
damping matrix. It is assumed that these latter matrices do not change during
the step, therefore, they can be factorized once at the beginning of the step.

If the NLGEOM parameter is not used on the *STEP card and if all materials
are linear the stiffness matrix is calculated only once at the beginning of the
step, else it is calculated in each increment which substantially increases the
computational time.

Limitations right now include:
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e no nonzero boundary conditions are allowed.

e mass scaling cannot be used

The method is triggered by the option TYPE=MASSLESS on allFCONTACT PAIRI
cards in a FDYNAMIC] EXPLICIT procedure only. In a *STATIC or *DY-
NAMIC implicit step the contact definition is replaced by TYPE=NODE TO
SURFACE. Note that within one input deck only one type of *CONTACT
PAIR is allowed. Since the contact is hard, the only parameter is the friction
coefficient.

For all dynamic calculations (implicit dynamics, explicit dynamics with
penalty contact or explicit dynamics with massless contact) a energy balance
can be requested. For implicit dynamics this is done by default, for explicit
dynamics the balance is calculated if the user has requested the output vari-

able ENER underneath a FEL PRINT, FEL FILE] or

keyword. This increases the computational time.

6.9.8 Heat transfer

In a heat transfer analysis, triggered by the FHEAT TRANSFER] procedure
card, the temperature is the independent degree of freedom. In essence, the
energy equation is solved subject to temperature and flux boundary conditions
([23]). For steady-state calculations it leads to a Laplace-type equation.

The governing equation for heat transfer reads

V. (=k-VT)+ pcT = ph (560)

where K contains the conduction coefficients, p is the density, h the heat
generation per unit of mass and c is the specific heat.

The temperature can be defined using the FBOUNDARY] card using degree
of freedom 11. Flux type boundary conditions can consist of any combination
of the following:

1. Concentrated flux, applied to nodes, using the FCFLUX] card (degree of
freedom 11)

2. Distributed flux, applied to surfaces or volumes, using the FDELUX] card

3. Convective flux defined by a [FEILM] card. It satisfies the equation

q=nT—Tp) (561)

where ¢ is the a flux normal to the surface, h is the film coefficient, T'
is the body temperature and Ty is the environment temperature (also
called sink temperature). CalculiX can also be used for forced convection
calculations, in which the sink temperature is an unknown too. This
applied to all kinds of surfaces cooled by fluids or gases.
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4. Radiative flux defined by a FRADIATE] card. The equation reads

q=e(0* —6;) (562)

where ¢ is a flux normal to the surface, € is the emissivity, 6 is the absolute
body temperature (Kelvin) and 6y is the absolute environment tempera-
ture (also called sink temperature). The emissivity takes values between
0 and 1. A zero value applied to a body with no absorption nor emission
and 100 % reflection. A value of 1 applies to a black body. The radia-
tion is assumed to be diffuse (independent of the direction of emission)
and gray (independent of the emitted wave length). CalculiX can also be
used for cavity radiation, simulating the radiation interaction of several
surfaces. In that case, the viewfactors are calculated, see also [39] for the
fundamentals of heat transfer and [6] for the calculation of viewfactors.

The calculation of viewfactors involves the solution of a four-fold integral.
By using analytical formulas derived by Lambert this integral can be re-
duced to a two-fold integral. This is applied in CalculiX right now: the
interacting surfaces are triangulated and the viewfactor between two tri-
angles is calculated by taking a one-point integration for the base triangle
(in the center of gravity) and the analytical formula for the integration
over the other triangles covering a hemisphere about the base triangle.
One can switch to a more accurate integration over the base triangle by
increasing the variable “factor” in subroutine radmatrix, look at the com-
ments in that subroutine. This, however, will increase the computational
time.

For a heat transfer analysis the conductivity coefficients of the material are
needed (using the FCONDUCTIVITY] card) and for transient calculations the
heat capacity (using the FSPECIFIC HEAT] card). Furthermore, for radiation
boundary conditions the FPHYSICAL CONSTANTS] card is needed, specifying
absolute zero in the user’s temperature scale and the Boltzmann constant.

Notice that a phase transition can be modeled by a local sharp maximum of
the specific heat. The energy U per unit of mass needed to complete the phase
transition satisfies

U= [ cadr, (563)

where C' is the specific heat and [Ty, T7] is the temperature interval within
which the phase transition takes place.

6.9.9 Acoustics

Linear acoustic calculations in gas are very similar to heat transfer calcula-
tions. Indeed, the pressure variation in a space with uniform basis pressure pg
and density py (and consequently uniform temperature Ty due to the gas law)
satisfies
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Table 9: Correspondence between the heat equation and the gas momentum
equation.

heat quantity gas quantity

T p

q po(a — f)

dn pO(an - fn)

K I

ph —poV - f

pc 5
1.

Vo (=1-Vp) + 5h=—pV - f, (564)

0

where I is the second order unit tensor (or, for simplicity, unit matrix) and
co is the speed of sound satisfying:

co = /7RTy. (565)

v is the ratio of the heat capacity at constant pressure divided by the heat
capacity at constant volume (y = 1.4 for normal air), R is the specific gas con-
stant (R = 287.J/(kgK) for normal air) and Ty is the absolute basis temperature
(in K). Furthermore, the balance of momentum reduces to:

Vp = po(f — a). (566)

For details, the reader is referred to [25] and [2]. Equation (564) is the
well-known wave equation. By comparison with the heat equation, the corre-
spondence in Table (@) arises.

Notice, however, that the time derivative in the heat equation is first order, in
the gas momentum equation it is second order. This means that the transient
heat transfer capability in CalculiX can NOT be used for the gas equation.
However, the frequency option can be used and the resulting eigenmodes can be
taken for a subsequent modal dynamic or steady state dynamics analysis. Recall
that the governing equation for solids also has a second order time derivative
(123)).

For the driving terms one obtains:

/Apo(an — fn)dA — /VpOV - fdV = /ApoandA, (567)

which means that the equivalent of the normal heat flux at the boundary is
the basis density multiplied with the acceleration. Consequently, at the bound-
ary either the pressure must be known or the acceleration.
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Table 10: Correspondence between the heat equation and the shallow water
equation.

heat quantity shallow water quantity

T U

q 5 (Hv)
Gn HZ(v,)
K Hgl
ph -

pc 1

6.9.10 Shallow water motion

For incompressible fluids integration of the governing equations over the fluid
depth and subsequent linearization leads to the following equation:

V- (—gHI-Vn)+1=0, (568)

where g is the earth acceleration, H is the fluid depth measured from a ref-
erence level, I is the unit tensor and 7 is the fluid height with respect to the
reference level. Usually the fluid level at rest is taken as reference level. The
derivation of the equation is described in [I09] and can be obtained by a lin-
earization of the equations derived in Section The following assumptions
are made:

® 1o viscosity
e no Coriolis forces
e 10 convective acceleration

e H+n=~H

Due to the integration process the above equation is two-dimensional, i.e.
only the surface of the fluid has to be meshed. By comparison with the heat
equation, the correspondence in Table (I0) arises. Therefore, shallow water
motion can be simulated using the FHEAT TRANSFER] procedure.

The quantity v is the average velocity over the depth and v, is its component
orthogonal to the boundary of the domain. Due to the averaging the equations
hold for small depths only (shallow water approximation). Notice that the
equivalence of the heat conduction coefficient is proportional to the depth, which
is a geometric quantity. For a different depth a different conduction coefficient
must be defined.

There is no real two-dimensional element in CalculiX. Therefore, the two-
dimensional Helmholtz equation has to be simulated by expanding the two-
dimensional fluid surface to a three-dimensional layer with constant width and
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applying the boundary conditions in such a way that no variation occurs over
the width.

Notice that, similar to the acoustic equations, the shallow water equations
are of the Helmholtz type leading to a hyperbolic system. For instationary
applications eigenmodes can be calculated and a modal analysis performed.

6.9.11 Hydrodynamic lubrication

In hydrodynamic lubrication a thin oil film constitutes the interface between a
static part and a part rotating at high speed in all kinds of bearings. A quantity
of major interest to engineers is the load bearing capacity of the film, expressed
by the pressure. Integrating the hydrodynamic equations over the width of the
thin film leads to the following equation [31]:

h’p (v, __0dhp) .
VetV = - (252) Vi) - AP i, 500

where h is the film thickness, p is the mean density across the thickness, p is
the pressure, p, is the dynamic viscosity of the fluid, v, is the velocity on one
side of the film, v, is the velocity at the other side of the film and 7hq is the
resulting volumetric flux (volume per second and per unit of area) leaving the
film through the porous walls (positive if leaving the fluid). This term is zero if
the walls are not porous.

For practical calculations the density and thickness of the film is assumed to
be known, the pressure is the unknown. By comparison with the heat equation,
the correspondence in Table (I arises. T is the mean velocity over the film,
v, its component orthogonal to the boundary. Since the governing equation is
the result of an integration across the film thickness, it is again two-dimensional
and applies in the present form to a plane film. Furthermore, observe that it is
a steady state equation (the time change of the density on the right hand side
is assumed known) and as such it is a Poisson equation. Here too, just like for
the shallow water equation, the heat transfer equivalent of a spatially varying
layer thickness is a spatially varying conductivity coefficient.

6.9.12 Irrotational incompressible inviscid flow

If incompressible flow is irrotational a potential ¢ exists for the velocity field
such that v = —V¢. Furthermore, if the flow is inviscid one can prove that
if a flow is irrotational at any instant in time, it remains irrotational for all
subsequent time instants [I09]. The continuity equation now reads

V- (—I V) =0, (570)

and the balance of momentum for gravitational flow yields

ov p v-v
\v4 4+ 4 = 1
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Table 11: Correspondence between the heat equation and the dynamic lubrica-
tion equation.

heat quantity dynamic lubrication quantity

T p

q phv

dn ﬁé"?n

K 1};;@

ph — (wdre) - V(hp) — G2 — g
pc -

Table 12: Correspondence between the heat equation and the equation for in-
compressible irrotational inviscid flow.

heat quantity irrotational flow quantity

T ¢
q v
q’ﬂ vn
K I
ph 0
pc -

where g is the earth acceleration, p is the pressure, py is the density and z
is the coordinate in earth direction. By comparison with the heat equation, the
correspondence in Table (2] arises.

Once ¢ is determined, the velocity v is obtained by differentiation and the
pressure p can be calculated through the balance of momentum. Although
irrotational incompressible inviscid flow sounds very special, the application
field is rather large. Flow starting from rest is irrotational since the initial
field is irrotational. Flow at speeds below 0.3 times the speed of sound can be
considered to be incompressible. Finally, the flow outside the tiny boundary
layer around an object is inviscid. A favorite examples is the flow around a
wing profile. However, if the boundary layer separates and vortices arise the
above theory cannot be used any more. For further applications see [44].

6.9.13 Electrostatics

The governing equations of electrostatics are

E=-VV (572)

and
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Table 13: Correspondence between the heat equation and the equation for elec-
trostatics (metals and free space).

heat electrostatics

T %

q E

dn E, = %L

K I

ph &

pc -

V. E= f—, (573)

0

where FE is the electric field, V is the electric potential, p°¢ is the elec-
tric charge density and ¢y is the permittivity of free space (¢ = 8.8542 x
10~'2 C?/Nm?). The electric field E is the force on a unit charge.

In metals, it is linked to the current density 5 by the electric conductivity
o [Bl:

j=o.E. (574)

In free space, the electric field is locally orthogonal to a conducting surface.
Near the surface the size of the electric field is proportional to the surface charge
density o[27]:

o = E,e. (575)
Substituting Equation (B72]) into Equation (&3] yields the governing equa-

tion

€
Vo(-I-vV)="2. (576)
€0

Accordingly, by comparison with the heat equation, the correspondence in
Table (I3) arises. Notice that the electrostatics equation is a steady state
equation, and there is no equivalent to the heat capacity term.

An application of electrostatics is the potential drop technique for crack
propagation measurements: a predefined current is sent through a conducting
specimen. Due to crack propagation the specimen section is reduced and its
electric resistance increases. This leads to an increase of the electric potential
across the specimen. A finite element calculation for the specimen (electrostatic
equation with p® = 0) can determine the relationship between the potential and
the crack length. This calibration curve can be used to derive the actual crack
length from potential measurements during the test.
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Table 14: Correspondence between the heat equation and the equation for elec-
trostatics (dielectric media).

heat electrostatics

T vV
q D
dn D,
K el
ph pf
pec -

Another application is the calculation of the capacitance of a capacitor.
Assuming the space within the capacitor to be filled with air, the electrostatic
equation with p¢ = 0 applies (since there is no charge within the capacitor).
Fixing the electric potential on each side of the capacitor (to e.g. zero and one),
the electric field can be calculated by the thermal analogy. This field leads to a
surface charge density by Equation (575). Integrating this surface charge leads
to the total charge. The capacitance is defined as this total charge divided by
the electric potential difference (one in our equation).

For dielectric applications Equation (&3] is modified into

V-D=p/, (577)

where D is the electric displacement and p/ is the free charge density [27].
The electric displacement is coupled with the electric field by

D = ¢E = ¢y, E, (578)

where € is the permittivity and e, is the relative permittivity (usually €, > 1,
e.g. for silicon €,=11.68). Now, the governing equation yields

V- (—eIl-VV)=p (579)

and the analogy in Table (I4)) arises. The equivalent of Equation (575]) now
reads

o =D,. (580)

The thermal equivalent of the total charge on a conductor is the total heat
flow. Notice that ¢ may be a second-order tensor for anisotropic materials.

6.9.14 Stationary groundwater flow

The governing equations of stationary groundwater flow are [32]

v=—k-Vh (581)
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Table 15: Correspondence between the heat equation and the equation for
groundwater flow.

heat groundwater flow

T h
q v
dn Un,
K k
ph 0
pc -

(also called Darcy’s law) and

V-v=0, (582)
where v is the discharge velocity, k is the permeability tensor and h is the
total head defined by

h=2L 12 (583)

P9
In the latter equation p is the groundwater pressure, p is its density and
z is the height with respect to a reference level. The discharge velocity is the
quantity of fluid that flows through a unit of total area of the porous medium
in a unit of time.
The resulting equation now reads

V. (~k-Vh) =0. (584)

Accordingly, by comparison with the heat equation, the correspondence in
Table (I&]) arises. Notice that the groundwater flow equation is a steady state
equation, and there is no equivalent to the heat capacity term.

Possible boundary conditions are:

1. unpermeable surface under water. Taking the water surface as reference
height and denoting the air pressure by pg one obtains for the total head:

p=Po—r9z ., _ Do (585)
P9 P9

2. surface of seepage, i.e. the interface between ground and air. One obtains:

h="20 1 (586)
pg

3. unpermeable boundary: v, =0
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4. free surface, i.e. the upper boundary of the groundwater flow within the
ground. Here, two conditions must be satisfied: along the free surface one
has

=201 (587)
pg

In the direction n perpendicular to the free surface v, = 0 must be sat-
isfied. However, the problem is that the exact location of the free surface
is not known. It has to be determined iteratively until both equations are
satisfied.

6.9.15 Diffusion mass transfer in a stationary medium

The governing equations for diffusion mass transfer are [39]

Ja=—pDapVmy (588)

and

. ) 0pa
. =24 589
\Y Ja +na ot ( )
where
PA

- 590
4 pA+ pPB (590)

and
p=pa+pp. (591)

In these equations j 4 is the mass flux of species A, D 4p is the mass diffu-
sivity, m 4 is the mass fraction of species A and p,4 is the density of species A.
Furthermore, n 4 is the rate of increase of the mass of species A per unit volume
of the mixture. Another way of formulating this is:

JEZ—CDABVJZA (592)
and
. oC
VTN 4 Ny = 2 (593)
ot
where
Ca
- 594
AT Ca T Cp (594)
and

C=Cy+Cp. (595)
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Table 16: Correspondence between the heat equation and mass diffusion equa-
tion.

heat mass diffusion

T 1% Ca
q Ja I
dn jAn JA*n
K Dag Dap
ph ng Na
pc 1 1

Here, J7 is the molar flux of species A, D 4p is the mass diffusivity, z 4 is
the mole fraction of species A and C4 is the molar concentration of species A.
Furthermore, N4 is the rate of increase of the molar concentration of species A.

The resulting equation now reads

0
V~(—pDAB-VmA)+§ =ny. (596)
or
V'(—CDAB-V%‘A)—F%:NA. (597)

If C and p are constant, these equations reduce to:

0 .
V- (—Dag-Vpa) + % = na. (598)
or
aC :
V. (=Dap-VCa) + aTA = Na. (599)

Accordingly, by comparison with the heat equation, the correspondence in
Table (I6]) arises.

6.9.16 Aerodynamic Networks

Aerodynamic networks are made of a concatenation of network elements filled
with a compressible medium which can be considered as an ideal gas. An ideal
gas satisfies

p = pRT, (600)

where p is the pressure, p is the density, R is the specific gas constant
and T is the absolute temperature. A network element (see section [(.233])
consists of three nodes: in the corner nodes the temperature and pressure are the
unknowns, in the midside node the mass flow is unknown. The corner nodes play
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the role of crossing points in the network, whereas the midside nodes represent
the flow within one element. To determine these unknowns, three types of
equations are available: conservation of mass and conservation of energy in the
corner nodes and conservation of momentum in the midside node. Right now,
only stationary flow is considered.

The stationary form of the conservation of mass for compressible fluids is
expressed by:

V-(pv)=0 (601)

where v the velocity vector. Integration over all elements connected to corner
node i yields:

D g =Y g, (602)
J€in jeout

where 7h;; is the mass flow from node i to node j or vice versa. In the above
equation 7h;; is always positive.

The conservation of momentum or element equations are specific for each
type of fluid section attributed to the element and are discussed in Section
on fluid sections. For an element with corner nodes i,j it is generally of the form
J(pe;, Tt , iz, pe,) = 0 (for positive 75, where p is the total pressure and T;
is the total temperature), although more complex relationships exist. Notice in
particular that the temperature pops up in this equation (this is not the case
for hydraulic networks).

The conservation of energy for an ideal gas in stationary form requires ([30],
see also Equation (B1)):

V- (phyv) = -V -q+ ph? 4+ pf - v, (603)

where q is the external heat flux, h? is the body flux per unit of mass and
f is the body force per unit of mass. h; is the total enthalpy satisfying:
vV-v
ht = CpT + ?, (604)
where ¢, is the specific heat at constant pressure and 7" is the absolute
temperature (in Kelvin). This latter formula only applies if ¢, is considered to
be independent of the temperature. This is largely true for a lot of industrial
applications. In this connection the reader be reminded of the definition of
total temperature and total pressure (also called stagnation temperature and
stagnation pressure, respectively):
V-V

Tt:T+

605
2¢, ’ (605)

T, rk—1
()"

and
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where K = ¢p/c,. T and p are also called the static temperature and static
pressure, respectively.

If the corner nodes of the elements are considered to be large chambers, the
velocity v is zero. In that case, the total quantities reduce to the static ones,
and integration of the energy equation over all elements belonging to end node
i yields [23]:

> ep(T)Tyrinij — cp(TT; Y gy + W(T3, T)(T = T;) + mh =0, (607)

j€in Jj€Eout

where h(T;,T) is the convection coefficient with the walls. Notice that,
although this is not really correct, a slight temperature dependence of ¢, is
provided for. If one assumes that all low entering a node must also leave it and
taking for both the ¢, value corresponding to the mean temperature value of
the entering flow, one arrives at:

> ep(Tn)(Ty = T + (T, T)(T = T,) + myh{ = 0. (608)
j€in
where Tm = (Tz + TJ)/Q
The calculation of aerodynamic networks is triggered by the FHEAT TRANSFER]
keyword card. Indeed, such a network frequently produces convective bound-
ary conditions for solid mechanics heat transfer calculations. However, network
calculations can also be performed on their own.
A particularly delicate issue in networks is the number of boundary condi-
tions which is necessary to get a unique solution. To avoid ending up with more
or less equations than unknowns, the following rules should be obeyed:

e The pressure and temperature should be known in those nodes where
mass flow is entering the network. Since it is not always clear whether at
a specific location mass flow is entering or leaving, it is advisable (though
not necessary) to prescribe the pressure and temperature at all external
connections, i.e in the nodes connected to dummy network elements.

e A node where the pressure is prescribed should be connected to a dummy
network element. For instance, if you have a closed circuit add an extra
dummy network element to the node in which you prescribe the pressure.

Output variables are the mass flow (key MF on the FNODE PRINT] or
card), the total pressure (key PN — network pressure — on the
FNODE PRINT] card and PT on the card) and the total tem-
perature (key NT on the FNODE PRINT] card and TT on the FNODE FILE]
card). Notice that the labels for the *NODE PRINT keyword are more generic
in nature, for the *NODE FILE keyword they are more specific. These are the
primary variables in the network. In addition, the user can also request the
static temperature (key TS on the FNODE FILE] card). Internally, in network
nodes, components one to three of the structural displacement field are used for
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the mass flow, the total pressure and the static temperature, respectively. So
their output can also be obtained by requesting U on the *NODE PRINT card.

6.9.17 Hydraulic Networks

Hydraulic networks are made of a concatenation of network elements (see sec-
tion [6:2.33)) filled with an incompressible medium. A network element consists
of three nodes: in the corner nodes the temperature and pressure are the un-
knowns, in the midside node the mass flow is unknown. The corner nodes play
the role of crossing points in the network, whereas the midside nodes repre-
sent the flow within one element. To determine these unknowns, three types of
equations are available: conservation of mass and conservation of energy in the
corner nodes and conservation of momentum in the midside node. Right now,
only stationary flow is considered.

The stationary form of the conservation of mass for incompressible fluids is
expressed by:

V.v=0 (609)

where p is the density and v the velocity vector. Integration over all elements
connected to an corner node yields:

Zmij = Z mij, (610)
J€in j€out

where 7h;; is the mass flow from node i to node j or vice versa. In the above
equation 7h;; is always positive.

The conservation of momentum reduces to the Bernoulli equation. It is
obtained by projecting the general momentum equation (substitute Equation
(1.535) into Equation (1.334) in [23]) on a flow line. Since a flow line is every-
where locally parallel to the velocity vector, this amounts to a multiplication
by:

dmk Vk

—k (611)
ds v

leading to (where for the gravity fi = gz, with z the coordinate perpendic-
ular to the earch surface was inserted):

ok Qv vevkavr) o dee o de AT (612)
P ||’U|| ot ||’U|| = Ukl ds Dk ds PIZsk ds .
Since
ViV .1V d.’L‘l 1 d.%'l d (vkvk>
DRI g ot = = (on) ok = - , 613
ol =gy = 2y = g 7y (613)

one obtains:
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{8||v|| +i (vkvkﬂ ; dxy,  dp dz

ot ds 5 =T T s P9£- (614)

Dividing by pg and integration from s; to s, yields:

1 So 8 2 2 1 S2 2 2
7/ ”v”ds—FA”v” _ 7/ trrady —Aﬂ — Az, (615)
g.Js, Ot 1 2g P9 Js, lpg 1

Applying this equation for steady state flow within an element with corner
nodes i and j reads:

22

s+ 2y i S R BN (616)
"opg 2%Alg T pg o 2p°A%g 0

where

. J
AF; = / tkl,ldmk- (617)
i

Here, z is the height of the node, p the pressure, p the density, g the gravity
acceleration, A the cross section in the node and AFY is the head loss across the
element. The head loss is positive if the flow runs from i to j, else it is negative
(or has to be written on the other side of the equation). The head losses for
different types of fluid sections are described in Section

Notice that the height of the node is important, therefore, for hydraulic
networks the gravity vector must be defined for each element using a FDLOAD]
card.

The conservation of energy in stationary form requires ([23]):

¢V - (pTv) = =V - q + ph", (618)

where q is the external heat flux, kY is the body flux per unit of mass, cp is
the specific heat at constant pressure (which, for a fluid, is also the specific heat
at constant specific volume, i.e. ¢, = ¢, [30]) and T is the absolute temperature
(in Kelvin). Integration of the energy equation over all elements belonging to
end node 7 yields:

cp(T3) Z Tyrnij — ¢ (T3)T; Z rij + (T, T)(T —T;) + mshi =0, (619)

J€in jeout

where h(T;,T) is the convection coefficient with the walls. If one assumes
that all flow entering a node must also leave it and taking for both the ¢, value
corresponding to the mean temperature value of the entering flow, one arrives
at:

> (T (T = Ti)riig + W(Ty, THT = T;) + mih! = 0. (620)

J€in
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Figure 146: Channel geometry

where T,,, = (T; + T;)/2.

The calculation of hydraulic networks is triggered by the FHEAT TRANSEER]
keyword card. Indeed, such a network frequently produces convective bound-
ary conditions for solid mechanics heat transfer calculations. However, network

calculations can also be performed on their own, i.e. it is allowed to do *HEAT
TRANSFER calculations without any solid elements.

To determine appropriate boundary conditions for a hydraulic network the
same rules apply as for aerodynamic networks.

Output variables are the mass flow (key MF on the FNODE PRINT or
FNODE FILE card), the static pressure (key PN — network pressure — on
the FNODE PRINT] card and PS on the FNODE FILE] card) and the total tem-
perature (key NT on the FNODE PRINT] card and TT on the FNODE FILE
card). Notice that the labels for the *NODE PRINT keyword are more generic
in nature, for the *NODE FILE keyword they are more specific. These are the
primary variables in the network. Internally, in network nodes, components one
to two of the structural displacement field are used for the mass flow and the

static pressure, respectively. So their output can also be obtained by requesting
U on the *NODE PRINT or *NODE FILE card.

Notice that for liquids the total temperature virtually coincides with the
static temperature. Indeed, since

T, — T = v*/(2c,), (621)

the difference between total and static temperature for a fluid velocity of
5 m/s and ¢, = 4218 J/(kg.K) (water) amounts to 0.0030 K. This is different
from the gases since typical gas velocities are much higher (speed of sound is
340 m/s) and ¢, for gases is usually lower.
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6.9.18 Turbulent Flow in Open Channels

The turbulent flow in open channels can be approximated by one-dimensional
network calculations. For the theoretical background the reader is referred
to [16] and expecially [I1] (in Dutch). [2I] contains information on the solu-
tion of transient problems and (transient and steady state) analytical examples.
The governing equation is the Bresse equation, which is a special form of the
Bernoulli equation. For its derivation we start from Equation (614]), which we
write down for a flow line near the bottom of the channel in the form:

1[0 d . 1. d 1dp d
1 Hvll+7(vkvk> S (622)
gl ot Tds\ 2 pg 7 ds  pgds ds
Assuming:

1. steady-state flow

2. each cross section is hydrostatic

3. the velocity is constant across each cross section

4. the velocity vector is perpendicular to each cross section,

one arrives at:

d [ Q dh
ds(ngz) = =Sp = 5 \/1 =55+ 5o, (623)

where (Figure [[40) h is the water depth (measured perpendicular to the
channel floor), s is the length along the bottom, Sy = sin(¢), where ¢ is the angle
the channel floor makes with a horizontal line, Sy is a friction term (head loss
per unit of length; results from the viscous stresses), g is the earth acceleration,
Q is the volumetric flow (mass flow divided by the fluid density) and A is the
area of the cross section. This also amounts to:

0A dh dh 9
+8hds]+dsm_so_5f. (624)

Assuming no change in flow (dQ/ds=0) and a trapezoidal cross section (for
which 0A/0h = B, where B is the width at the free surface) one finally obtains
(Bresse equation):

Q@ dQ @ 104
gA2 ds gA3 | Os

h=cte

2 9A

dh  So—Sp+1%:92

- 2B
ds  \/1-53 - <&

For Sy several formulas have been proposed. In CalculiX the White-Colebrook
and the Manning formula are implemented. The White-Colebrook formula reads

fQp
S = 4o

(625)

(626)
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where f is the friction coefficient determined by Equation ([I62), and P is
the wetted circumference of the cross section. The Manning formula reads

n202p4/3
S5 ="

where n is the Manning coefficient, which has to be determined experimen-
tally.

In CalculiX, the channel cross section has to be trapezoidal (Figure [I40]).
For this geometry the following relations apply:

(627)

A = h(b+ htan®), (628)
2h
P=b 2
+ cos 6 (629)
and
B =b+2htané. (630)

All geometry parameters are assumed not to change within an element (allowing
a changing geometry within an element leads to complications, e.g. a non-
constant width b may lead to a fall (i.e. a transition from subcritical flow to
supercritical flow) within one and the same element. In CalculiX. a changing
width can be treated in a discontinuous way by using the Contraction element).
Consequently:

oA _
ds

and one obtains the Bresse equation in the form (for White-Colebrook):

0. (631)

dh  So—£4F

a0 8g AT (632)
T

Recall that in the above formula B, P and A are a function of the depth h.
The numerator has for positive Sy exactly one root, which is called the normal
depth. For this depth there is no change in h along the channel. For zero or
negative Sy there is no root. The denominator has always exactly one root,
called the critical depth. For this depth the slope is infinite. It is very weakly
dependent on Sy. Notice that both the normal depth (if defined) and the critical
depth are monotonically increasing functions of the volumetric fluid flow.

Let us for the time being assume that Sy is positive. For h close to zero both
the denominator and numerator are negative, so the slope of dh/ds is positive.
For high enough values of h both are positive, which also leads to a positive
slope for dh/ds. Only for values of h in between the normal and critical depth
the slope dh/ds is negative. For low values of Sy the normal depth exceeds
the critical depth and the corresopnding channel slope (slope of the bottom) is
called weak. The corresponding water curves are denoted by Al, A2 and A3
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depending on whether the curve is above the normal depth, in between normal
depth and critical depth or below the critical depth, respectively. For high
values of Sy the critical depth exceeds the normal depth and the corresponding
channel slope is called strong. The corresponding water curves are denoted by
B1, B2 and B3 depending on whether the curve is above the critical depth, in
between the critical depth and the normal depth or below the normal depth,
respectively. Water curves below the critical depth are governed by upstream
boundary conditions and are called frontwater curves. Water curves above the
critical depth are governed by downstream boundary conditions and are called
backwater curves.

Channel flow can be supercritical or subcritical. For supercritical flow the
velocity exceeds the propagation speed ¢ of a wave, which satisfies ¢ = /gh.
Defining the Froude number by Fr = U/c, where U is the velocity of the fluid,
supercritical flow corresponds to Fr > 1. Supercritical flow is controlled by
upstream boundary conditions. If the flow is subcritical (Fr < 1) it is con-
trolled by downstream boundary conditions. In a subcritical flow disturbances
propagate upstream and downstream, in a supercritical flow they propagation
downstream only. The critical depth corresponds to U = c. Indeed, taking a
rectangular cross section the denominator of the Bresse equation is zero if

U? = ghy/1— SZ. (633)

For frontwater curves h is less than the critical depth, consequently the
velocity must exceed ¢ (conservation of mass) and is supercritical. For backwater
curves h exceeds the critical depth and the velocity is less than ¢, the flow is
subcritical.

A transition from supercritical to subcritical flow is called a hydraulic jump,
a transition from subcritical to supercritical flow is a fall. At a jump the fol-
lowing equation is satisfied [16]:

m® + p*g\/1 = S§ ATy, = m” + p*g\/1 — S§ AZyao, (634)

where A, Ay are the cross sections before and after the jump, yo; and yg,
is the distance orthogonal to the channel floor between the fluid surface and
the center of gravity of section A; and As, respectively, p is the fluid density
and rh is the mass flow. This relationship can be obtained by applying the
conservation of momentum principle to a mass of infinitesimal width at the
jump. The conservation of momentum dictates that the time rate of change of
the momentum must equal all external forces. In Figure [[47 a mass of width
ds is shown at time ¢ crossing a jump. At time ¢ + d¢ this mass is moved to the
right (width ds’). The change in momentum in s-direction amounts to

dltiglo[(ﬂAzUzdt)% = (pA1Urdt)UL]/dt = pQ(Uz — Un). (635)
The forces are the hydrostatic forces on the right and left side of the mass:

pg(ya1\/1 = S3)A1 — pg(yazy/1 — S3)As. (636)



326 6 THEORY

Figure 147: Conservation of momentum at a jump

All other forces such as gravity and wall friction disappear for ds — 0.
Equating both terms yields the jump equation. Notice that this relationship
cannot be obtained by using the Bresse equation, since h is discontinuous at the
jump. The discrete form of the Bernoulli equation (GI6) cannot be used either,
since it is obtained by integrating the differential form and dp/ds = pgdh/ds
is discontinuous. However, one can write down Equation (616) pro forma and
deduce the head loss in a jump by formally substituting the jump equation. One
obtains:

(hg — hy)?
4h1ho

Since the head loss must be positive, this also proves that a fall cannot
occur in a prismatic channel (i.e. a channel with constant cross section). There-
fore, a fall can only occur at discontinuities in the channel geometry, e.g. at a
discontinuous increase of the channel floor slope Sy.

This approach opens up an alternative to using the conservation of momen-
tum principle at discontinuities: if one knows the head loss (e.g. by performing
experiments) one can apply the discrete form of the Bernoulli equation in the
form:

AF = (637)

m2 M2
z1+h1 + 2A2 =204+ hy + 2A2 + AF. (638)
Defining the specific energy F by:
_ Q’
Bmht o, (639)

one can write the above equation as z1 + E1 = 29 + Fs + AF, from which it
is clear that the total head z + E can never increase in the direction of the flow,
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E/cosé ' subcritical depth

hmax — |-------F------

supercritical depth

Q1 Qmax Q

Figure 148: Allowable volumetric flow for a given specific energy
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however, the specific energy can. From the definition of the specific energy one
can derive the dependence of ) on h, as shown in Figure [4&}

Q = AV/2g(E — heosg). (640)

To determine the maximum allowable volumetric flow for a given value of
FE one has to set the first derivative of the above equation to zero, resulting in
(recall that 0A/Oh = B):

2B(E — hcosp) = Acos p. (641)

Substituting this expression in Equation (640) yields:

Qmar = AV gAC;SSDa (642)

2

g;{;‘lé = oS . (643)

or

This corresponds to the denominator of the Bresse equation, i.e. the depth
for which the volumetric flow is maximum is the critical depth. This is illustrated
in Figure Curves corresponding to lower values of E also go through
the origin and are completely contained in the curve shown. These curves
cannot intersect, since this would mean that the intersection point corresponds
to different energy values.

For a volumetric flow lower than the maximal one (@ in the figure), two
depths are feasible: a subcritical one and a supercritical one. The transition
from a supercritical one to a subcritical corresponds to a jump. At the location
of the jump z; = 29, however, AF # 0, so Es < F; and the subcritical height
will be slightly lower than in the figure. For geometric discontinuities for which
the head loss is known (e.g. for a contraction or an enlargement) the above
reasoning can be used to obtain the fluid depth downstream of the discontinuity
based on the specific energy upstream (or vice versa).

Available boundary conditions for channels are the sluice gate and the weir
(upstream conditions) and the infinite reservoir (downstream condition). They
are described in Section Discontinuous changes within a channel can be
described using the contraction, enlargement and step elements.

The elements used in CalculiX for one-dimensional channel networks are
regular network elements, in which the unknowns are the fluid depth (in z-
direction, i.e. not orthogonal to the channel floor) and the temperature at the
end nodes and the mass flow in the middle nodes. The equations at our disposal
are the Bresse equation in the middle nodes (conservation of momentum), and
the mass and energy conservation (Equations and [619] respectively) at the
end nodes.

For channel elements the energy equation is used in its original form:
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> (T Ty — cp(TOT; Y rhy + (T3, T)(T = T,) +m;hi =0, (644)

j€in j€out

in which ¢, for the incoming flow is determined at the correct upstream
temperature 7. T is the temperature of the wall. The temperatures in the
network are solved for as soon as the mass flow and fluid depth have been
determined in the complete network. The above equation is applied on an
element by element basis starting at the upstream In/Out elements and going
in downstream direction. It can be reformulated as:

Zjein cp(T5)Tjrinij + T, T + mihf
CP(Ti) ZjEOut i + E(Tiv T)

This is a slightly nonlinear equation in T; which is solved node by node in
an iterative way. Convection with the wall can be defined using a card
(forced convection), for the heat source FCELUX] is to be used on degree of
freedom 0 (or, equivalently, 11).

Radiation to the environment can be included by modifying Equation (644)
into:

T, = (645)

Y (T)Tymiy; — ep(T)T; Y iy + (T, T)(T —T)
J€in j€out
+  €(T)oA(T* =T} +mhl =0, (646)

where A is the representative radiating surface for T;, € is the emissivity, o
is the Stefan-Boltzmann constant and all temperatures have to be on an abso-
lute scale. The radiating surface can be modeled using shell elements or solid
elements covering the fluid surface. The above equation is a quartic equation,
which can be solved using the conventional Newton-Raphson technique. Due to
the independent processing of the energy equation after having solved the mass
and momentum equation it is assumed that a change in temperature does not
significantly influence the flow conditions.

Output variables are the mass flow (key MF on the FNODE PRINTI or
FNODE FILE card), the fluid depth (key PN — network pressure — on the
FNODE PRINT] card and DEPT on the FNODE FILE] card) and the total tem-
perature (key NT on the FNODE PRINT] card and TT on the FNODE FILL
card). These are the primary variables in the network. Internally, in network
nodes, components one to three of the structural displacement field are used
for the mass flow, the fluid depth and the critical depth, respectively. So their
output can also be obtained by requesting U on the *NODE PRINT card. This
is the only way to get the critical depth in the .dat file. In the .frd file the
critical depth can be obtained by selecting HCRI on the FNODE FILE] card.
Notice that for liquids the total temperature virtually coincides with the static
temperature (cf. previous section; recall that the wave speed in a channel with
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water depth 1 m is v/10 m/s). If a jump occurs in the network, this is reported
on the screen listing the element in which the jump takes place and its relative
location within the element.

6.9.19 Three-dimensional Navier-Stokes Calculations

The solution of the three-dimensional Navier-Stokes equations has been imple-
mented following the Characteristic Based Split (CBS) Method of Zienkiewicz
and co-workers [I10],[I07]. The present implementation does include laminar and
turbulent calculations for compressible and incompressible fluids. The calcula-
tions are transient, however, they are pursued up to steady state or up to the
number of iterations specified by the user.

The input deck format for CFD-calculations is very similar to structural
calculations. Noticable differences are:

e boundary conditions are specified by the * BOUNDARY card. The velocity
degrees of freedom are labeled 1 up to 3, the thermal degree is 11 and the
pressure degree is 8.

e the maximum number of iterations is specified by the INCF parameter on
the *STEP card. The writing frequency on e.g. the *NODE FILE card is
specified by the FREQUENCYF parameter.

For incompressible flows the following additional comments are due:

e thermal calculations do not influence the velocity and the pressure field.
A calculation is considered thermal if initial conditions have been specified
for the temperature.

e the material properties are introduced by the *DENSITY and the *FLUID
CONSTANTS card. In case temperatures are to be calculated the *CON-
DUCTIVITY card is needed.

For compressible flows the following additional information is needed:

e for compressible flow the temperature is strongly linked to the velocity and
the pressure. Therefore, initial conditions for all these fields are needed.

e the *CONDUCTIVITY and *SPECIFIC GAS CONSTANT card under-
neath the *MATERIAL card are required, the *DENSITY card must not
be used.

e the *PHYSICAL CONSTANTS card is required for the definition of ab-
solute zero

o the *VALUES AT INFINITY card is needed for the calculation of C), and
for the turbulence models.

e the *SHOCK SMOOTHING parameter on the *STEP card may be needed
to obtain convergence (only for explicit calculations).
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e the COMPRESSIBLE parameter on the *STATIC card is required.

Fluid problems are of a quite different nature than structural problems.
What we particularly noticed in fluid problems is that

e The solution can be mesh dependent, i.e. the fluid flow sometimes follows
the element edges although this may be wrong. This is particularly true
for coarse meshes.

e Coarse meshes may produce a solution which is completely wrong. Taking
this solution as starting point for gradually finer meshes frequently leads
to the right solution.

e If the boundaries of the mesh are too close to the area of interest the
solution may not be unique. For instance, turbulent flow may lead to an
undefined reentry at the exit of your mesh. Consequently, the boundaries
of your mesh must be far enough away.

The basic idea of the CBS method is to formulate the governing equation
in a coordinate system moving with the characteristics of the flow, leading to
a disappearance of the convective first order terms. To illustrate this, we start
from a one-dimensional equation in the non-conservative form (the velocity v is
brought outside the partial differentiation)

o0 96 0 [ 06 B

exhibiting a transient, convective, diffusive and source term (¢ is some de-
pendent quantity such as temperature). Applying a change of variables from x
to x’:

dr’ = dx — vdt, (648)

where ' moves with the fluid, this equation is transformed into:

%(aﬁ/(t), t) — % (m(fﬁ) - Q@) =0, (649)

i.e. the convective term disappears.
Applying Finite Differences along the characteristic from time ¢ (superindex
n) to time t + At (superindex n+1) leads to (Figure [[49):

1 N N N o 8(}5 n+1
At (¢ R |w75) ~0 [ax (Kax) + Q}

+(1-6) [8856 (ngi) +Qr : (650)

z—0
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n+1

Figure 149: Formulating the equations along characteristics

where 6 takes a value between 0 and 1. Now, by applying a Taylor series
expansion the values at © — d can be written as a function of values at x:

0 5?2 9?
O los ="~ 0 5y ¢ +?T(§ +0(5°), (651)
E):c( 8“’”) ey O ( 35”) - 6(% [ax (“axﬂ I+O(‘S ), (652)
and
Q"5 = Q" —62—? +0(8%). (653)

Therefore, Equation (650]) now yields (from now on the subindex z is dropped
to simplify the notation):

L bt gny 502" 52 92¢" o ( 0 e
AT G, S ) 9[a<“ax>+¢9]
0
o

w05 (450) 55 o (52) |
% |

+(1-6) {Q" (654)
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Now, § = vAt, where v can be approximated by:
1
TR (0" 4 0", ) - (655)
Since
av"
n =" — §—— 52
Vs =0 o +0(67) (656)
one obtains:
771 n+1 n 5 o 2
v—2(v +") 5 B2 + O(At?)
iz _ (DALY OV o ape
v ( 5 ) o + O(At?)
nH/2A\ Qo™
_ntl/2 (U TTAL) OU A2
v ( 7 ) o + O(At?), (657)
where
n+1/2 ._ 1 n+1 n
v = 2(1} +o™) (658)
was defined. Consequently:
n+1/2At2 ™
_ontl/2a, (Y ov 3
d=w At ( 5 ) o + O(At?). (659)
Substituting this in Equation ([654]) and setting 6 = 1/2 leads to:
1 +1 ! +1/2 vEE 0" 3| 99"
— (" =) =— — V" At — — At — At?)| —
A Ay [“ 2 o TOB)| 5,
e nt1/2)2 A g2 3 @n
+5A7 [(v ) AP+ O(A)| 5
178 505 n+1
35 (52) +9]
1[0 [ 0¢ "
3 o (=32) +9]
At 1120 [0 dp\1" 2
2 222 A
27 oz |0z \" oz +O(AF)
At n+1/28Qn 2
- D + O(At?). (660)
Since
n+1/2 _ , n o™ 2
v =0 +E At/2 + O(At?), (661)
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v™ in the first line of Equation (B60) can be replaced by v"*+1/2 without loss
of accuracy. Therefore, the terms quadratic in At in the first two lines can be
merged into:

2 ox Oz o ox )’

At? O tT/2 9¢ At? 9%¢ At? 9 0

Un+1/27At2 A (Un+1/2)277 _ 1}”+1/277 <,Un+1/2
2 0z 2 Oz

(662)

and one now obtains:

9™ [0 [ 8¢ n+1/2
n+l _ ny _ n+1/2¥% | Y s
(¢ ¢") =—At {U ox {ax (K8x> + Q]

2 n
ATL‘U”H/Q% |:,Un+1/28¢_ 0 (Ka‘b) _Q} + O(A).

ox
(663)

+ ox Ox

In the last equation v"11/2 can be replaced by an extrapolation of v at time
t, + At/2 based on its values in iteration n — 1 and n without loss of accuracy.
Indeed, combining

0" Aty

n+1/2 . At2 4
v v +8t 5 + O(At:), (664)
(Aty, :=tpe1 — t,) and
n—1 n avn 2
T =t - At,_1 + O(At;,_4), (665)
(Atp—q :=t, —tn,—1) or, equivalently,
W™ _vp — Va1 +O(At,_1) (666)
ot Aty nob
one obtains
n _ ,mn—1 At
2 —gn L0 (2 4 O(AL A1) + O(AR), (667)
Aty_1 2
or for At,,_; = At,, = At:
1/2 v — ! 2
Y2 = 4 5 + O(At?). (668)

In the same way the diffusive and source terms at time ¢,/ are evalu-
ated based on a similar extrapolation of the velocity and temperature (for the
momentum and energy equation, respectively).

Generalizing Equation (663]) to three dimensions and writing the equation in
conservative form (i.e. replacing v"t1/20¢/dx by dv"+1/2¢/dx) finally yields:
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n+1/2 in n+1/2
(¢”+1—¢”)~—At{a(vj ¢)_{a ( a¢)+Q} }

o, el G
+A7tv"+1/2i l(vﬂ(b) 0 (,{ 99 ) -Q (669)

2k Oz, Ox;  Ox; \ Ox;

The last three terms can be viewed as stabilization terms. Usually, only
terms up to the second order derivative are taken into account. Therefore, the
stabilization term for the diffusion is usually neglected.

The corresponding weak formulation is obtained by multiplying the above
equation with the shape function ¢, for a concrete node and integrating over
the volume. Therefore, the CBS Method transforms a transport equation of the
form

oC

ot

where C stands for the convective term, D for the diffusion term and F for
the source term, into

=—(vkC) .k + Dy + F, (670)

Z [/V gaagang] ACg = — At/‘/¢a Z(UZ+1/280B),kCg av

B B
—At/ GarDIT 2y
14
—i—At/ Yo FH2qV
14
At? n+1/2 n+1/2 n
T~ V(SOaUz ) Z("Uk ©).kCh | AV
B
—i—At/ 0o Dy PrydA
A
Ar? n
+ 5 | (pav; 2y Fray. (671)
174

Notice that the integral over the total volume in reality is a sum of the
integrals over each element. For each element the local shape functions are used
in expressions such as C' =35 0Cp.

The first, second and third term on the right hand side correspond to con-
vection, diffusion and external forces, respectively. The fourth and sixth terms
are the stabilization terms for convection and external forces, while the fifth
term is the area term corresponding to diffusion. It is the result of partial in-
tegration. The stabilization terms were obtained through partial integration
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too. In agreement with the CBS Method the corresponding area terms are ne-
glected. Furthermore, third-order and higher order terms are neglected as well
(particularly the stabilization terms corresponding to diffusion).

This method is now applied to the transport equations for mass, momentum
and energy. Furthermore, the resulting momentum equation is split into two
parts (Split scheme A in [I10]), one part of which is calculated at the beginning
of the iteration scheme. Subsequently, the conservation of mass equation is
solved, followed by the second part of the momentum equation. To this end the
correction to the momentum AV), = pAwvy in direction k is written as a sum of
two corrections:

AVi = AV + AV, (672)

This results in the following steps:
Step 1: Conservation of Momentum (first part)

The partial differential equation reads:
oV, 0 Otix  Op
= ———(uV; - i
ot Oz, (Vi) + Oxr Oz, P9
Applying the CBS method to all terms except the pressure term leads to:

(673)

Z {/V @awﬂdV} AVg =~ At/vgoa Z(UZ+1/2¢B)7kVBTZ dV

B B
— At/ Qpa,k(tik + tﬁc)"“/QdV
14

+At/ cpapg;ﬁl/ZdV
%
At? n n n
Ty (Pav; +1/2),1 Z(Uk+l/2@ﬁ),kv,@i av
v 8
At? " N
+ 5 (‘Pozvl +1/2),lpgi av
v
+ At/ Oa(tix + 2120, dA. (674)
A

V; is the momentum, t;; is the diffusive stress and tf,; is the Reynolds stress
multiplied by p (only for turbulent flow), all evaluated at time t. g; is the gravity
acceleration at time ¢ + At. The diffusive stress satisfies

2
tiw = p(vig + vk — gvm,m@k) (675)

whereas £ is defined by
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2 2
th = pi(vig + v — gvm,maik) - gpk(sik' (676)

Here, p; is the turbulent viscosity and k is the turbulent kinetic energy.
What is lacking in equation ([674) to be equivalent to the momentum transport
equation is the pressure term.

Step 2: Conservation of mass

The partial differential equation reads:

ap oV
%= oz, (677)
This can be approximated by:
JN—aVl —918 V; —918 Vl (678)

At T Oz, Oz, or;

where 6 is a parameter leading to an explicit scheme for §; = 0 and an
implicit scheme for §; = 1. Now, for AV** one can use the gradient of the
pressure in the momentum equation (this term can be treated in a way similar
to a source term):

» ap N\ A2 a0 (Op\"

Before substituting Equation (679) into Equation (678) the stabilization
term is dropped (leads to a third order derivative) and the pressure gradient at
n+1/2 is changed into a gradient in between n and n+ 1 by use of a parameter
02 (05 is equivalent to 0 in Equation ([654):

op\" JdAp
AV =~ —At — B At .

For 65 = 0 one obtains an explicit scheme (used for compressible media), for
02 = 1 an implicit scheme (used for incompressible media). Now one obtains for

Equation (G78):

ﬁ"' oV, 791LAVZ‘ +91At{

??p " g 0% Ap

N z;

Applying Galerkin and partial integration to all terms on the right, this leads
to:
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> { / %de} Apg + 0105(A8)* >

B

{/ @a,iwﬁ,idv} Apg
v

= At @a 7 Z (pﬁvﬁz

B

+91At/ Pa,i E WBAV[% av
14
B

6, (A1)? /V pai | S s | v

B
fAt/ v Vi'n;dA. (682)
A

In agreement with [I07] the following approximation was made:

At / QalV" + 01(AVY + AV*)|n;dA ~ At / PV nidA, (683)
A A

leading to the last term in equation (682]). The velocity in the mass con-
servation equation is calculated at time t + 61 At, whereas the pressure in the
momentum transport equation is expressed at time t+ 02 At (0 < 01,05 < 1). If
0> = 0 the scheme is called explicit, else it is semi-implicit (in the latter case it
is not fully implicit, since the diffusion term in the momentum equation is still
expressed at time t). For compressible fluids (gas) an explicit scheme is taken.
This means that the second term on the left hand side of equation (682]) dis-
appears and the only unknowns are Apg. For incompressible fluids the density
is constant and consequently the first term is zero: the unknowns are now the
pressure terms Apg.

An additional difference between compressible and incompressible fluids is
that the left hand side of equation (G82) for incompressible fluids (liquids) is
usually not lumped: a regular sparse linear equation solver is used. For com-
pressible fluids it is lumped, leading to a diagonal matrix. Lumping is also
applied to all other equations (momentum,energy..), irrespective whether the
fluid is a liquid or not.

Step 3: Conservation of Momentum (second part)

This equation takes care of the pressure term in the momentum equation,
which was not covered by step 1. Now, the terms are evaluated at n + 65:

Sk 8]9 " 8A 2 n+1/2 8 8p "
o — ) . (684
AV, At ( 8@) Oolit5 =+ (L= O2) A P | 5 (684)
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In weak form this leads to (applying partial integration to the stabilization
term):

> U %@ﬁdV] AVg' =— At/ Yo | > ppips| AV
|4 14

B B

—QgAt-/@a E g, Apg | dV
\%
B

~ (=092 [ () | S pnams | aV. (659
B

Notice that for compressible fluids the second term on the right hand side
disappears (62 = 0). Consequently, Ap is not needed for gases. This is good
news, since only Ap is known at this point (conservation of mass).

Step 4: Conservation of Energy

The governing differential equation runs:

8p5t

o = ~[vk(pet + Pk + [tkmvm + KTk + [pfevr + ph?], (686)

where ¢; is the total internal energy per unit of volume, « is the conduction
coefficient, f;, are the external forces and h? represents volumetric heat sources.
& satisfies

er = e+ (v;v;)/2. (687)

The energy equation in the above form can be directly obtained from Equa-
tion ([B0). Indeed, the right hand side in both equations is identical. The left
hand side of Equation [B6]) can be written as:

D D 0
°t (pet) TEPVE L = g?+

Ope
Dt Dt (pet) KOk +e0pi g = ot 4 (pesvg) v (688)

ot

in which the conservation of mass was used in the form

Dp 0p
=4 = — . 689
Dt ot P,k Vk PUE K ( )

Straightforward application of the CBS method yields
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> [/V %de} (Dpey)p = — At/v o | D (0 208) k(e + )3 | dV

B B

- At/ @a,k(tkmvm + KT,k)nJrl/ZdV
1%

+ At/ ealpfrve + ph?" T2V
1%

At? n "
=5 ) et ST ) e+ p) | AV
B
At? n .
T V(%Uz T2 o fevr + ph®)dV
+ At/ Po(trmVm + KT )"/ 2y d A, (690)
A

If a heat flux boundary condition g is specified the term «VT is replaced
by q. Furthermore, for turbulent flows tg,, is replaced by tg,, + thm and k by
K + cppie /Pry, where Pry is the turbulent Prandl number (for air Pr;=0.9). For
liquids the energy equation is uncoupled from the other equations, unless the
temperature leads to motion due to differences in the density (buoyancy). For
gases, however, there is a strong coupling with the other equations through the
equation of state:

p=prT, (691)
where r is the specific gas constant.
Step 5: Turbulence
The turbulence implementation closely follows the equations in [57]. There

are basically two extra variables: the turbulent kinetic energy k and the turbu-
lence frequency w. The governing differential equations read

Opk
S = ook + [+ owpr)kal i+ (thuey = Bpwk)  (692)
and
Opw Y .r 9 2
ke —[vk(Pw)],k+[(u+0w,0Vt)w,k],k+(;ttijuzyj—ﬁpw = (1=F1)pousgk jw.;)-

(693)
For the meaning of the constants the reader is referred to Menter [57]. The
turbulence equations are in a standard form clearly showing the convective,
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diffusive and source terms. Consequently, application of the CBS scheme is
straightforward:

> [/V %@BdV] (Apk)s = — At/v% S w2 08) 1ok | AV

B B

- At/ okl + akpl/t)kj;jl/zdv
v

+ At/ gpa[tﬁum — B pwk]" 24V
v

At? n n n
-5 | e Y S 2 08) wlpk) s | AV

2
B
At? n L
+ T (‘Pavl +1/2),l[ ijuiJ — ﬁ ka‘] av
v
+ At/ Valp+ Ukpl/t)kj;:lmnde. (694)
A

> [/V %@ﬁdv] (Apw)s = — Af/v% > Wt 0) klpw)y | AV

B B

— At/ Yo,k (1 + prl/t)wﬁjlmdv
v

+ At/ cpa[ltg-ui’j — Bpuw?
14 vt

2
+ ;(1 — Fl)p(fwgk,jw,j]nJrl/de

At? n+1/2 n+1/2 n
T V(‘Pavl o )1 Z(%Jr / ©p)k(pw)s | AV
B

At?
vn+1/2),l[’7

+ — %) —
V(al Vi

B) tZ’UJi,j — ﬁpwz

2
+ 5(1 - Fl)pawgk,jwyj]”dV
+ At/ Palp+ prl/t)wz:l/andA. (695)
A

The above equations were slightly modified according to [98] in order to
avoid a non-physical decay of the turbulence variables at the freestream bound-
ary conditions. To this end the terms —f*pwk and —fBpw? were replaced by
—B* pwk + B* pwirecktree and —Bpw? + Bpw?..., respectively, where the subscript
“free” denotes the freestream values.
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Turbulent equations require the definition of the nodal set SOLIDSUR-
FACE containing all nodes belonging to a solid surface and the nodal set
FREESTREAMSURFACE containing all nodes belonging to free stream con-
ditions such as inlet and outlet. For each of these surfaces CalculiX assigns
specific boundary conditions to the turbulence parameters k and w according
to the publication by Menter.

Note that the conservative variables pk and pw should always be positive.
Therefore, when the calculated change of these variables in each increment is
added to their previous values only if the sum of both is positive, else the change
is set to zero for that increment.

Notice that the unknowns in the systems of equations in all steps are the
conservative variables V;, p (or p for liquids) and pe;. The physical variables
the user usually knows and for which boundary conditions exist are v;, p and T.
So at the start of the calculation the initial physical values are converted into
conservative variables, and within each iteration the newly calculated conserva-
tive variables are converted into physical ones, in order to be able to apply the
boundary conditions.

The conversion of conservative variables into physical ones can be obtained
using the following equations for gases:

1 ViVi
71“;mcp«r>—-r>{p€t“ 2 }’ (696)
vi = Vi/p, (697)

and p = prT. For liquids p is a function of the temperature T and the first
equation has to be replaced by

1 ViVi
T= D@ [Wt - zpm} ! (69%8)

since ¢, = ¢,. T in all equations above is the static temperature on an abso-

lute scale. For gases the total temperature and Mach number can be calculated
by:

T, = T+ ViVi/(2c,) (699)

M=, /::T (700)

where v = ¢p/c,. Notice that the equations for the static temperature are
nonlinear equations which have to be solved in an iterative way, e.g. by the
Newton-Raphson procedure.

The semi-implicit procedure for fluids and the explicit procedure for liquids
are conditionally stable. For each node ¢ a maximum time increment At; can
be determined. For the semi-implicit procedure it obeys:

and
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h; h2 o pih?Pri(T;
At; = min{ ) Pil; , pihiPri( )} ) (701)
VOive 2u(Ti)” 2u(T3)

where

w(Ti)ep(T0)

Pr; = (T (702)
is the Prandl number, and for the explicit procedure it reads
g
At; = P (703)
where
o = (| 2T T (704)
cp(Ti) —r

is the speed of sound. In the above equations h; is the smallest distance
from node i to all neighboring nodes. The overall value of At is the minimum
of all nodal At;’s.

Feasible elements are all linear volumetric elements (F3D4, F3D6 and F3D8).

For gases a shock capturing technique has been implemented following [IT0].
This is essentially a smoothing procedure. To this end a field Sa; is determined
for each node i as follows:

_ 12 —pj)
> lpi —psl
where the sum is over all neighboring nodes and p is the static pressure. It

can be verified that Sa; = 1 for a local maximum and Sa; = 0 if the pressure

varies linearly. So Sa; is a measure for discontinuous pressure changes. The
smoothing procedure is such that the smoothed field Z is derived from the field
xz by

Sa; (705)

Ti =+ %f%[ML]ﬁl([M]ij — [ML]ij)z;. (706)
[M] is the left hand side matrix for the variable involved, [M] is the lumped
matrix (i.e. the matrix [M] where all values in each row are summed and put
on the diagonal, all off-diagonal terms are zero) and C, is a parameter between
0 and 2. The bigger C., the stronger the smoothing. This procedure was
elaborated on in [I10]. After the regular calculation of pv;, p and pet, the
temperature 7" and the pressure p are calculated, the field Sa is determined and
all conservative variables are smoothed. This leads to new values after which the
boundary conditions for the velocity, the static pressure and static temperature
are enforced again. If no convergence is reached, a new iteration is started.
It is important to note that for CFD calculations adiabatic boundary con-
ditions have to be specified explicitly by using a FDELUXI card with zero heat
flux. This is different from solid mechanics applications, where the absence of
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a *DFLUX or *DLOAD card automatically implies zero distributed heat flux
and zero pressure, respectively.

Finally, it is worth noting that the construction of the right hand side of the
systems of equations to solve has been parallelized (multithreading). Therefore
you need the Ipthread library at linking time. By setting the OMP_NUM_THREADS
environment variable you can specify how many CPUs you would like to use (see

Section [2]).

6.9.20 Shallow water calculations

Calculations for incompressible fluids with a free surface are quite important in
marine and oceanographic applications. The challenging part here is to predict
the location of the free surface. A special subcategory are the problems in which
the depth of the fluid is small compared to the other dimensions. In that case
the general equations can be reduced to the so-called shallow water equations.
These equations have a very similar behavior as the Navier-Stokes equations
for compressible fluids, treated in the previous section. Linearization of these
equations leads to the linear shallow water equations treated in Section

Starting point for the derivation of the shallow water equations are the con-
servation of mass and momentum for incompressible fluids:

'Ui,i =0 (707)
and
ovj 0 oy 10p 10ty .
ot + Ox; (viv) + pOx; pox; 15 =0. (708)

Now, the depth-direction of the fluid is assumed to coincide with the x3-
direction. The momentum equation in the x3-direction now reads:

DU3 1 6p 1 8751-3

Dt pdxs p Oz

—f3=0. (709)

The velocity in depth direction (first term) is assumed to be neglegible as
well as the viscous stress components t;3. Furthermore, the volumetric force
density is assumed to reduce to the gravity g. Consequently, one obtains:

> 05 +g=0. (710)

Now, the depth is supposed to be composed of two contributions: a portion

H extending from x3 = —H (H > 0) up to x3 = 0, and a portion 1 extending

from 3 = 0 up to 3 = n (—00 < 1 < o0), so that the depth h amounts

to h = H + n (Figure ...). Integrating the above equation and applying the

boundary condition p = p, for x3 = 1, where p, is the atmospheric pressure,
one obtains:

p = pg(n —x3) + pa, (711)
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expressing the the pressure increases linearly from the surface into the depth
direction.

The conservation of mass equation can be integrated in z-direction as follows:

n 31}1 n 81)2 1 8’03
—d —=d —dx3 = 0. 12
[H Oy st [H Oz st [H Ox3 3 =0 (7 )

Applying the Leibniz rule to the first two equations and direct integration
to the last term leads to:

0 1 on OH
57371 (/H vldsc3> —vl(n)a—wl —vi1(—H)

d " on OH
+ (971'2 </HU2d1‘3> — 112(77)87932 — ’UQ(—H

~ Oxa
+ () — vs(—H) = 0.

~

(713)
The velocity at the bottom is zero, i.e. v1(—H) = va(—H) = v3(—H) =0

Furthermore, a mean velocity is now defined by:

1 ("
V; = 7/ Uidfﬂg, 1= ].,2 (714)
hJ_u
This leads to:

(715)

Dn On O n
v3(n) := —

i o + val(n) + ——v2(n),

8%2
leading to:

(716)

0 _ 0 _ oh
87x1 (Ulh) + 871'2 (Ugh) + a
since OH /0t = 0. With 73 = 0 one can also write:

0, (717)

0 oh
— (U;h) + — = 0. 718
oz, (wih) + 2, (718)
This is identical to Equation (conservation of mass for a compressible
fluid) in which v; is replaced by v; and p by h.

Integrating the momentum equation, i.e. Equation (708)) in 27 and x4 direc-
tion across the depth leads to:
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ot ot ot dx; |y
2
on OH
- sz(n)%(n)a? - Zvl( H)v]( H)ai +UZ(7’])U3(77)
=1 =1 /
L[ ap 1< /" ot 1
—vi(—H)vs(—H) + - — - Lt
(=H)vs(—H) o | B p; w01, p 3(n)
+ta(H) =hf =0, =12 (719)

Since the velocity at the bottom is zero, the third, sixth and eight term
vanish. Due to the definition of the vertical velocity at the free surface, Equation
([TI8) the second, fifth and seventh term also disappear. Due to Equation ([711])
the ninth term amounts to:

L (" Oop 877_'_@6]3@
=9 Ox;  pOx;

pJ_m 0z

(720)

The fourth term is approximated by:

(hfi@j) dﬂjg, (721)
and the tenth term is neglected. This leads to:

0 =0 o  hop, 1.,
g (1) + D g hid; = AR Y R

j=1 "7

1 _
— b+ hf;, =12 (722)
p

Now, hdn/dx; can also be written as:

h@n 0 <h2—H2 OH

leading to:
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0, _ a . _ _ op OH  hOp,
— (ha; —hv,v; = — h—H - —
8t( u)—’_jz::l@xj Vil 8xi+g( )8331- p 0x;
L hf;, i=1,2 (724)
Y3 T T Y (2 =1,
p " p?
were an artifical pressure p has been defined by:
h2 _ H2
g 1) . ). (725)

Since there is no variation in depth direction and setting t§; = t5; = f3 =0
this also amounts to:

a, _ g  _ _ op OH  hOp,
—(hw; —hv,v; = — h—H - —
8t( ul)+8mj il 8xi+g( )axi p 0x;
1 1, — .
+ =ty — —tis +hfi, =13 726
Sl =t (726)

This amounts to the conservation of momentum equation (673]) for a com-
pressible fluid with the density p replaced by h, v; replaced by v;, p replaced by
P, tir neglected and pg; replaced by

oOH B hdp, 1 1

g(h—H) + ;tfg — ;ti3 + hf;. (727)

dx;  p O

The friction stress at the bottom is frequently modeled by a hydraulic resis-
tance type formula such as

foo
tt, = L pl[soi. (728)

The energy equation can be integrated in a similar way. I can be used of
some fluid at a higher temperature is released into the flow and one would like
to study the spread of the heat. The equation for incompressible flow runs:

Oty 0 10 <k8T>_1avip+1 0

ot o e = o5:) " pow | pom

ot Oz (tijv;) + fivi +h’ (729)

p Ox;

Integrating from -H to 7 yields:
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pq +C] Z/ d$3+2 / i (tijv;)dxs

13
P

Terms 3, 6 and 8 on the left hand side and term 6 on the right hand side
are zero (no velocity at the bottom and no change in time of the bottom level).
Terms 2, 5 and 7 on the left hand side disappear due to Equation ([{I6]). The
integral in the first term on left hand side is replaced by definition by €;h and
the integral in the fourth term is approximated by v;z;h. The variables ¢° and
¢" in the second term on the right hand side are the heat flux flowing out of the
fluid at the surface and the bottom, respecitively.

Substituting the expression for the pressure, i.e. Equation ({II)) into the
third term on the right hand side yields (the summation in that term really
only extends from 1 to 2 since vs is neglegible):

t3] Uj

/ fividzs 4 hhO. (730)

n

2 2

ap 2. op _ OH  h~~_ Opa
i=1 vog=1 g i=1 ¢

The first and the fourth term on the right hand side is neglected and the
eighth term is approximated by f,7;h. This finally yields:

oH B ﬁ({)paf

0, _
7(h5t) + 8qjl P axz V;

ot

0 o 1, by

oz, [(h&t + Pp)vi] ~ — ;(q +¢°) +vig(h — H)
tgj’Uj —_ 0
——=| 4+ hfv;+ hho. (732)
n

+

This is equivalent to the energy equation for compressible fluids with p re-
placed by h and appropriate source terms. The neglection of the stress and
conduction terms (except in z3z-direction) can be obtained by setting u = A = 0.
No specific gas constant has to be defined. The parameter COMPRESSIBLE
on the FCEDI card has to be replaced by the SHALLOW WATER parameter.
The pressure initial and boundary conditions have to be replaced by conditions
for p = g(h? — H?)/2. If H corresponds to the fluid surface in rest, the initial
conditions ususally reduce to p = 0.
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6.9.21 Substructure Generation

This procedure can be used to create the stiffness matrix of a substructure
(sometimes also called a superelement) and store it in a file. A substructure
consists of selected degrees of freedom of a model. It can be used in a subsequent
linear analysis (this option is not available in CalculiX). In such an analysis, only
the selected degrees of freedom are addressable, e.g. to apply loads or boundary
conditions. The other degrees of freedom have been removed, thereby substan-
tially reducing the size of the stiffness matrix. The retained degrees of freedom
kind of constitute a new element (which explains the term superelement).

The stiffness matrix is obtained by successively applying a unit displacement
to one of the retained nodes in one global direction while setting all other dis-
placement values in the retained nodes to zero. This yields one column in the
stiffness matrix of the superelement. Notice that in order to obtain the correct
stiffness matrix only the elements belonging to the superelement should be re-
tained in the input deck. Any other elements will influence the stiffness matrix
and lead to a wrong matrix.

The substructure generation is triggered by the procedure card FSUBSTRUCTURE GENERATEL
The degrees of freedom which should be retained can be defined by using the
FRETAINED NODAL DOFS|card. No transformation is allowed, consequently,
the degrees of freedom apply to the global Carthesian system. Finally, the stor-
age of the stiffness matrix is governed by the FSUBSTRUCTURE MATRIX OUTPUT]
card, specifying the name of the file without extension. The extension .mtx is
default. The stiffness matrix can be stored in a USER DEFINED format or in
a MATRIX format.

If the storage is in USER DEFINED format (OUTPUT FILE=USER DE-
FINED on the *SUBSTRUCTURE MATRIX OUTPUT card) the output in the
.mtx file constitutes the input one needs to use the superelement in ABAQUS.
It consists of:

e a *USER ELEMENT card specifying the number of degrees of freedom
involved in the substructure (misleadingly defined as “nodes”).

e a list of the nodes. Each node is listed as many times as the number of its
degrees of freedom in the substructure.

e for each retained degree of freedom its global direction. The format for
the first degree of freedom of the substructure is just the global direction.
For the subsequent degrees of freedom it consists of the number of the
degree of freedom followed by the global direction

e a *MATRIX,TYPE=STIFFNESS card followed by the upper triangle (in-
cluding the diagonal) of the stiffness matrix, column by column, and
comma separated.

If the storage is in MATRIX format (OUTPUT FILE=MATRIX on the
*SUBSTRUCTURE MATRIX OUTPUT card) the resulting file can be used in
aFMATRIX ASSEMBLE] card for further usage in CalculiX.
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6.9.22 Electromagnetism

In CalculiX, certain types of electromagnetic calculations are possible. These
include:

e electrostatic calculations: these can be performed as a special case of
thermal calculations, cf. Section [6.9.13]

e magnetostatic calculations. Due to the absence of time derivatives the in-
teraction between electric and magnetic fields drops out and the magnetic
equations can be considered on their own.

e magnetic induction calculations. These are calculations without fixed elec-
tric charges and in which the displacement current can be neglected. The
major industrial application for this type of calculation is inductive heat-
ing.

In this section only the last two applications are treated. The governing
Maxwell equations run like (the displacement current term was dropped in

Equation (730])):

V-D=p (733)
0B
VxE=-"" (734)
V-B=0 (735)
VxH=j (736)

where E is the electric field, D is the electric displacement field, B is the
magnetic field, H is the magnetic intensity, j is the electric current density
and p is the electric charge density. These fields are connected by the following
constitutive equations:

D =¢E (737)

B=uH (738)
and

j=o0E. (739)

Here, € is the permittivity, p is the magnetic permeability and o is the elec-
trical conductivity. For the present applications € and D are not needed and
Equation (733]) can be discarded. It will be assumed that these relationships
are linear and isotropic, the material parameters, however, can be temperature



6.9 Types of analysis 351

Table 17: Frequently used units electromagnetic applications.

symbol meaning unit
I current A
E electric field % = ljxg.';?
D electric displacement field | -5 = A
B magnetic field T= :. =
H magnetic intensity %
7 current density %
€ permittivity % = fgzrf;
I magnetic permeability ber
o electrical conductivity % = ?;rf:;
P magnetic scalar potential A
\% electric scalar potential | V = kAg%:f
A magnetic vector potential ljf_'s‘”;

dependent. So no hysteresis is considered, which basically means that only para-
magnetic and diamagnetic materials are considered. So far, no ferromagnetic
materials are allowed.

Due to electromagnetism, an additional basic unit is needed, the Ampere
(A). All other quantities can be written using the SI-units A, m, s, kg and K,
however, frequently derived units are used. An overview of these units is given
in Table [ (V=Volt, C=Coulomb, T=Tesla, F=Farad, S=Siemens).

In what follows the references [86] and [43] have been used. In inductive
heating applications the domain of interest consists of the objects to be heated
(= workpiece), the surrounding air and the coils providing the current leading
to the induction. It will be assumed that the coils can be considered seperately
as a driving force without feedback from the system. This requires the coils to
be equiped with a regulating system counteracting any external influence trying
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Figure 150: Electromagnetic setup for simply connected bodies

to modify the current as intended by the user.

Let us first try to understand what happens physically. In the simplest
case the volume to be analyzed consists of a simply connected body surrounded
by air, Figure A body is simply connected if any fictitious closed loop
within the body can be reduced to a point without leaving the body. For
instance, a sphere is simply connected, a ring is not. The coil providing the
current is located within the air. Turning on the current leads to a magnetic
intensity field through Equation (736) and a magnetic field through Equation
([@38)) everywhere, in the air and in the body. If the current is not changing in
time, this constitutes the solution to the problem.

If the current is changing in time, so is the magnetic field, and through Equa-
tion ([34]) one obtains an electric field everywhere. This electric field generates
a current by Equation (739) (called Eddy current) in any part which is electri-
cally conductive, i.e. generally in the body, but not in the air. This current
generates a magnetic intensity field by virtue of Equation (736]), in a direction
which is opposite to the original magnetic intensity field. Thus, the Eddy cur-
rents oppose the generation of the magnetic field in the body. Practically, this
means that the magnetic field in the body is not built up at once. Rather, it is
built up gradually, in the same way in which the temperature in a body due to
heat transfer can only change gradually. As a matter of fact, both phenomena
are described by first order differential equations in time. The Ohm-losses of
the Eddy currents are the source of the heat generation used in industrial heat
induction applications.

From these considerations one realizes that in the body (domain 2, cf. Figure
[I50 notice that domain 1 and 2 are interchanged compared to [86]) both the
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Figure 151: Electromagnetic setup for multiply connected bodies

electric and the magnetic field have to be calculated, while in the air it is
sufficient to consider the magnetic field only (domain 1). Therefore, in the
air it is sufficient to use a scalar magnetic potential P satisfying:

H=T,—VP. (740)

Here, Ty is the magnetic intensity due to the coil current in infinite free space. Ty
can be calculated using the Biot-Savart relationships [27]. The body fields can
be described using a vector magnetic potential A and a scalar electric potential
V satisfying:

B=VxA, (741)
0A
E=——-VV. 742
ot v (742)
In practice, it is convenient to set V = %, leading to

0A OV
E=—— — . 743
at ot (743)

This guarantees that the resulting matrices will be symmetric.

If the body is multiply connected, the calculational domain consists of three
domains. The body (or bodies) still consist of domain 2 governed by the un-
knowns A and V. The air, however, has to split into two parts: one part which
is such that, if added to the bodies, makes them simply connected. This is
domain 3 and it is described by the vector magnetic potential A. It is assumed
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that there are no current conducting coils in domain 3. The remaining air is
domain 1 described by the scalar magnetic potential P.

In the different domains, different equations have to be solved. In domain
1 the electric field is not important, since there is no conductance. Therefore,
it is sufficient to calculate the magnetic field, and only Equations (733) and
([736]) have to be satisfied. Using the ansatz in Equation (740), Equation (736])
is automatically satiesfied, since it is satisfied by Tp and the curl of the gradient
vanishes. The only equation left is (Z35]). One arrives at the equation

V- u(To — VP) =0. (744)

In domain 2, Equations (734)), (735) and (736) have to be satisfied, using
the approach of Equations ((41]) and ([742]). Taking the curl of Equation ([42)
yields Equation (734]). Taking the divergence of Equation ([41]) yields Equation

([@35). Substituting Equations (741]) and ([42)) into Equation (730]) leads to:

1 0A

Vx—(VxA)+o—+cVV =0. (745)
I ot

The magnetic vector potential A is not uniquely defined by Equation (741]).

The divergence of A can still be freely defined. Here, we take the Coulomb

gauge, which amounts to setting

V-A=0. (746)

Notice that the fulfillment of Equation (736]) automatically satisfies the con-
servation of charge, which runs in domain 2 as

V-j=0, (747)

since there is no concentrated charge. Thus, for a simply connected body we
arrive at the Equations ({44)) (domain 1), (745) (domain 2) and (746]) (domain
2). In practice, Equations ([(45]) and (74€) are frequently combined to yield

1 1 0A
Vx—(VxA) -V-V-A+o—+cVV =0. (748)
I I ot
This, however, is not any more equivalent to the solution of Equation (730)
and consequently the satisfaction of Equation (747)) has now to be requested
explicitly:
0A

Voo( +VV)=0. (749)

Consequently, the equations to be solved are now Equations (748)) (domain
2), ([749)) (domain 2), and (744) (domain 1).

In domain 3, only Equations (735) and (736) with j = 0 have to be satis-
fied (the coils are supposed to be in domain 1). Using the ansatz from Equa-
tion (741Il), Equation (735)) is automatically satisfied and Equation (736) now
amounts to
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1 1
Vx—=(VxA)-V-V-A=0. (750)
H H
The boundary conditions on the interface amount to:
e continuity of the normal component of B
e continuity of the tangential component of H, and

e 1o current flow orthogonal to the boundary, or (n; is the normal on domain
i, pointing away from the domain):

B]_ -mny + Bz Ny = 0, (751)
H]_X’I’L1+H2X’I’L2:0 (752)
and

all of which have to be satisfied on I'15. In terms of the magnetic vector potential
A, electric scalar potential V and magnetic scalar potential P this amounts to:

u(Tg—VP)-nl-i—(VxA)-nz:O, (754)
(TO—VP)an-l-Mi(VXA)XTLz:O (755)
1
and
O vV ma =0 (756)

on I'15. For uniqueness, the electric potential has to be fixed in one node and
the normal component of A has to vanish along T'15 [86]:

A -ng=0. (757)

To obtain the weak formulation of the above equations they are multiplied
with trial functions and integrated. The trial functions will be denoted by
0A,5V and §P. Starting with Equation(748)) one obtains after multiplication
with d A and taking the vector identies

V-(axb)=(Vxa)-b—a-(Vxb) (758)

V- (aa)=Va-a+aV-a (759)
into account (set b= (V x A)/u in the first vector identity):
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1 1 1
(VX 0A) (VX A) =V (FA X LV x A)+ (V- AV - (54)

1 dA
V[V A)4] 4040 <8t+vv> = 0. (760)

Integrating one obtains, using Gauss’ theorem (it is assumed that Q9 has no
free boundary, i.e. no boundary not connected to §21):

/ v x54). (v x A0 f/ 154 x vA) - nyds+
Qo

H i M

/ l(V'A)(V'cSA)de/ (v 4)04 nads+
Q, M 2 M

SA o (aA + vv) Q=0 (761)
0, ot

The trial functions also have to satisfy the kinematic constraints. Therefore,
0A -ngo = 0 and the second surface integral is zero.
Applying the vector identity

(axb)-n=a-(bxn) (762)

and the boundary condition from Equation (755), the integrand of the first
surface integral can be written as:

(0AXVxA) ng=

R

M (0A-[(V x A) xng]) =
—0A - [(T() — VP) X nl} . (763)
Consequently, the integral now amounts to:
/ [=6A - (Tp x ng) + A - (VP x ng)] dS. (764)
ISP
Applying the same vector identity from above one further arrives at:
/ [=6A - (Tp x 113) + 13 - (54 x VP)] dS. (765)
INP
Finally, using the vector identity:

na - (JA x VP) = Plny - (V x §A)] — ny - [V x (PSA))] (766)

one obtains
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/ (—6A - (To x 13) + Plna - (V x 64)] — ns - [V x (PSA)]}dS.  (767)
T2

The last integral vanishes if the surface is closed due to Stokes’ Theorem.
Now the second equation, Equation (749), is being looked at. After multi-
plication with 6V it can be rewritten as:

V. {5V(f (%’? + vv)] — VoV o (aa,? + vv) =0. (768)

After integration and application of Gauss’ theorem one ends up with the
last term only, due to the boundary condition from Equation ({756]).
Analogously, the third equation, Equation ([744) leads to:

V- (0Pu[To — VP]) = VoP - u(To — pVP) =0. (769)

After integration this leads to (on external faces of €2, i.e. faces not con-
nected to 5 or Q3 the condition B -nq = 0 is applied) :

V6P - i(To — pVP)AQ — | 6Pu(To — VP]-n1dS = 0. (770)
Ql 1—\12

Applying the boundary condition from Equation ([754]) leads to:

/ V6P - u(Ty — pVP)AQ+ | SP(V x A)-nadS=0.  (771)
Q IEP)

So one finally obtains for the governing equations :

/l(vXaA).(vXA)dQ+/ L. sa) v ador
Q2

K 0, M
A
/ 64)- 022 +v@)d9+/ P(V % 6A) - nydS
o, ot Vo .

= | SA-(To x ny)dsS (772)

INP]

0A v

Qo

_ / VP - VP + / (6P)(V x A) - npdS
(o2 T2

= /S  HVOP - Tode2 (774)
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Using the standard shape functions one arrives at (cf. Chapter 2 in [23]):

N N
Z Z Z { {/v (pi,L;SOj,L(SKMd‘/e] 0Aix Ajn—
0e2

e i=1j=1

[ 1
/ <Pz',M90j,KdV6] 0Aik Ajpm+
Voea H

[ 1
/ @i,KSOj,MdVE] 0Aik Ajn+
Voea H

DAjM

/ <PiU<deVe5KM} 0Aik +
Voea

D’Uj

00 kdVe | 0Aix —=
/VOEQQDUSOJ,K } K Dt+

[/ eKLM%QOj,anKdAe] 5AjMPi} =
Ave12

>3 [/ eKLMSDjTOLnZKdAe:| 0A;jm
Age12

e j=1

N N
DAk
Z , Z { |:/Vo:a2 Lpi,KUSOidV;:| 0v; Dt

e i=1j=1
Du;
i k00 kdVe| 8,2 b =0
Uvof’”%”( } ’ Dt}

N

N
Z Z Z { [/v ‘Pi,KM‘Pj,KdVe] 0P, P;
j Oe1l

e =1 j=1

[/ SaieKLMSDj,LTlZKdAe:| 5PiAjM}
AOel2

=— ZZ [/V MsOi,KTOKdVe] op;.

i

(775)

(776)

(777)

(778)

(779)

Notice that the first two equations apply to domain 2, the last one applies
to domain 1. In domain 3 only the first equation applies, in which the time

dependent terms are dropped.
This leads to the following matrices:

1

[Kaaleir)(a) = / — i, L@, L0k M — 0i M@Kk + @ik mldVe (780)

(V(Je)92 ’LL
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| : | |
. a
7777777777 = = o — et diitll =R
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Figure 152: Nonzero parts of the governing matrices

[KaPle(jan) i =/ eKLMPiPs LMK dA.
Oe Tio

[Kpale@iyiam) :/ exLMPiPj Lk dAe
(Aoe)r,,

[KpPlei)(j) = —/ ppi i,k AVe

Oe)Ql

[Maale@ir) i :/ iopjoxpmdVe

Oe Qo

[Mawle(ir)(G) = / 0iop; KOk mdVe
(Voe)a,

[Myale()ir) = / 05 k0Pi0xmdVe

VDe Qo

[Mvv]e(i)(j) :/ <Pi,KO'<Pi,K6KMdVe
(Voe (2

{Fate(ian) = —/ exrm@iTornikdAe
(AOC)F12

{Fp}ewy = */ i kTordV,

VOe)Szl
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(781)

(782)

(783)

(784)

(785)

(786)

(787)

(788)

(789)

Repeated indices imply implicit summation. The [K] matrices are analogous
to the conductivity matrix in heat transfer analyses, the [M] matrices are the
counterpart of the capacity matrix. {F} represents the force. The resulting
system consists of first order ordinary differential equations in time and the
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corresponding matrices look like in Figure Solution of this system yields
the solution for A,v and P from which the magnetic field B and the electric
field E can be determined using Equations (74I[742]).

The internal electromagnetic forces amount to:

{Fa}uky = [Kaaler)yiiany - {AYGary) + [Kapleir)G) - {P})

1
= - / (i LAk, — pi.mAm k + @ik Arvi,m]dVe
1% (Voe)a,
= —/ exLmpi,LPnivdAe (790)
(Aoe)Fm

and

{F}Ya) = [Kpaleaygm - {AYgm) + [Kppleayi) - {P})

= / @ieKLMAM,LMKdAe
(AOE )r12

= —/ ik PrdVe. (791)
(Voe)a,

They have to be in equilibrium with the external forces.

What does the above theory imply for the practical modeling? The con-
ductor containing the driving current is supposed to be modeled using shell
elements. The thickness of the shell elements can vary. The current usually
flows near the surface (skin effect), so the modeling with shell elements is not
really a restriction. The current and potential in the conductor is calculated
using the heat transfer analogy. This means that potential boundary conditions
have to be defined as temperature, current boundary conditions as heat flow
conditions. The driving current containing conductor is completely separate
from the mesh used to calculate the magnetic and electric fields. Notice that
the current in the driving electromagnetic coils is not supposed to be changed
by the electromagnetic field it generates.

The volumetric domains of interest are 2129 and Q3. These three domains
represent the air, the conducting workpiece and that part of the air which, if
filled with workpiece material, makes the workpiece simply connected. These
three domains are to be meshed with volumetric elements. The meshes should
not be connected, i.e., one can mesh these domains in a completely independent
way. This also applies that one can choose the appropriate mesh density for
each domain separately.

Based on the driving current the field Ty is determined in domain 1 with
the Biot-Savart law. This part of the code is parallellized, since the Biot-Savart
integration is calculationally quite expensive. Because of Equation ([88) Ty is
also determined on the external faces of domain 2 and 3 which are in contact
with domain 1.
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The following boundary conditions are imposed (through MPC’s):

On the external faces of domain 1 which are in contact with domain 2 or domain
3:

e Calculation of A based on the external facial values in domain 2 and 3
(cf. the area integrals in [K])

On the external faces of domain 2 and 3 which are in contact with domain 1:
e (Calculation of P based on the external facial values in domain 1.
e Imposition of A-n = 0.

On the faces between domain 2 and 3:
e Continuity of A

These MPC’s are generated automatically within CalculiX and have not to be
taken care of by the user. Finally, the value of V has to be fixed in at least
one node of domain 2. This has to be done by the user with a *\BOUNDARY
condition on degree of freedom 8.

The material data to be defined include:

e the electrical conductivity in the driving coils
e the magnetic permeability in the air

e the density, the thermal conductivity, the specific heat, the electrical con-
ductivity and the magnetic permeability in the workpiece.

To this end the cards FDENSITY] FCONDUCTIVITY! FSPECIFIC HEAT]
FELECTRICAL CONDUCTIVITY] [MAGNETIC PERMEABILITY]can be used.
In the presence of thermal radiation the *PHYSICAL CONSTANTS|card is also
needed.

The procedure card is FELECTROMAGNETICS| For magnetostatic calcu-
lations the parameter MAGNETOSTATICS is to be used, for athermal elec-
tromagnetic calculations the parameter NO HEAT TRANSFER. Default is an
electromagnetic calculation with heat transfer.

Available output variables are POT (the electric potential in the driving
current coil) on the *NODE FILE card and ECD (electric current density in
the driving current coil), EMFE (electric field in the workpiece) and EMFB
(magnetic field in the air and the workpiece) on the *EL FILE card. Examples
are induction.inp and induction2.inp.
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6.9.23 Sensitivity

A sensitivity analysis calculates how a variable G (called the objective function)
changes with some other variables s (called the design variables), i.e. DG/Ds.

If s are the coordinates of some nodes, then the objective function usually
takes the form G(s,U(s)), i.e. it is a direct function of the coordinates and
it is a direct function of the displacements, which are again a function of the
coordinates. One can write (vector- and matrix-denoting parentheses have been
omitted; it is assumed that the reader knows that U and F' are vectors, K and
M are matrices and that s and G are potentially vectors):

DG _0G G ou

Ds  9s  OU 0s’

The governing equation for static (linear and nonlinear) calculations is Fin (s, U(s)) =
Fext(s,U(s)), which leads to

(792)

a-Fint aFwint aiU o 8cht 8cht aiU

9s | oU 0s _ 0s | 0U os (793)
or
ou _ —1 aFext aF‘int
%*K ((‘35 B 88)’ (794)
where
Fin Flox
K = 9w OFex (795)

ou ou

Since for linear applications Fin(s,U(s)) = K(s) - U and Fex(s,U(s)) = F(s),
the above equations reduce in that case to

oK ou  OF
. K. 22 =
Os v ds  0s’ (796)
or
ou oF 0K
R e N I .
0s ( Os  0Os U) (797)
Consequently one arives at the equation:
DG 0G 0G _,_, (0F OK
Ds o5 Taul (as‘as'U>- (798)
For the speed-up of the calculations it is important to perform the calculation

of the term %—f - U on element level and to calculate the term %K —1 pefore

multiplying with the last term in brackets. Furhermore, %K —1 should be

calculated by solving an equation system and not by inverting K.
For special objective functions this relationship is further simplified:

ge =0.

e if GG is the mass 55
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e if G is the shape energy g—gK_l ="U.

e if G are the displacements Equation (797 applies directly

For eigenfrequencies as objective function one starts from the eigenvalue
equation:

K- -U,=MNM- U, (799)
from which one gets:
O\ oU; 0K oM
8SM-UZ»_(K—/\iM)~ 95 +(8s_/\183) -U;. (800)

Premultiplying with U} and taking the eigenvalue equation and the normal-
ization of the eigenvectors w.r.t. M into account leads to

O\ _r (9K _\ OMY
0 = Ui '(as —\i as) U;. (801)

Notice that this is the sensitivity of the eigenvalues, not of the eigenfrequen-
cies (which are the square roots of the eigenvalues). This is exactly how it is
implemented in CalculiX: you get in the output the sensitivity of the eigenvalues.

Subsequently, one can derive the eigenvalue equation to obtain the deriva-
tives of the eigenvectors:

oU; 0K oM O\
K-—-\M =——=—-Ni— - M) -U;. 2
( M) 0s (83 " s 0s > Ui (802)
If s is the orientation in some or all of the elements, the term % is in

addition zero in the above equations.

In CalculiX, G is defined with the keyword FDESIGN RESPONSE] s is
defined with the keyword [DESIGNVARIABLES| and a sensitivity analysis is
introduced with the procedure card FSENSITIVIT Yl

If the parameter NLGEOM is not used on the *SENSITIVITY card, the
calculation of %—I; does not contain the large deformation and stress stiffness,
else it does. Similarly, without NLGEOM % is calculated based on the linear
strains, else the quadratic terms are taken into account.

If the design response is the mass, the shape energy or the displacements
a FSTATIC step must have been performed. The displacements U and the
stiffness matrix K from this step are taken for K and U in Equation (798) (in
the presence of a subsequent sensitivity step K is stored automatically in a file
with the name jobname.stm). If the static step was calculated with NLGEOM,
so should the sensitivity step in order to be consistent. So the procedure cards
should run like:

*STEP
*STATIC
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*STEP
*SENSITIVITY

or

*STEP , NLGEOM
*STATIC

*STEP , NLGEOM
*SENSITIVITY

The NLGEOM parameter is kept if the *SENSITIVITY and *STATIC step are
in the same input deck (so then NLGEOM does not have to be repeated on the
*SENSITIVITY step).

If the objective functions are the eigenfrequencies (which include the eigen-
modes), astep must have been performed with STORAGE=YES.
This frequency step may be a perturbation step, in which case it is preceded by
a static step. The displacements U, the stiffness matrix K and the mass ma-
trix M for equations (BOI)) and (B02) are taken from the frequency step. If the
frequency step is performed as a perturbation step, the sensitivity step should
be performed with NLGEOM, else it is not necessary. So the procedure cards
should run like:

*STEP
*FREQUENCY , STORAGE=YES

*STEP
*SENSITIVITY

or

*STEP
*STATIC

*STEP , PERTURBATION
*FREQUENCY , STORAGE=YES

*STEP , NLGEOM
*SENSITIVITY

or

*STEP , NLGEOM
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*STATIC

*STEP , PERTURBATION
*FREQUENCY , STORAGE=YES

*STEP , NLGEOM
*SENSITIVITY

(a perturbation frequency step only makes sense with a preceding static
step).

The output of a sensitivity calculation is stored as follows (frd-output only
if the SEN output request was specified underneath a *NODE FILE card):

For TYPE=COORDINATE design variables the results of the target func-
tions MASS, STRAIN ENERGY, EIGENFREQUENCY and ALL-DISP (i.e.
the square root of the sum of the squares of the displacements in all objective
nodes) are stored in the .frd-file and can be visualized using CalculiX GraphiX.

For TYPE=ORIENTATION design variables the eigenfrequency sensitivity
is stored in the .dat file whereas the displacement sensitivity (i.e. the derivative
of the displacements in all nodes w.r.t. the orientation) is stored in the .frd-
file. The order of the design variables is listed in the .dat-file. All orientations
defined by *ORIENTATION cards are varied, each orientation is defined by
3 independent variables. So for n *ORIENTATION cards there are 3n design
variables. The sensitivity of the mass w.r.t. the orientation is zero.

Finally, it is important to know that a sensitivity analysis in CalculiX only
works for true 3D-elements (no shells, beams, plane stress, etc...).

6.9.24 Feasible Direction

An optimization calculation usually consists of the minimization (or maxi-
mization) of one objective subject to one or more constraints. To that end
the sensitivity of the objective is modified to take the constraint sensitivities
into account leading to one combined sensitivity. This process takes place
in a FEEASIBLE DIRECTIONI procedure. The ensuing sensitivity determines
where the structure has to be thickened or thinned in order to reach a minimum
of the objective function while not violating any constraint. Constraints can be
taken into account by using the Gradient Projection Method or the Gradient
Descent Method.

In the Gradient Projection Method the constraints are taken into account
by projecting the unconstrained sensitivities on the complement of the subspace
consisting of the normals on the active constraint hyperplanes. Suppose the
domain is n-dimensional (n design variables) and the subspace has the dimension
m (m constraints). Then the sensitivities of the constraints can be arranged as
basis vectors (the normal directions on the hyperplanes) in a n x m matrix. The
projection p of a vector b on the subspace satisfies the orthogonality condition:
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N (b —p)=o0. (803)

Since p belongs to the subspace it can be written as a linear combination of
the basis vectors p = Nz, where x is a m x 1 vector of coefficients. Consequently:
NTNz = NTb, (804)

from which x can be solved yielding;:

p=N(NTN)"'NTb. (805)

The complement of the projection vector is I — N(NTN)"INT. Denot-
ing A = (NTN)~!, the constrained sensitivies ¢ are obtained from the uncon-
strained sensitivities b by:

c=(I—-NANT), (806)

or, in component notation:
ci=bi— Y wi, (807)
k

where

wie = | Y NijAjn (Z(NT)klb1> (808)

7 l

(no summation over k in the last equation).
Active constraints are constraints which

e are fulfilled AND

e for which the Lagrange multiplier points to the non-feasible part of the
space

To this end the algorithm starts with all constraints which are fulfilled and
removes the constraints one-by-one for which the Lagrange multiplier, satisfying

A=—(NTN)"INTvy,. (809)

points to the feasible part of the space.

The Gradient Descent Method is an interior point method which means
that the starting point for an optimization has to lie in the feasible domain.
The influence of the constraints on the feasible direction is always taken into
account independent of the distance to the constraint bound. This methods
aims to stay away from the constraint boundaries as long as possible on the way
to the local optimum. The feasible direction is calculated with the following
formulas (the detailed derivation can be found in [I7]):
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sem— Y V9 (810)
VA vl

Here, Vf is the gradient of the objective function, Vg is the gradient of
the constraint and £ is a value between 0 and 1 defining the weight of the
constraint gradient on the descent direction. Choosing a value for £ between 0.9
and 1.0 leads to meaningful results. By subtracting a portion of the gradient
of the constraint one tends to stay away from the constraint boundary (the
constraint becomes more negative). In case more than one constraint is defined,
the assembly of the gradient vector of all constraint functions n is done using

the logarithmic Barrier function:

- 1
Vg=)» ——Vg. (811)

6.9.25 Robust Design
6.9.26 Green functions

With the keyword card Green functions X; can be calculated satisfy-

ing

K —w3M]- X, = B, (812)

where K is the stiffness matrix of the structure, M the mass matrix, wg
a scalar frequency and FE; a unit force at degree of freedom j. The degree of
freedom j corresponds to a specific coordinate direction in a specific node. For
wp = 0 the Green function is the static answer of a system to a unit force at
some location in one of the global coordinate directions. Usually, these Green
functions are used in subsequent calculations. The Green function procedure
is a linear perturbation procedure, i.e. nonlinear behavior from a previous
*STATIC step can be taken into account (through the appropriately modified
stiffness matrix) using the PERTURBATION parameter on the *STEP card in
the Green step.

The degrees of freedom in which a unit force is to be applied can be defined
by use of the FCLOAD] card (the force value specified by the user is immaterial,
a unit value is taken). wp is a parameter on the *CLOAD card.

If the input deck is stored in the file “problem.inp”, where “problem” stands
for any name, the Green functions, the stiffness matrix and the mass matrix are
stored in binary form in a ”problem.eig” file for further use (e.g. in a sensitivity
step). Furthermore, the Green functions can be stored in the “problem.frd” file,
using the standard FNODE FILE| or FNODE OUTPUT] card.

The sensitivity of the Green functions can be calculated in a subsequent
FSENSITIVITY] step in which the objective function is set to GREEN (cf.
FOBIECTIVE).

Cyclic symmetry can be taken into account by use of the FCYCLIC SYMMETRY MODEIL]
card to define the cyclic symmetry and the *SELECT CYCLIC SYMMETRY MODES|
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card to define the nodal diameters. This is analogous to frequency calculations
with cyclic symmetry.

6.9.27 Crack propagation

In CalculiX a rather simple model to calculate cyclic crack propagation is im-
plemented. In order to perform a crack propagation calculation the following
procedure is to be followed:

e A static calculation (usually called a Low Cycle Fatigue = LCF calcula-
tion) for the uncracked structure (using volumetric elements) for one or
more steps must have been performed and the results (at least stresses; if
applicable, also the temperatures) must have been stored in a frd-file.

e Optionally a frequency calculation (usually called a High Cycle Fatigue =
HCF calculation) for the uncracked structure has been performed and the
results (usually stresses) have been stored in a frd-file.

e For the crack propagation itself a model consisting of at least all cracks to
be considered meshed using S3-shell elements must be created. The orien-
tation of all shell elements used to model one and the same crack should
consistent, i.e. when viewing the crack from one side of the crack shape
all nodes should be numbered clockwise or all nodes should be numbered
counterclockwise. Preferably, also the mesh of the uncracked structure
should be contained (the crack propagation can be easier interpreted if
the structure in which the crack propagates is also visualized) .

e The material parameters for the crack propagation law implemented in
CalculiX must have been determined. Alternatively, the user may code
his/her own crack propagation law in routine crackrate.f.

e The procedure FCRACK PROPAGATION] must have been selected with
appropriate parameters. Within the *CRACK PROPAGATION step the
optional keyword card FHCE] may have been selected.

In CalculiX, the following crack propagation law has been implemented:

da [ da AK \" finfr
dN B <dN>7‘ef <AKT8f> fC , (813)

where

P 1_ AK
th — exp | € AKth

fin =0, AK < AKy, (814)

):| 3 AK > AKth

accounts for the threshold range,
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K
c = 1-—- ] o7 1 ) Kmam Kc
f eXp |: < KC >:| <
fc =0 Kmam > Kc (815)
for the critical cut-off and
=L " (816)
ol -R)t-w

for the R := Ky in/Kmae influence. The material constants have to be entered

by using a FUSER MATERIALf card with the following 8 constants per tem-
perature data point (in that order): (j—]‘\l,)ref [L/cycle], AK,¢;[F/L3?], m[-],
e[, AK[F/L%/?), 6], K.[F/L??] and w[-], were [F] is the unit of force and
[L] of length. Notice that the first part of the law corresponds to the Paris law.
Indeed the classical Paris constant C can be obtained from:

da 1 "
<d]\f)r€f (AKref) - C (817)

Vice versa, AK,.s can be obtained from C using the above equation once
(da/dN)yes has been chosen. Notice that (da/dN)es is the rate for which
AK = AK,.y (just considering the Paris range). For a user material, a maxi-
mum of 8 constants can be defined per line (cf. FUSER_MATERIATJ). Therefore,
after entering the 8 crack propagation constants, the corresponding temperature
has to be entered on a new line.

The crack propagation calculation consists of a number of increments during
which the crack propagates a certain amount. For each increment in a LCF
calculation the following steps are performed:

e The actual shape of the cracks is analyzed, the crack fronts are determined
and the stresses and temperatures (if applicable, else zero) at the crack
front nodes are interpolated from the stress and temperature field in the
uncracked structure.

e The stress tensor at the front nodes is projected on the local tangent
plane yielding a normal component (local y-direction), a shear component
orthogonal to the crack front (local x-direction) and one parallel to the
crack front (local z-direction), leading to the K-factors Ky, K;; and Ky
using the formulas:

K; = FroyyVma (818)

K1 = FriogyV/ma (819)
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Kirr = Friozyvma (820)

where Fy, Fr; and Fpy; are shape factors taking the form

Fr=Fi=Fir=2/n (821)

for subsurface cracks,

Fr=Fir=Frr=2/m(1.04+1.1s%), —-1<s<1 (822)

for surface cracks spanning an angle > 7 and

Fr=Fyp = Frpp = 1.12(1. — 0.025?), —-1<s<1 (823)

for surface cracks spanning an angle of 0 (i.e. a one-sided crack in a two-
dimensional plate). For an angle in between 0 and 7 the shape factors
are linearly interpolated in between the latter two formulas. In the above
formulas s is a local coordinate along the crack front, taking the values
—1 and 1 at the free surface and 0 in the middle of the front. If the user
prefers to use more detailed shape factors, user routine crackshape.f can
be recoded.

e The crack length a in the above formulas is determined in two differ-
ent ways, depending on the value of the parameter LENGTH on the
card:

— for LENGTH=CUMULATIVE the crack length is obtained by incre-
mentally adding the crack propagation increments to the initial crack
length. The initial length is determined using the LENGTH=INTERSECTION
method.

— for LENGTH=INTERSECTION a plane locally orthogonal to the
crack front is constructed and subsequently a second intersection of
this plane with the crack front is sought. The distance in between
these intersection points is the crack length (except for a subsurface
crack for which this length is divided by two). Notice that for in-
tersection purposes the crack front for a surface crack is artificially
closed by the intersection curve of the crack shape with the free sur-
face in between the intersection points of the crack front.

Subsequently, the crack length is smoothed along the crack front according
to:

(824)
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where the sum is over the N closest nodes, d;; is the Euclidean incremental
distance between node i and j, and R is the distance between node j and
the farthest of these nodes. N is a fixed fraction of the total number of
nodes along the front, e.g. 90 %.

From the stress factors an equivalent K-factor and deflection angle ¢ is
calculated using a light modification of the formulas by Richard [80] in
order to cope with negative K values as well:

Keq = sgn(K)([Kq| + /K7 + 5.3361K3, +4K7,,)/2 (825)

and

B _707% < |K[]| > < -~ |KII| > Ky

4 180 \ K1 + |K11] + | Kr11] Ki+ |Krr| + | K1l ) | K11
(826)
for Ky > 0 and ¢ = 0 else. Subsequenty, K., and ¢ are smoothed
in the same way as the crack length. Finally, if any of the deflection
angles exceeds the maximum defined by the user (second entry underneath
the FCRACK PROPAGATION] card) all values along the front are scaled

appropriately.

Notice that at each crack front location as many K., and ¢ values are
calculated as there are steps in the static calculation of the uncracked
structure.

The crack propagation increment for this increment is determined. It is
the minimum of:

— The user defined value (first entry underneath the FCRACK PROPAGATION]
card)

— one fifth of the minimum crack front curvature

— one fifth of the smallest crack length

The crack propagation rate at every crack front location is determined. If
there is only one step it results from the direct application of the crack
propagation law with AK = K.,. For several steps the maximum minus
the minimum of K., is taken. Notice that the crack rate routine is doc-
umented as a user subroutine: for missions consisting of several steps the
user can define his/her own procedure for more complex procedures such
as cycle extraction. The maximum value of da/dN across all crack front
locations determines the number of cycles in this increment.

For each crack front node the location of the propagated node is deter-
mined. This node lies in a plane locally orthogonal to the tangent vector
along the front. To this end a local coordinate system is created (the same
as for the calculation of Ky, K;; and Kj7) consisting of:
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— The local tangent vector ¢.

— The local normal vector obtained by the mean of the normal vec-
tors on the shell elements to which the nodal front position belongs.
This vector is subsequently projected into the plane normal to £ and
normalized to obtain a vector n.

— avector in the propagation direction a = t xn. This assumes that the
tangent vector was such that the corkscrew rule points into direction
n when running along the crack front in direction ¢.

e Then, new nodes are created in between the propagated nodes such that
they are equidistant. The target distance in between these nodes is the
mean distance in between the nodes along the initial crack front.

e Finally, new shell elements are generated covering the crack propagation
increment and the results (K-values, crack length etc.) are stored in frd-
format for visualization. Then, a new increment can start. The number
of increments is governed by the INC parameter on the FSTED] card.

For a combined LCF-HCF calculation, triggered by the FHCElkeyword in the
*CRACK PROPAGATION procedure the picture is slightly more complicated.
On the *HCF card the user defines a scaling factor and a step from the static
calculation on which the HCF loading is to be applied. This is usually the
static loading at which the modal excitation occurs. At this step a HCF cycle is
considered consisting of the LCF+HCF and the LCF-HCF loading. The effect
is as follows:

e If this cycle leads to propagaton and HCF propagation is not allowed
(MAX CYCLE= 0 on the *HCF card; this is default) the program stops
with an appropriate error message.

e If it leads to propagation and HCF propagation is allowed (MAX CYCLE
> 0 on the *HCF card) the number of cycles is determined to reach the
desired crack propagation in this increment and the next increment is
started. No LCF propagation is considered in this increment.

e If it does not lead to HCF propagation, LCF propagation is considered
for the static loading in which the LCF loading of the step to which HCF
applies is repaced by LCF+HCF loading. The propagation is calculated
as usual.

The output of a *CRACK PROPAGATION step is selected by using the
parameter KEQ on the FNODE FILEl card. Then, a data set is created in the
frd-file consisting of the following information (most of this information can be
changed in user subroutine crackrate.f):

e The dominant step. This is the step with the largest K., (over all steps). If
the dominant step is a HCF induced step, step numbers -1 and -2 are used
to denominate the LCF-HCF step and the LCF+HCF step,respectively.
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o DeltaKEQ: the value of AK,, for the main cycle. In the present imple-
mentation this corresponds to the largest value of K., (over all steps).

o KEQMIN: the minimal value of K., (over all steps).
o KEQMAX: the largest value of K., (over all steps).
e KIWORST: the largest value of | K| multiplied by its sign (over all steps).
e K2WORST: the largest value of | K| multiplied by its sign (over all steps).

e K3WORST: the largest value of |Kjrr| multiplied by its sign (over all
steps).

e PHI: the deflection angle ¢.

e R: the R-value of the main cycle. In the present implementation this is
Zero.

e DADN: the crack propagation rate.
e KTH: not used.

e INC: the increment number. This is the same for all nodes along one and
the same crack front.

e CYCLES: the number of cycles since the start of the calculation. This
number is common to all crack front nodes.

e CRLENGTH: crack length.
e DOM_SLIP: not used

Since the jobname.frd file is created from scratch in every *CRACK PROPAGATION|

step (this is because every *CRACK PROPAGATION step changes the number
of nodes and elements in the model due to the growing crack) it does not make
sense to have more than one such step in an input deck. In fact, any other step
is senseless and ideally the *CRACK PROPAGATION step should be the only
step in the deck. If the user defines more than one *CRACK PROPAGATION
step in his/her input deck, the jobname.frd file will only contain the output
requested, if any, from the last *CRACK PROPAGATION step. This rule also
applies to restart calculations.

6.10 Convergence criteria
6.10.1 Thermomechanical iterations

To find the solution at the end of a given increment a set of nonlinear equations
has to be solved. In order to do so, the Newton-Raphson method is used,
i.e. the set of equations is locally linearized and solved. If the solution does
not satisfy the original nonlinear equations, the latter are again linearized at
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the new solution. This procedure is repeated until the solution satisfies the
original nonlinear equations within a certain margin. Suppose iteration ¢ has
been performed and convergence is to be checked. Let us introduce the following
quantities:

o ¢7: the average flux for field « at the end of iteration 4. It is defined by:

Cja _ Ze Zne an |q?|
’ Ze Zne k%

where e represents all elements, n. all nodes belonging to a given element,
ky, all degrees of freedom for field o belonging to a given node and ¢ is
the flux for a given degree of freedom of field « in a given node belonging
to a given element at the end of iteration i. Right now, there are two
kind of fluxes in CalculiX: the force for mechanical calculations and the
concentrated heat flux for thermal calculations.

(827)

e §7: the iteration-average of the average flux for field o of all iterations in
the present increment up to but not including iteration q.

o 7 .t the largest residual flux (in absolute value) of field v at the end

of iteration i. For its calculation each degree of freedom is considered
independently from all others:

@ a 2
r max[dg;'|, (828)

i,max
where § denotes the change due to iteration 3.

e Aug,, .. the largest change in solution (in absolute value) of field v in the

present increment, i.e. the solution at the end of iteration i of the present
increment minus the solution at the start of the increment :

Aud, .. = maxmax max |Auj|, (829)
’ e Ne n

where A denotes the change due to the present increment. In mechanical

calculations the solution is the displacement, in thermal calculations it is

the temperature.

¢ maz: the largest change in solution (in absolute value) of field a in

iteration 2. :

® C

(e
i, max

c = max max max |Ju;|. (830)
e

Ne kn

Now, two constants ¢; and ¢y are introduced: c¢; is used to check convergence
of the flux, co serves to check convergence of the solution. Their values depend
on whether zero flux conditions prevail or not. Zero flux is defined by
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a < e (831)

The following rules apply:

o if(g* > €*¢%) (no zero flux):
—if (i < 1,[9]) c1 = R2[0.005], ¢s = C[0.02].
— else ¢; = R5[0.02], c2 = C5[0.02].

e clse (zero flux) ¢; = €*[107°], co = C*[0.001]

The values in square brackets are the default values. They can be changed
by using the keyword card FCONTROLS| Now, convergence is obtained if

{rgmaa: < Cl(j? (832)

AND if, for thermal or thermomechanical calculations (FHEAT TRANSFER]
FCOUPLED TEMPERATURE-DISPLACEMENT or FUNCOUPLED TEMPERATURE-DISPLACEMENT),

the temperature change does not exceed DELTMX,

AND at least one of the following conditions is satisfied:

o @
® Cimax < cQAui,maz
[ ]
Tz‘cfmaxcgmaac a
, < AU - (833)
min{rs re } ’
i—1l,max’ ' i—2,max

The left hands side is an estimate of the largest solution correction in the
next iteration. This condition only applies if no gas temperatures are to
be calculated (no forced convection).

o 7 an < RF[1078]gY. If this condition is satisfied, the increment is as-
sumed to be linear and no solution convergence check is performed. This
condition only applies if no gas temperatures are to be calculated (no

forced convection).

o ¢ < €e*[1075]G% (zero flux conditions). This condition only applies if no
gas temperatures are to be calculated (no forced convection).

o ¢ < 1078.

1, max

If convergence is reached, and the size of the increments is not fixed by the

user (no parameter DIRECT on theFSTATIC] orFHEAT TRANSFERI

card) the size of the next increment is changed under certain circumstances:

e if(i > I;[10]): df = dODg[0.75], where df is the increment size relative
to the step size (convergence was rather slow and the increment size is
decreased).
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if(i < Ig[4]) AND the same applies for the previous increment: df =
dODp[1.5] (convergence is fast and the increment size is increased).

If no convergence is reached in iteration ¢, the following actions are taken:

if, for thermomechanical calculations, the temperature change exceeds

DELTMX, the size of the increment is multiplied by 0Pt Dy
[0.85].

if i > I¢[16], too many iterations are needed to reach convergence and
any further effort is abandoned: CalculiX stops with an error message.

if i > Iy[4] AND \rﬁmam > 10720] AND |cffmam > 1072°| AND T8 maz >
r?fQ’maz AND rffmam > 7‘72012,777,11:6 AND rf’“max > ¢1qf* then:

— if the parameter DIRECT is active, the solution is considered to be
divergent and CalculiX stops with an error message.

— else, the size of the increment is adapted according to df = d6D[0.25]
and the iteration of the increment is restarted.

if ¢ > IR[8], the number of iterations z is estimated needed to reach
convergence. x roughly satisfies:

i—1,max

x
ro
r?maz ((M) = RZ@? (834)
' T
from which x can be determined. Now, if

In (Rg )

Ti—1,max
(which means that the estimated number of iterations needed to reach con-
vergence exceeds Io) OR i = I, the increment size is adapted according
to df = d0D¢[0.5] and the iteration of the increment is restarted unless

the parameter DIRECT was selected. In the latter case the increment is
not restarted and the iterations continue.

i+ > Io([16] (835)

if none of the above applies iteration continues.

6.10.2 Contact

In the presence of contact the convergence conditions in the previous section
are slightly modified. Let us first repeat the general convergence check strategy
(coded in checkconvergence.c):

If, at the end of an iteration, convergence is detected then:
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— a new increment is started (unless the step is finished)

— it is checked whether the size of this increment has to be decreased
w.r.t. the present increment size (slow convergence) or can be in-
creased (fast convergence)

e clse (no convergence detected)

— it is checked whether the number of allowable iterations has been
reached, if so the program stops

— it is checked whether divergence occurred in the following order:

% due to non-convergence in a material user subroutine

x the force residual is larger than in the previous iteration AND
larger than in the iteration before the previous iteration (only
done after I iterations). Let us call this check the major diver-
gence check.

* due to the violation of a user-defined limit (e.g. temperature
change limit, viscous strain limit)

— if divergence is detected then

x if the increment size is fixed by the user the program stops

* else a new increment is started with a smaller size (unless the
size is smaller than a user-defined quantity, in which case the
program stops)

— if no divergence is detected then a check is performed for too slow
convergence. If this is the case then

x if the increment size is fixed by the user the program stops

* else a new increment is started with a smaller size (unless the
size is smaller than a user-defined quantity, in which case the
program stops)

— if no divergence is detected and the convergence is not too slow the
next iteration is started.

In the case penalty contact was defined an additional parameter iflagact is
defined expressing whether the number of contact elements changed significantly
between the present and the previous iteration. In the latter case iflagact=1,
else it takes the value zero (default). Whether a change is significantly or not
is governed by the value of the parameter delcon, which the user can define un-
derneath a *CONTROLS,PARAMETERS=CONTACT card (default is 0.001,
ie. 0.1 %).

Now, in the case of node-to-face penalty contact the standard convergence
check algorithm is modified as follows:

e If iflagact=1 at the end of the present iteration the counter for Iy and Ig
is reset to zero and the value of I is incremented by 1.
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e Mechanical convergence requires iflagact to be zero.
In the case of face-to-face penalty contact the criteria are modified as follows:
e Mechanical convergence requires iflagact to be zero.

e If convergence occurred the check whether the next increment must be
decreased is not done

e If no convergence occurred then

— the check whether the number of allowable iterations has been reached
is not done

— the major divergence check (see above) is only done if one of the
following conditions is satisfied:

x the present force residual exceeds 1.9

x iflagact is zero (no significant change in contact elements). If,
in this case, the major divergence check points to divergence
and the solution condition ¢, .. < c2Auf,, ., is satisfied the
aleatoric flag is set to 1. Physically, this means that the force
residuals are increasing although the displacement solution does
not change much, i.e. a local minimum has been reached. In or-
der to leave this minimum a percentage of the contacts (default:
10 %; can be changed with the *CONTROLS,PARAMETERS=CONTACT
card) is removed in an aleatoric way in order to stir the complete
structure.

% the number of contact elements is oscillating since the last two
iterations (e.g. the number of contact elements increased in the
present iteration but decreased in the previous one or vice versa)
and there is no significant change in the sum of the residual force
in the present and previous iteration (compared to the sum of
the residual force in the previous iteration and the one before
the previous iteration). Physically this means that solution is
alternating between two states.

— if divergence is detected not only the time increment is decreased,
also the spring stiffness in case of linear pressure-overclosure and
the stick slope are reduced by a factor of 100 (this number can be
changed with the *CONTROLS,PARAMETERS=CONTACT card).
This factor (variable “kscale” in the code) is reset to one at the next
convergence detection in which case the iteration is continued until
renewed successful convergence for kscale=1.

— the too slow convergence check is replaced by a check whether the
number of iterations has reached the value of 60 (this number can be
changed with the *CONTROLS,PARAMETERS=CONTACT card).
In that case the spring stiffness in case of linear pressure-overclosure
and the stick slope are reduced by a factor of 100 (this number can be
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Figure 153: Principle of the line search method

changed with the *CONTROLS,PARAMETERS=CONTACT card).
This factor (variable “kscale” in the code) is reset to one at the next
convergence detection in which case the iteration is continued until
renewed successful convergence for kscale=1). The time increment is
NOT decreased, unless this is already the second cutback or higher.

6.10.3 Line search

In the case of static calculations with face-to-face penalty contact the displace-
ment increment Aw in each iteration is scaled with a scalar A in order to get
better convergence. A is determined such that the residual (i.e. external force
minus internal force) of the scaled solution u + AAw is orthogonal to the dis-
placement increment:

Au - R(u+ AAu) =0. (836)

Now, the residual for A = 0 is known from the previous increment, and the
residual for A = 1 is known from the present increment. In between a linear
relationship is assumed (cf. Figure [[53]), which yields the value of A without
extra calculations. With the FCONTROLS| card the user can specify a value for
Amin (default: 0.25) and Apax(default: 1.01).

6.10.4 Network iterations

For network iterations two kinds of convergence criteria are applied: the resid-
uals and the change in the solution must be both small enough.
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For the mass and energy flow residuals ¢i* and rf,,,, are calculated as spec-
ified in Equations (827) and (828)) with k,, = 1 and ¢{* equal to the mass flow
(unit of mass/unit of time) and the energy flow (unit of energy/unit of time).
For the element equation ¢ is taken to be 1 (the element equation is dimen-
sionless) and rf,,,, is calculated based on the element equation residuals. The

residual check amounts to

T'?fma:v < Cl*df (837)
where ¢y, takes the value ci;, ciy and ci, for the energy balance, mass bal-
ance and element equation, respectively. In addition, an absolute check can be
performed in the form

r < agx (838)

i,mar —

where ay, takes the value aq;, a1y and ay, for the energy balance, mass balance
and element equation, respectively. Default is to deactivate the absolute check
(the coefficients a1, are set to 10%).

In the same way the maximum change in solution in network iteration i
Cf'maz 18 compared with the maximum change in the solution since the start
of the network iterations, i.e. the solution at the end of iteration i minus the
solution at the beginning of the increment(before network iteration 1). This
is done separately for the temperature, the mass flow, the pressure and the
geometry. It amounts to the equation:

«
ci,maa: S

Co AU (839)

i,max)

where co, takes the value co;, cof, cop and cp, for the temperature, the mass
flow, the pressure and the geometry, respectively. In addition, an aboslute check
can be performed in the form

& < Gos, (840)

i,mar —

where as, takes the value as:, azs and ag, for the temperature, the mass flow,
the pressure and the geometry. Default is to deactivate the absolute check (the
coefficients as, are set to 10%0).

The parameters ci¢, cif, Cip, C2, Caf, Cop, C2q and a1¢, G1f, Q1p, G2, Q2f,
a2p, G2, can be changed using the FCONTROLSIPARAMETERS=NETWORK
card.

Both criteria are important. A convergent solution with divergent residuals
points to a local minimum, convergent residuals with a divergent solution point
to a singular equation system (i.e. infinitely many solutions).

6.10.5 Implicit dynamics

In CalculiX, implicit dynamics is implemented using the a-method [23]. The
method is unconditionally stable and second order accurate. The parameter
a € [-1/3,0] represents high frequency damping. The lower the value, the
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more high frequency dissipation is introduced. This is frequently desired in
order to reduce noice. However, it also leads to energy loss.

An analysis has shown that the usual static convergence criteria have to be
supplemented by energy criteria in order to obtain good results. To this end,
the relative energy balance is used defined by:

Ag(tn) + AK:(tn) + Agc(tn) - Wextﬁg - Wdampﬁg
maxie(tg,t,] (A )], K], [Wext (£)]) ’

(841)

Te =
where

e {q is the time at the beginning of the present step
e t, is the actual step time

e A denotes the difference of a quantity between the actual time and the
time at the beginning of the step

e & is the internal energy
e C is the kinetic energy
e &, is the contact spring energy

° chtﬁ:; is the external work done since the start of the present step

° Wdamp|ig is the work done by damping since the start of the present step
(always negative)

e in the denominator the choice of the kinetic energy versus the CHANGE
of the internal energy is on purpose.

At the start of the step the relative energy balance is zero. During the step it
usually decreases (becomes negative) and increases in size. Limiting the relative
energy decay at the end of the step to €, during the step the following minimum
energy decay function is proposed:

pmin 75(1 +0), (842)
where 6 is the relative step time, 0 < 6 < 1. The following algorithm is now

used:
If

P < —%(1 +0). (843)
the increment size is decreased. Else if
Pe < —0.9%(1 +0), (844)

the increment size is kept. Else it is increased.
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In dynamic calculations contact is frequently an important issue. As soon as
more than one body is modeled they may and generally will come into contact.
In CalculiX penalty contact is implemented by the use of springs, either in a
node-to-face version or in a face-to-face version (face-to-face mortar contact is
only available for static procedures). A detailed analysis of contact phenomena
in dynamic calculations [71] has revealed that there are three instances at which
energy may be lost: at the time of impact, during persistent contact and at the
time of rebound.

At the time of impact a relative energy decrease has been observed, whereas
at the time of rebound a relative energy increase occurs. The reason for this is
the finite time increment during which impact or rebound takes place. During
closed contact the contact forces do not perform any work (they are equal and
opposite and are subject to a common motion). However, in the increment
during which impact or rebound occurs, they do perform work in the part of
the increment during which the gap is not closed. The more precise the time
of impact coincides with the beginning or end of an increment, the smaller the
error. Therefore, the following convergence criteria are prososed:

At impact the relative energy decrease (after impact minus before impact)
should not exceed 0.008, i.e.

Afm”after impact 2 *0008, (845)

before impact

else the increment size is decreased by a factor of 4.
At rebound the relative energy increase between the time of rebound and
the time of impact should not exceed 0.0025, i.e.

Afm”rebound S _000257 (846)

impact

else the increment size is decreased by a factor of 2.

In between impact and rebound (persistent contact) both the impact crite-
rion as well as the rebound criterion has to be satisfied. Furthermore it has been
observed that during contact frequently vibrations are generated corresponding
to the eigenfrequency of the contact springs. Due to the high frequency damp-
ing characteristics of the a-method this contributes additionally to a decay of
the relative energy. To avoid this, the time increment should ideally exceed the
period of these oscillations substantionally,

(847)

step o step

is aimed at, where T¢ is the period of the oscillations, Tytep is the duration
of the step and df is the relative increment size.

6.11 Loading

All loading, except residual stresses, must be specified within a step. Its magni-
tude can be modified by a time dependent amplitude history using the FAMPLITUDE]
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Figure 154: Face numbering for hexahedral elements

keyword. This makes sense for nonlinear static, nonlinear dynamic, modal dy-
namic and steady state dynamics procedures only. Default loading history is a
ramp function for *STATIC procedures and step loading for *DYNAMIC and
*MODAL DYNAMIC procedures.

6.11.1 Point loads

Point loads are applied to the nodes of the mesh by means of the FCLOAD] key
word. Applying a point load at a node in a direction for which a point load was
specified in a previous step replaces this point load, otherwise it is added. The
parameter OP=NEW on the *CLOAD card removes all previous point loads.
It takes only effect for the first *CLOAD card in a step. A buckling step always
removes all previous loads.

6.11.2 Facial distributed loading

Distributed loading is triggered by the FDLOADI card. Facial distributed loads
are entered as pressure loads on the element faces, which are for that purpose
numbered according to Figures [[54] and

Thus, for hexahedral elements the faces are numbered as follows:

e Face 1: 1-2-3-4

e Face 2: 5-8-7-6
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Figure 155: Face numbering for tetrahedral elements

Figure 156: Face numbering for wedge elements
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Face 3: 1-5-6-2

Face 4: 2-6-7-3

Face 5: 3-7-8-4

e Face 6: 4-8-5-1

for tetrahedral elements:

=

e Face 1: 1-2-3
o Face 2: 1-4-2
e Face 3: 2-4-3
e Face 4: 3-4-1
for wedge elements:
e Face 1: 1-2-3

Face 2: 4-5-6

Face 3: 1-2-5-4

e Face 4: 2-3-6-5
e Face 5: 3-1-4-6
for quadrilateral plane stress, plane strain and axisymmetric elements:
e Face 1: 1-2
e Face 2: 2-3
e Face 3: 34
e Face 4: 4-1
for triangular plane stress, plane strain and axisymmetric elements:
e Face 1: 1-2
e Face 2: 2-3
e Face 3: 3-1
for beam elements:
e Face 1: pressure in 1-direction

e Face 2: pressure in 2-direction
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Figure 157: Equivalent nodal forces for a face of a C3D20(R) element

For shell elements no face number is needed since there is only one kind of
loading: pressure in the direction of the normal on the shell.

Applying a pressure to a face for which a pressure was specified in a previous
step replaces this pressure. The parameter OP=NEW on the *DLOAD card
removes all previous distributed loads. It only takes effect for the first *DLOAD
card in a step. A buckling step always removes all previous loads.

In a large deformation analysis the pressure is applied to the deformed face
of the element. Thus, if you pull a rod with a constant pressure, the total force
will decrease due to the decrease of the cross-sectional area of the rod. This
effect may or may not be intended. If not, the pressure can be replaced by
nodal forces. Figures and show the equivalent forces for a unit pressure
applied to a face of a C3D20(R) and C3D10 element. Notice that the force is
zero (C3D10) or has the opposite sign (C3D20(R)) for quadratic elements. For
the linear C3D8(R) elements, the force takes the value 1/4 in each node of the
face.

6.11.3 Centrifugal distributed loading

Centrifugal loading is selected by the FDLOADI card, together with the CEN-
TRIF label. Centrifugal loading is characterized by its magnitude (defined as
the rotational speed square w?) and two points on the rotation axes. To obtain
the force per unit volume the centrifugal loading is multiplied by the density.
Consequently, the material density is required. The parameter OP=NEW on
the *DLOAD card removes all previous distributed loads. It only takes effect for
the first *DLOAD card in a step. A buckling step always removes all previous
loads.
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Figure 158: Equivalent nodal forces for a face of a C3D10 element

6.11.4 Gravity distributed loading

Gravity loading with known gravity vector is selected by the FDLOAD] card,
together with the GRAV label. It is characterized by the vector representing
the acceleration. The material density is required. Several gravity load cards
can appear in one and the same step, provided the element set and/or the
direction of the load varies (else, the previous gravity load is replaced). The
parameter OP=NEW on the *DLOAD card removes all previous distributed
loads. It only takes effect for the first *DLOAD card in a step. A buckling step
always removes all previous loads.

General gravity loading, for which the gravity vector is calculated by the
momentaneous mass distribution is selected by the FDLOAD] card, together
with the NEWTON label. For this type of loading to make sense all ele-
ments must be assigned a NEWTON type label loading, since only these el-
ements are taken into account for the mass distribution calculation. This type
of loading requires the material density (FDENSITY)) and the universal gravi-
tational constant (FPILYSICAL CONSTANTS)). It is typically used for the cal-
culation of orbits and automatically triggers a nonlinear calculation. Conse-
quently, it can only be used in the *STATIC, *VISCO, *DYNAMIC or *COU-
PLED TEMPERATURE-DISPLACEMENT step and not in a *FREQUENCY,
*BUCKLE, *MODAL DYNAMIC or *STEADY STATE DYNAMICS step. It’s
use in a *HEAT TRANSFER step is possible, but does not make sense since
mechanical loading is not taken into account in a pure heat transfer analysis.

6.11.5 Forces obtained by selecting RF

This section has been included because the output when selecting RF on a
*NODE PRINT, *NODE FILE or *NODE OUTPUT card is not always what
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Figure 159: Point load in a node belonging to a 8-noded face

the user expects. With RF you get the sum of all external forces in a node. The
external forces can be viewed as the sum of the loading forces and the reaction
forces. Let us have a look at a couple of examples:

Figure[I59 represents the upper surface of a plate of size 1 x 1 x 0.1, modeled
by just one C3D20R element. Only the upper face of the element is shown.
Suppose the user has fixed all nodes belonging to this face in loading direction.
In node 1 an external point loading is applied of size P. Since this node is fixed
in loading direction, a reaction force of size R=P will arise. The size of the total
force, i.e. the point loading plus the reaction force is zero. This is what the user
will get if RF is selected for this node.

Figure shows the same face, but now the upper surface is loaded by a
pressure of size 1. Again, only one C3D20R element is used and the equivalent
point forces for the pressure load are as shown. We assume that all nodes on
the border of the plate are fixed in loading direction (in this case this means
all nodes, since all nodes are lying on the border). Therefore, in each node a
reaction force will arise equal to the loading force. Again, the total force in each
node is zero, which is the value the user will get by selecting RF on the *NODE
PRINT, *NODE FILE or *NODE OUTPUT card.

Now, the plate is meshed with 4 quadratic elements. Figure [61] shows a
view from above. All borders of the plate are fixed and the numbers at the
nodes represent the nodal forces corresponding to the uniform pressure of size
1. Suppose the user would like to know the sum of the external forces at the
border nodes (e.g. by selecting RF on a *NODE PRINT card with parameter
TOTALS=ONLY). The external forces are the sum of the reaction forces and the
loading forces. The total reaction force is -1. The loading forces at the border
nodes are the non-circled ones in Figure[I61l summing up to 5/12. Consequently
the sum of the external forces at the border nodes is -7/12.
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Figure 160: Equivalent forces of a uniform pressure on a plate (1 element)
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Figure 161: Equivalent forces of a uniform pressure on a plate (4 elements)
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By selecting an even finer mesh the sum of the external forces at the border
nodes will approach -1.

Summarizing, selecting RF gives you the sum of the reaction forces and
the loading forces. This is equal to the reaction forces only if the elements
belonging to the selected nodes are not loaded by a *DLOAD card, and the
nodes themselves are not loaded by a *CLOAD card.

6.11.6 Temperature loading in a mechanical analysis

Temperature loading is triggered by the keyword FTEMPERATUREl Specifica-

tion of initial temperatures (FINITIAL CONDITIONS| TYPE=TEMPERATURE)

and expansion coefficients (FEXPANSION)) is required. The temperature is
specified at the nodes. Redefined temperatures replace existing ones.

6.11.7 Initial(residual) stresses

In each integration point of an element a residual stress tensor can be specified

by the keyword FINITIAL CONDITIONS| TYPE=STRESS. The residual stress

should be defined before the first *STEP card.

6.11.8 Concentrated heat flux

Concentrated heat flux can be defined in nodes by using the FCELUX] card.
The units are those of power, flux entering the body is positive, flux leaving the
body is negative.

6.11.9 Distributed heat flux

Distributed heat flux can be defined on element sides by using the FDELUX]
card. The units are those of power per unit of area, flux entering the body is
positive, flux leaving the body is negative. Nonuniform flux can be defined by
using the subroutine dflux.f.

In the absence of a *DFLUX card for a given element face, no distributed
heat flux will be applied to this face. This seems reasonable, however, this only
applies to solid structures. Due to the iterative way in which fluid dynamics
calculations are performed an external element face in a CFD calculation ex-
hibits no heat flux only if a *DFLUX card was defined for this surface with a
heat flux value of zero.

6.11.10 Convective heat flux

Convective heat flux is a flux depending on the temperature difference between
the body and the adjacent fluid (liquid or gas) and is triggered by the FFILM]
card. It takes the form

q = h(T —To) (848)
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where ¢ is the a flux normal to the surface, h is the film coefficient, T is
the body temperature and Ty is the environment fluid temperature (also called
sink temperature). Generally, the sink temperature is known. If it is not,
it is an unknown in the system. Physically, the convection along the surface
can be forced or free. Forced convection means that the mass flow rate of the
adjacent fluid (gas or liquid) is known and its temperature is the result of heat
exchange between body and fluid. This case can be simulated by CalculiX by
defining network elements and using the FBOUNDARY] card for the first degree
of freedom in the midside node of the element. Free convection, for which the
mass flow rate is a n unknown too and a result of temperature differences, cannot
be simulated.

6.11.11 Radiative heat flux

Radiative heat flux is a flux depending on the temperature of the body and
is triggered by the FRADIATE] card. No external medium is needed. If other
bodies are present, an interaction takes place. This is called cavity radiation.
Usually, it is not possible to model all bodies in the environment. Then, a
homogeneous environmental body temperature can be defined. In that case,
the radiative flux takes the form

q=eo(0* —0) (849)

where ¢ is a flux normal to the surface, € is the emissivity, o = 5.67 x 1078
W /m?K* is the Stefan-Boltzmann constant, 6 is the absolute body temperature
(Kelvin) and 6y is the absolute environment temperature (also called sink tem-
perature). The emissivity takes values between 0 and 1. A zero value applied
to a body with no absorption nor emission and 100 % reflection. A value of 1
applies to a black body. The radiation is assumed to be diffuse (independent of
the direction of emission) and gray (independent of the emitted wave length).

If other bodies are present, the radiative interaction is taken into account
and viewfactors are calculated if the user selects the appropriate load label.

6.12 FError estimators
6.12.1 Zienkiewicz-Zhu error estimator

The Zienkiewicz-Zhu error estimator [IT1], [I12] tries to estimate the error made
by the finite element discretization. To do so, it calculates for each node an
improved stress and defines the error as the difference between this stress and
the one calculated by the standard finite element procedure.

The stress obtained in the nodes using the standard finite element procedure
is an extrapolation of the stresses at the integration points [23]. Indeed, the ba-
sic unknowns in mechanical calculations are the displacements. Differentiating
the displacements yields the strains, which can be converted into stresses by
means of the appropriate material law. Due to the numerical integration used
to obtain the stiffness coefficients, the strains and stresses are most accurate
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at the integration points. The standard finite element procedure extrapolates
these integration point values to the nodes. The way this extrapolation is done
depends on the kind of element [23]. Usually, a node belongs to more than one
element. The standard procedure averages the stress values obtained from each
element to which the node belongs.

To determine a more accurate stress value at the nodes, the Zienkiewicz-
Zhu procedure starts from the stresses at the reduced integration points. This
applies to quadratic elements only, since only for these elements a reduced inte-
gration procedure exists (for element types different from C3D20R the ordinary
integration points are taken instead) . The reduced integration points are su-
perconvergent points, i.e. points at which the stress is an order of magnitude
more accurate than in any other point within the element [7]. To improve the
stress at a node an element patch is defined, usually consisting of all elements
to which the nodes belongs. However, at boundaries and for tetrahedral ele-
ments this patch can contain other elements too. Now, a polynomial function is
defined consisting of the monomials used for the shape function of the elements
at stake. Again, to improve the accuracy, other monomials may be considered
as well. The coefficients of the polynomial are defined such that the polyno-
mial matches the stress as well as possible in the reduced integration points of
the patch (in a least squares sense). Finally, an improved stress in the node
is obtained by evaluating this polynomial. This is done for all stress compo-
nents separately. For more details on the implementation in CalculiX the user
is referred to [60].

In CalculiX one can obtain the improved CalculiX-Zhu stress by selecting
778 underneath the FEL FILEl keyword card. It is available for tetrahedral
and hexahedral elements. In a node belonging to tetrahedral, hexahedral and
any other type of elements, only the hexahedral elements are used to defined
the improved stress, if the node does not belong to hexahedral elements the
tetrahedral elements are used, if any.

6.12.2 Gradient error estimator

A different error estimator is based on the difference between the maximum and
minimum of an elementwise-selected principal stress at the integration points in
the elements belonging to one and the same node . It is triggered by selecting
ERR underneath the FEL FILE] keyword card.

The elementwise-selected principal stress is either the smallest or the largest
principal stress (first or third). It is the largest principal stress if the maximum
over all integration points in the element of the absolute value of the largest
principal stress is larger than the maximum over all integration points in the
element of the absolute value of the smallest principal stress. Else, it is the
smallest principal stress.

A node usually belongs to several elements. The stresses are available (and
most accurate) at the integration points of these elements. If the largest differ-
ence between the elementwise-selected principal stress at all integration points
within an element is small, the stresses vary little across the element and the
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element size is deemed adequate to yield an accurate stress prediction. From
the absolute value of the largest difference a relative element value is calculated.
The relative element value is the absolute value divided by the absolute value
of the largest elementwise-selected principal stress within the element.

To obtain the relative value at the nodes the maximum is taken of the
relative element value across all elements belonging to the node. In a strict
sense this is not an error estimator, it is just a measure for the variation of the
elementwise-selected principal stress across all elements belonging to the node.

By applying this concept to a large number of examples for which the stress
error was known a heuristic relationship was deduced. It allows for a given
element type to determine the error in the elementwise-selected principal stress
in a node (called STR in the frd file; it is obtained by selecting ERR under-
neath the *EL FILE or *ELEMENT OUTPUT card) from the relative measure
just defined (describing the relative change of the elementwise-selected principal
stress in the adjacent elements). If a node belongs to several element types the
worst value is taken. The STR-value is in %.

For heat transfer a similar error estimator was coded for the heat flux. It is
triggered by selecting HER underneath the FEL FILE] keyword card. It repre-
sents the variation of the size of the heat flux vector across all elements belonging
to one and the same node. For thermal problems too heuristic relationships con-
necting the largest temperature gradient in the adjacent element to a node and
the temperature error in the node have been established. The temperature er-
ror is called TEM in the frd file and is in %. It is obtained by selecting HER
underneath the *EL FILE or *ELEMENT OUTPUT card.

6.13 Output variables

Output is provided with the commands FNODE FILE and FEL FILEin the .frd
file (ASCII), with the commandsFNODE OUTPUT]and FELEMENT OUTPUT]
in the .frd file (binary) and with the commandsFNODE PRINT|and FEL PRINTI
in the .dat file (ASCII). Binary .frd files are much shorter and can be faster read
by CalculiX GraphiX. Nodal variables (selected by the *NODE FILE, *NODE
OUTPUT and *NODE PRINT keywords) are always stored at the nodes. El-
ement variables (selected by the *EL FILE, *ELEMENT OUTPUT and *EL-
EMENT PRINT keywords) are stored at the integration points in the .dat file
and at the nodes in the .frd file. Notice that element variables are more accurate
at the integration points. The values at the nodes are extrapolated values and
consequently less accurate. For example, the von Mises stress and the equiva-
lent plastic strain at the integration points have to lie on the stress-strain curve
defined by the user underneath the FPLASTIC] card, the extrapolated values at
the nodes do not have to.

In fluid networks interpolation is used to calculate the nodal values at nodes
in which they are not defined. Indeed, due to the structure of a network ele-
ment the total temperature, the static temperature and the total pressure are
determined at the end nodes, whereas the mass flow is calculated at the middle
nodes. Therefore, to guarantee a continuous representation in the .frd file the
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values of the total temperature, the static temperature and the total pressure at
the middle nodes are interpolated from their end node values and the end node
values of the mass flow are determined from the neighboring mid-node values.
This is not done for .dat file values (missing values are in that case zero).

A major different between the FILE and PRINT requests is that the PRINT
requests HAVE TO be accompanied by a set name. Consequently, the output
can be limited to a few nodes or elements. The output in the .frd file can but
does not have to be restricted to subsets. If no node set is selected by using the
NSET parameter (both for nodal and element values, since output in the .frd
file is always at the nodes) output is for the complete model.

The following output variables are available:

Table 18: List of output variables.

variable meaning type frd fi
CDIS relative contact displacements nodal CONT/
CONTA
PEEQ equivalent plastic strain int.point PE
CELS contact energy nodal CEL
CF total contact force surface
CFN total normal contact force surface
CFS total shear contact force surface
CNUM total number of contact elements model
COORD coordinates int.point
CP pressure coefficient in a compressible nodal CP3L
3D fluid
CSTR contact stress nodal CONT/
CONTA
DEPF fluid depth in 3D shallow water calculations nodal DISI
DEPT fluid depth (in direction of the gravity vector) in a channel network nodal DEP1]
DTF fluid time increment in 3D fluids nodal DTIV
DRAG stress on surface surface
E Lagrange strain int.point | TOSTR
TOSTE
EBHE heating power due to induction elem
ECD electric current density int.point CUR
ELKE kinetic energy element
ELSE internal energy element
EMAS mass and mass moments of inertia element
EMFB magnetic field int.point EMF
EMFE electric field int.point EMF
ENER internal energy density int.point ENE
ERR error estimator for the worst principal stress int.point ERRC
ERRO
EVOL volume element
FLUX flux through surface surface
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Table 18: (continued)

variable meaning type rd file .dat
HCRI critical depth in a channel network nodal HCRIT
HER error estimator for the temperature int.point HERROR
HERRORI
HFL heat flux in a structure int.point FLUX X
HFLF heat flux in a 3D fluid int.point FLUX X
KEQ stress intensity factor nodal CT3D-MIS
MACH Mach number in a compressible 3D fluid nodal M3DF X
MAXE worst principal strain int.point | MSTRAIN
in cyclic symmetric
frequency calculations
MAXS worst principal stress int.point | MSTRESS
in cyclic symmetric
frequency calculations
MAXU worst displacement nodal MDISP
orthogonal to a given vector
in cyclic symmetric
frequency calculations
ME mechanical strain int.point | MESTRAIN X
MESTRAII X
MF mass flow in a network nodal MAFLOW X
NT structural temperature nodal NDTEMP X
total temperature in a network
PCON amplitude and phase of the relative contact nodal PCONTAC
displacements and contact stresses
PEEQ equivalent plastic strain int.point PE X
PHS magnitude and phase int.point | PSTRESS
of stress
PN network pressure nodal X
(generic term for any of the above)
PNT magnitude and phase nodal PNDTEMP
of temperature
POT electric potential nodal ELPOT
PRF magnitude and phase of external forces nodal PFORC
PS static pressure in a liquid network nodal STPRES X
PSF static pressure in a 3D fluid nodal PS3DF X
PT total pressure in a gas network nodal TOPRES
PTF total pressure in a 3D fluid nodal PT3DF X
PU magnitude and phase nodal PDISP
of displacement
RF total force nodal FORC X
FORCI X
RFL total flux nodal RFL X
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Table 18: (continued)

variable meaning type rd fi
S Cauchy stress (structure) int.point STRE
STRE!
SDV internal variables int.point SDV
SEN sensitivity nodal SEN
SF total stress (3D fluid) int.point STRE
SMID Cauchy stress (shells) int.point STRM
SNEG Cauchy stress (shells) int.point | STRN!

SOAREA section area surface

SOF section forces surface

SOM section moments surface
SPOS Cauchy stress (shells) int.point STRP
SVF viscous stress (3D fluid) int.point VSTR
THE thermal strain nodal THSTR
TS static temperature in a network nodal STTEI
TSF static temperature in a 3D fluid nodal TS3D
TT total temperature in a gas network nodal TOTE:
TTF total temperature in a 3D fluid nodal TT3L
TURB turbulence variables in a 3D fluid nodal TURB:
U displacement nodal DISI
DISE
A% velocity of a structure nodal VEL
VF velocity in a 3D fluid nodal V3D
77S Zienkiewicz-Zhu stress int.point 77871
77ZST

7 Input deck format

This section describes the input of CalculiX.

The jobname is defined by the argument after the -i flag on the command line.
When starting CalculiX, it will look for an input file with the name jobname.inp.
Thus, if you called the executable “CalculiX” and the input deck is “beam.inp”
then the program call looks like

CalculiX -i beam

The -i flag can be dropped provided the jobname follows immediately after
the CalculiX call.

CalculiX will generate an output file with the name jobname.dat and an
output file with the name jobname.frd. The latter can be viewed with cgx.

If the step is a *FREQUENCY step or a *HEAT TRANSFER,FREQUENCY
step and the parameter STORAGE=YES is activated, CalculiX will generate a



7.1 *AMPLITUDE 397

binary file containing the eigenfrequencies, the eigenmodes, the stiffness and the
mass matrix with the name jobname.eig. If the step is a *MODAL DYNAMIC
or *STEADY STATE DYNAMICS step, CalculiX will look for a file with that
name. If any of the files it needs does not exist, an error message is generated
and CalculiX will stop.

The input deck basically consists of a set of keywords, followed by data
required by the keyword on lines underneath the keyword. The keywords can
be accompanied by parameters on the same line, separated by a comma. If the
parameters require a value, an equality sign must connect parameter and value.
Blanks in the input have no significance and can be inserted as you like. The
keywords and any other alphanumeric information can be written in upper case,
lower case, or any mixture. The input deck is case insensitive: internally, all
alphanumeric characters are changed into upper case. The data do not follow
a fixed format and are to be separated by a comma. A line can only contain
as many data as dictated by the keyword definition. The maximum length for
user-defined names, e.g. for materials or sets, is 80 characters, unless specified
otherwise. The structure of an input deck consists of geometric, topological and
material data before the first step definition, and loading data (mechanical,
thermal, or prescribed displacements) in one or more subsequent steps. The
user must make sure that all data are given in consistent units (the units do not
appear in the calculation).

A keyword can be of type step or model definition. Model Definition cards
must be used before the first *STEP card. Step keywords can only be used
within a step. Among the model definition keywords, the material ones occupy
a special place: they define the properties of a material and should be grouped
together following a *MATERIAL card.

Node and element sets can share the same name. Internally, the names are
switched to upper case and a "N’ is appended after the name of a node set and
a ’E’ after the name of an element set. Therefore, set names printed in error or
warning messages will be discovered to be written in upper case and to have a
'N’” or 'E’ appended.

Keyword cards in alphabetical order:

7.1 *AMPLITUDE

Keyword type: step or model definition

This option may be used to specify an amplitude history versus time. The
amplitude history should be given in pairs, each pair consisting of a value of
the reference time and the corresponding value of the amplitude or by user
subroutine

There are four optional parameters TIME, USER, SHIFTX and SHIFTY
and one required parameter NAME.If the parameter TIME=TOTAL TIME is
used the reference time is the total time since the start of the calculation, else
it is the local step time. Use as many pairs as needed, maximum four per line.

The parameter USER indicates that the amplitude history versus time was
implemented in user subroutine uamplitude.f. No pair data is required.
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With the parameters SHIFTX and SHIFTY the reference time and the am-
plitude of the (time,amplitude) pairs can be shifted by a fixed amount.

The parameter NAME, specifying a name for the amplitude so that it can
be used in loading definitions (*BOUNDARY, *CLOAD, *DLOAD and *TEM-
PERATURE) is required (maximum 80 characters).

In each step, the local step time starts at zero. Its upper limit is given by
the time period of the step. This time period is specified on the *STATIC,
*DYNAMIC or *MODAL DYNAMIC keyword card. The default step time
period is 1.

In *STEADY STATE DYNAMICS steps the time is replaced by frequency,
i.e. the *AMPLITUDE is interpreted as amplitude versus frequency (in cy-
cles/time).

The total time is the time accumulated until the beginning of the actual
step augmented by the local step time. In *STEADY STATE DYNAMICS
procedures total time coincides with frequency (in cycles/time).

The loading values specified in the loading definitions (*BOUNDARY, *CLOAD,
*DLOAD and *TEMPERATURE) are reference values. If an amplitude is se-
lected in a loading definition, the actual load value is obtained by multiplying
the reference value with the amplitude for the actual (local step or total) time.
If no amplitude is specified, the actual load value depends on the procedure:
for a *STATIC procedure, ramp loading is assumed connecting the load value
at the end of the previous step (0 if there was none) to the reference value at
the end of the present step in a linear way. For *DYNAMIC and *MODAL
DYNAMIC procedures, step loading is assumed, i.e. the actual load equals the
reference load for all time instances within the step. Reference loads which are
not changed in a new step remain active, their amplitude description, however,
becomes void, unless the TIME=TOTAL TIME parameter is activated. Be-
ware that at the end of a step, all reference values for which an amplitude was
specified are replaced by their actual values at that time.

Notice that no different amplitude definitions are allowed on different degrees
of freedom in one and the same node if a non-global coordinate system applied
to that node. For instance, if you define a cylindrical coordinate system for a
node, the amplitude for a force in radial direction has to be the same as for the
tangential and axial direction.

First line:
e *AMPLITUDE
e Enter the required parameter.

Following line, using as many entries as needed (unless the parameter USER
was selected):

e Time.

e Amplitude.
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e Time.

Amplitude.

e Time.

Amplitude.
e Time.
e Amplitude.

Repeat this line if more than eight entries (four data points) are needed.

Example:

*AMPLITUDE,NAME=A1
0.,0.,10.,1.

defines an amplitude function with name A1 taking the value 0. at t=0. and
the value 1. at t=10. The time used is the local step time.

Example files: beamdyl, beamnldy.

7.2 *BASE MOTION

Keyword type: step

This option is used to prescribe nonzero displacements and/or accelerations
inFMODAL DYNAMIQand FSTEADY STATE DYNAMICSlcalculations. The
parameters DOF and AMPLITUDE are required, the parameter TYPE is op-
tional.

The prescribed boundary condition applies to the degree of freedom DOF in
all nodes in which a homogeneous FBOUNDARY] condition has been defined for
this degree of freedom. If using *BASE MOTION it is good practice to define
these *BOUNDARY conditions BEFORE the step in which *BASE MOTION
is used, else the effect may be unpredictable. The parameter DOF can only
take the values in the range from 1 to 3. With the parameter AMPLITUDE
the user specifies the amplitude defining the value of the boundary condition.
This amplitude must have been defined using the FAMPLITUDE] card.

The TYPE parameter can take the string DISPLACEMENT or ACCELER-
ATION. Default is ACCELERATION. Acceleration boundary conditions can
only be used for harmonic steady state dynamics calculations, displacements
can be used for any modal dynamic or steady state dynamic calculation. Since
only three degrees of freedom are at the user’s disposal, defining more than three
*base motion cards does not make sense.

The *BASE MOTION card is more restrictive than the *BOUNDARY card
in the sense that the same amplitude applies to a specific degree of freedom in
all nodes in which a homogeneous boundary condition for exactly this degree of




400 7 INPUT DECK FORMAT

freedom has been defined. It is, however, less restrictive in the sense that for
steady state dynamics calculations also accelerations can be applied.

First line and only line:
e *BASE MOTION

e Enter any needed parameters and their value.

Example:

*BASE MOTION,DOF=2,AMPLITUDE=A1

specifies a base motion with amplitude A1l for the second degree of free-
dom for all nodes in which a homogeneous boundary condition was defined for
precisely this degree of freedom.

Example files: beamdy10bm.

7.3 *BEAM SECTION

Keyword type: model definition

This option is used to assign material properties to beam element sets.
The parameters ELSET, MATERIAL and SECTION are required, the param-
eters ORIENTATION, OFFSET1, OFFSET2 and NODAL THICKNESS are
optional. The parameter ELSET defines the shell element set to which the
material specified by the parameter MATERIAL applies. The parameter ORI-
ENTATION allows to assign local axes to the element set. If activated, the
material properties are applied to the local axis. This is only relevant for non
isotropic material behavior.

The parameter SECTION defines the cross section of the beam and takes the
value RECT for a rectangular cross section, CIRC for an elliptical cross section,
PIPE for a pipe cross section, BOX for a box cross section and GENERAL
for a section defined by its area and moments of intertia. A rectangular cross
section is defined by its thickness in two perpendicular directions, an elliptical
cross section is defined by the length of its principal axes. These directions
are defined by specifying direction 1 on the third line of the present keyword
card. A pipe cross section is defined by its outer radius (first parameter) and its
thickness (second parameter). A box cross section is defined by the parameters
a,b,ty,ta,ts and t4 (cf. Figure BIl a is in the local 1-direction, b is in the local
2-direction (perpendicular to the local 1-direction), ¢; is the thickness in the
positive local 1-direction and so on).

Notice that, internally, PIPE and BOX cross sections are expanded into
beams with a rectangular cross section (this is also the way in which the beam
is stored in the .frd-file and is visualized in the postprocessor. The actual cross
section is taken into account by appropriate placement of the integration points).
This rectangular cross section is the smallest section completely covering the
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PIPE or BOX section. For instance, for a pipe section the expanded section
is square with side length equal to the outer diameter. For the expansion the
local direction 1 and 2 are used, therefore, special care should be taken to define
direction 1 on the second line underneath the *BEAM SECTION card. The
default for direction 1 is (0,0,-1).

The GENERAL section can only be used for user element type Ul and is
defined by the cross section A, the moments of inertia I11, I12 and Is; and the
Timoshenko shear coefficient k. The PIPE, BOX and GENERAL cross section
are described in detail in Section

The OFFSET1 and OFFSET2 parameters indicate where the axis of the
beam is in relation to the reference line defined by the line representation given
by the user. The index 1 and 2 refer to the local axes of the beam which are
perpendicular to the local tangent. To use the offset parameters direction the
local directions must be defined. This is done by defining local direction 1 on
the third line of the present keyword card. The unit of the offset is the thickness
of the beam in the direction of the offset. Thus, OFFSET1=0 means that in 1-
direction the reference line is the axis of the shell, OFFSET2=0.5 means that in
2-direction the reference line is the top surface of the beam. The offset can take
any real value and allows to construct beam of nearly arbitrary cross section
and the definition of composite beams.

The parameter NODAL THICKNESS indicates that the thickness for ALL
nodes in the element set are defined with an extra*NODAL THICKNESS| card
and that any thicknesses defined on the *BEAM SECTION card are irrelevant.

First line:

e *BEAM SECTION

e Enter any needed parameters.

Second line:

e thickness in 1-direction

e thickness in 2-direction

Third line:

e global x-coordinate of a unit vector in 1-direction (default:0)
e global y-coordinate of a unit vector in 1-direction (default:0)

e global z-coordinate of a unit vector in 1-direction (default:-1)

Example:

*BEAM SECTION,MATERIAL=EL,ELSET=Eall,0OFFSET1=-0.5,SECTION=RECT
3.,1.
1.,0.,0.
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assigns material EL to all elements in (element) set Eall. The reference
line is in 1-direction on the back surface, in 2-direction on the central surface.
The thickness in 1-direction is 3 unit lengths, in 2-direction 1 unit length. The
1-direction is the global x-axis.

Example files: beamcom, beammix, shellbeam, swing, simplebeampipel,simplebeampipe2,simplebean

7.4 *BOUNDARY

Keyword type: step or model definition
This option is used to prescribe boundary conditions. This includes:

e temperature, displacements and rotations for structures
e total temperature, mass flow and total pressure for gas networks
e temperature, mass flow and static pressure for liquid networks

e temperature, mass flow and fluid depth for channels

For liquids and structures the total and static temperature virtually coincide,
therefore both are represented by the term temperature.
The following degrees of freedom are being used:

e for structures:

1: translation in the local x-direction

2: translation in the local y-direction
— 3: translation in the local z-direction

4:

rotation about the local x-axis (only for nodes belonging to beams
or shells)

— 5: rotation about the local y-axis (only for nodes belonging to beams
or shells)

— 6: rotation about the local z-axis (only for nodes belonging to beams
or shells)

— 11: temperature
e for gas networks:

— 1: mass flow
— 2: total pressure

— 11: total temperature
e for liquid networks:

— 1: mass flow

— 2: static pressure
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— 11: temperature
e for liquid channels:

— 1: mass flow
— 2: fluid depth

— 11: temperature

If no FTRANSEORMI card applied to the node at stake, the local directions
coincide with the global ones. Notice that a *TRANSFORM card is not allowed
for nodes in which boundary conditions are applied to rotations.

Optional parameters are OP, AMPLITUDE, TIME DELAY, LOAD CASE,
USER, MASS FLOW, FIXED, SUBMODEL, STEP and DATA SET. OP can
take the value NEW or MOD. OP=MOD is default and implies that previously
prescribed displacements remain active in subsequent steps. Specifying a dis-
placement in the same node and direction for which a displacement was defined
in a previous step replaces this value. OP=NEW implies that previously pre-
scribed displacements are removed. If multiple * BOUNDARY cards are present
in a step this parameter takes effect for the first *\BOUNDARY card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the boundary values are scaled (mainly used for nonlinear static and
dynamic calculations). This only makes sense for nonzero boundary values.
Thus, in that case the values entered on the * BOUNDARY card are interpreted
as reference values to be multiplied with the (time dependent) amplitude value
to obtain the actual value. At the end of the step the reference value is replaced
by the actual value at that time. In subsequent steps this value is kept constant
unless it is explicitly redefined or the amplitude is defined using TIME=TOTAL
TIME in which case the amplitude keeps its validity.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

The LOAD CASE parameter is only active inFSTEADY STATE DYNAMICS|
calculations. LOAD CASE = 1 means that the loading is real or in-phase.
LOAD CASE = 2 indicates that the load is imaginary or equivalently phase-
shifted by 90°. Default is LOAD CASE = 1.

If the USER parameter is selected the boundary values are determined by
calling the user subroutine [thounfl, which must be provided by the user. This
applies to all nodes listed beneath the *BOUNDARY keyword. Any boundary
values specified behind the degrees of freedom are not taken into account. If
the USER parameter is selected, the AMPLITUDE parameter has no effect and
should not be used.

The MASS FLOW parameter specifies that the *BOUNDARY keyword is
used to define mass flow rates in convective problems. A mass flow rate can
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only be applied to the first degree of freedom of the midside node of network
elements.

Next, the FIXED parameter freezes the deformation from the previous step,
or, if there is no previous step, sets it to zero.

Finally, the SUBMODEL parameter specifies that the displacements in the
nodes listed underneath will be obtained by interpolation from a global model.
To this end these nodes have to be part of aFSUBMODEI TYPE=NODE card.
On the latter card the result file (frd file) of the global model is defined. The use
of the SUBMODEL parameter requires the STEP or the DATA SET parameter.

In case the global calculation was a *STATIC calculation the STEP parame-
ter specifies the step in the global model which will be used for the interpolation.
If results for more than one increment within the step are stored, the last incre-
ment is taken.

In case the global calculation was a *FREQUENCY calculation the DATA
SET parameter specifies the mode in the global model which will be used for
the interpolation. It is the number preceding the string MODAL in the .frd-file
and it corresponds to the dataset number if viewing the .frd-file with CalculiX
GraphiX. Notice that the global frequency calculation is not allowed to contain
preloading nor cyclic symmetry.

Notice that the displacements interpolated from the global model are not
transformed, no matter what coordinate system is applied to the nodes in the
submodel. Consequently, if the displacements of the global model are stored
in a local coordinate system, this local system also applies to the submodel
nodes in which these displacements are interpolated. So the submodel nodes
in which the displacements of the global model are interpolated, inherit the
coordinate system in which the displacements of the global model were stored.
The SUBMODEL parameter and the AMPLITUDE parameter are mutually
exclusive.

If more than one *BOUNDARY card occurs in the input deck, the following
rule applies: if the *BOUNDARY is applied to the same node AND in the same
direction as in a previous application then the previous value and previous
amplitude are replaced.

A distinction is made whether the conditions are homogeneous (fixed condi-
tions), inhomogeneous (prescribed displacements) or of the submodel type.

7.4.1 Homogeneous Conditions

Homogeneous conditions should be placed before the first *STEP keyword card.

First line:
e *BOUNDARY
e Enter any needed parameters and their value.

Following line:
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e Node number or node set label
e First degree of freedom constrained

e Last degree of freedom constrained. This field may be left blank if only
one degree of freedom is constrained.

Repeat this line if needed.
Example:

*BOUNDARY
73,1,3

fixes the degrees of freedom one through three (global if no transformation
was defined for node 73, else local) of node 73.

Example files: achteld.

7.4.2 Inhomogeneous Conditions

Inhomogeneous conditions can be defined between a *STEP card and an *END
STEP card only.

First line:

e *BOUNDARY

e Enter any needed parameters and their value.
Following line:

e Node number or node set label

e First degree of freedom constrained

e Last degree of freedom constrained. This field may be left blank if only
one degree of freedom is constrained.

e Actual magnitude of the prescribed displacement
Repeat this line if needed.

Example:

*BOUNDARY
Nall,2,2,.1

assigns to degree of freedom two of all nodes belonging to node set Nall the
value 0.1.
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Example:

*BOUNDARY ,MASS FLOW
73,1,1,31.7

applies a mass flow rate of 31.7 to node 73. To have any effect, this node
must be the midside node of a network element.

Example files: achteld.

7.4.3 Submodel

Submodel conditions can be defined between a *STEP card and an *END STEP
card only.

First line:
e *BOUNDARY,SUBMODEL

e use the STEP or DATA SET parameter to specify the step or mode in the
global model

Following line:

e Node number or node set label

e First degree of freedom to be interpolated from the global model
e Last degree of freedom to be interpolated from the global model

Repeat this line if needed.
Example:

*BOUNDARY , SUBMODEL
73,1,3

specifies that all displacements in node 73 should be obtained by interpola-
tion from the global model.

Example files: .

7.5 *BUCKLE

Keyword type: step

This procedure is used to determine the buckling load of a structure. The
load active in the last non-perturbative *STATIC step, if any, will be taken as
preload if the perturbation parameter is specified on the *STEP card. All loads
previous to a perturbation step are removed at the start of the step; only the
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load specified within the buckling step is scaled till buckling occurs. Right now,
only the stress stiffness due to the buckling load is taken into account and not
the large deformation stiffness it may cause.

Buckling leads to an eigenvalue problem whose lowest eigenvalue is the scalar
the load in the buckling step has to be multiplied with to get the buckling load.
Thus, generally only the lowest eigenvalue is needed. This value is also called
the buckling factor and it is always stored in the .dat file.

SOLVER is the only parameter. It specifies which solver is used to determine
the stress stiffness due to the buckling load and to perform a decomposition of
the linear equation system. This decomposition is done only once. It is repeat-
edly used in the iterative procedure determining the eigenvalues (the buckling
factor). The following solvers can be selected:

e the SGI solver

e PaStiX

e PARDISO

e SPOOLES [3] 4].
e TAUCS

e MATRIXSTORAGE. This is not really a solver. Rather, it is an option
allowing the user to store the stiffness matrix of the base loading and stress
stiffness matrix of the buckling load.

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, no eigenvalue
analysis can be performed.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

If the MATRIXSTORAGE option is used, the stiffness matrix of the base
loading and the stress stiffness matrix of the buckling load are stored in files
jobname.sti and jobname.str, respectively. These are ASCII files containing the
nonzero entries (occasionally, they can be zero; however, none of the entries
which are not listed are nonzero). Each line consists of two integers and one
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real: the row number, the column number and the corresponding value. The
entries are listed column per column. In addition, a file jobname.dof is created.
It has as many entries as there are rows and columns in the stiffness and mass
matrix. Each line contains a real number of the form “a.b”. Part a is the node
number and b is the global degree of freedom corresponding to selected row.
Notice that the program stops after creating these files. No further steps are
treated. Consequently, * BUCKLE, SOLVER=MATRIXSTORAGE only makes
sense as the last step in a calculation. Notice that for the stress stiffness matrix
of the buckling load the stresses due to this load must have been determined by
performing a regular static calculation. This is done automatically in CalculiX.
In case the user has specified SOLVER=MATRIXSTORAGE the default solver
is used to solve this static calculation. If the user specifies another solver (e.g.
PARDISO), this solver is used for both the static calculation and the iterative
procedure for the eigenvalue problem leading to the buckling load.

First line:
e *BUCKLE
Second line:

e Number of buckling factors desired (usually 1).

Accuracy desired (default: 0.01).
e # Lanczos vectors calculated in each iteration (default: 4 * #eigenvalues).
e Maximum # of iterations (default: 1000).

It is rarely needed to change the defaults.
The eigenvalues are automatically stored in file jobname.dat.

Example:

*BUCKLE
2

calculates the lowest two buckling modes and the corresponding buckling
factors. For the accuracy, the number of Lanczos vectors and the number of
iterations the defaults are taken.

Example files: beam8b,beamb.

7.6 *CFD

Keyword type: step
This procedure is used to perform a three-dimensional computational fluid
dynamics (CFD) calculation.
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There are six optional parameters: STEADY STATE, TIME RESET, TO-
TAL TIME AT START, COMPRESSIBLE, TURBULENCE MODEL and SHAL-
LOW WATER.

The initial time increment and time step period specified underneath the
*COFD card are interpreted as mechanical time increment and mechanical time
step. For each mechanical time increment a CFD calculation is performed con-
sisting of several CFD time increments. Therefore, the initial CFD time incre-
ment cannot exceed the initial mechanical time increment. CFD time increments
are usually much smaller than the mechanical time increments. The CFD cal-
culation is performed up to the end of the mechanical time increment (if the
calculation is transient) or up to steady state conditions (if the CED calculation
is a steady state calculation).

The parameter STEADY STATE indicates that the calculation should be
performed until steady state conditions are reached. In that case the size of
the mechanical time increment has not influence on the number of CFD time
increments and the only limit is the value of the parameter INCF on the *STEP
card. If this parameter is absent, the calculation is assumed to be time depen-
dent and a time accurate transient analysis is performed until the end of the
mechanical time increment.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter
underneath the *CFD keyword). Consequently, if the time at the end of the
previous step is 10. and the present time period is 1., the total time at the end of
the present step is 11. If the TIME RESET parameter is used, the total time at
the beginning of the present step is 9. and at the end of the present step it will
be 10. This is sometimes useful if transient coupled temperature-displacement
calculations are preceded by a stationary heat transfer step to reach steady
state conditions at the start of the transient coupled temperature-displacement
calculations. Using the TIME RESET parameter in the stationary step (the
first step in the calculation) will lead to a zero total time at the start of the
subsequent instationary step.

The parameter TOTAL TIME AT START can be used to set the total time
at the start of the step to a specific value.

The parameter COMPRESSIBLE specifies that the fluid is compressible.
Default is incompressible.

For 3D fluid calculations the parameter TURBULENCE MODEL defines
the turbulence model to be used. The user can choose among NONE (laminar
calculations; this is default), K-EPSILON, K-OMEGA, BSL and SST [57].

Finally, the parameter SHALLOW WATER only applied to CFD calcula-
tions with the finite element method. It indicates that the calculation is a

shallow water calculation. This corresponds to a compressible fluid calculation
in which the density is replaced by the fluid depth, cf. Section [6.9.201
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First line:
e *CFD
e Enter any needed parameters and their values.

e Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

e Time period of the step (default 1.).

e Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

e Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

e Safety factor by which the time increment calculated based on the convec-
tive and diffusive characteristics should be divided by. This factor must
exceed the default of 1.25.

Example: couettel

*CFD
1,1,

defines a CFD step. The second line indicates that the initial time increment
is .1 and the total step time is 1.

Example files: couettelper.

7.7 *CFLUX

Keyword type: step

This option allows concentrated heat fluxes to be applied to any node in
the model which is not fixed by a single or multiple point constraint. Optional
parameters are OP, AMPLITUDE, TIME DELAY, USER and ADD. OP can
take the value NEW or MOD. OP=MOD is default and implies that the con-
centrated fluxes applied to different nodes in previous steps are kept. Specifying
a flux in a node for which a flux was defined in a previous step replaces this
value. A flux specified in a node for which a flux was already defined within the
same step is added to this value. OP=NEW implies that all concentrated fluxes
applied in previous steps are removed. If multiple *CFLUX cards are present
in a step this parameter takes effect for the first *CFLUX card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the flux values are scaled (mainly used for nonlinear static and dy-
namic calculations). Thus, in that case the values entered on the *CFLUX card
are interpreted as reference values to be multiplied with the (time dependent)
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amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time. In subsequent steps this value
is kept constant unless it is explicitly redefined or the amplitude is defined using
TIME=TOTAL TIME in which case the amplitude keeps its validity.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

If the USER parameter is selected the concentrated flux values are deter-
mined by calling the user subroutine [cfluxfl which must be provided by the
user. This applies to all nodes listed beneath the *CFLUX keyword. Any flux
values specified following the temperature degree of freedom are not taken into
account. If the USER parameter is selected, the AMPLITUDE parameter has
no effect and should not be used.

Finally, the ADD parameter allows the user to specify that the flux should
be added to previously defined fluxes in the same node, irrespective whether
these fluxes were defined in the present step or in a previous step.

The use of the *CFLUX card makes sense for heat transfer calculations or
coupled thermo-mechanical calculations only. Heat fluxes are applied to degree
of freedom 11.

If more than one *CFLUX card occurs within the input deck the following
rules apply:

If a *CFLUX card is applied to the same node AND in the same direction
as in a previous application, then

e if the previous application was in the same step the *CFLUX value is
added, else it is replaced

e the new amplitude (including none) overwrites the previous amplitude

First line:

e *CFLUX

e Enter any needed parameters and their value.
Following line:

e Node number or node set label.

e Degree of freedom (11).

e Magnitude of the flux

Repeat this line if needed.
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Example:

*CFLUX, OP=NEW, AMPLITUDE=A1
10,11,15.

removes all previous concentrated heat fluxes and applies a flux with mag-
nitude 15. and amplitude A1l for degree of freedom 11 (this is the temperature
degree of freedom) of node 10.

Example files: oneel20cf.

7.8 *CHANGE CONTACT TYPE

Keyword type: step

With this option one can change the contact type at the start of aFDYNAMIC]
step from “SURFACE TO SURFACE’“ to “NODE TO SURFACE” or “MASS-
LESS” (the latter only in a[FDYNAMIC,EXPLICIT|step). This is usually done
when a dynamic calculation is performed starting from steady state obtained
from a previous FSTATIC) step.

Indeed, in a static calculation the “SURFACE TO SURFACE” contact type
or “MORTAR” contact types usually perform much better (better convergence
and better results) than “NODE TO SURFACE” (“MASSLESS” is not avail-
able in a static step). In a dynamic calculation performed by integration in
time the “SURFACE TO SURFACE” contact, however, is too slow and too
detailed in resolution of the contact area. Here, “NODE TO SURFACE” and
“MASSLESS” perform better. Therefore, the present keyword was introduced
in order to change the contact formulation at the start of a dynamic step.

The option *CHANGE CONTACT TYPE can also be used if a previous
static step was calculated with “NODE TO SURFACE” contact (for whatever
reason) and the subsequent dynamic step is to be performed with “MASSLESS”
contact.

Either the parameter TO NODE TO SURFACE or TO MASSLESS is re-
quired.

First and only line:
e *CHANGE CONTACT TYPE

e Enter TO NODE TO SURFACE or TO MASSLESS (actually, blanks in
the input deck are immaterial, one might also write TONODETOSUR-
FACE and TOMASSLESS).

Example:

*CHANGE CONTACT TYPE,TO MASSLESS

Example files: changecontacttypel, changecontacttype2.
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7.9 *CHANGE FRICTION

Keyword type: step

With this option one can redefine the contact friction value within a step.
There is one required parameter INTERACTION, denoting the name of the
FSURFACE INTERACTION] the friction of which one would like to change.
This card must be followed by a card to become effective.

First and only line:
e *CHANGE FRICTION

e enter the required parameter INTERACTION and its parameter.
Example:
*CHANGE FRICTION,INTERACTION=IN1

indicates that the friction value of surface interaction IN1 is to be changed
to the value underneath the following *FRICTION card.

Example files: friction2

7.10 *CHANGE MATERIAL

Keyword type: step

With this option one can redefine material properties within a step. There
is one required parameter NAME, denoting the name of the FMATERIATL
Right now, only plastic data of an elastically isotropic material with explicitly
defined isotropic or kinematic hardening data can be changed. This card must

be followed by a FCHANGE PLASTIC| card to have any effect.

First and only line:
e *CHANGE MATERIAL

e enter the required parameter NAME and its parameter.
Example:
*CHANGE MATERIAL,NAME=PL

indicates that the plastic data of material PL are to be changed to the values
underneath the following *CHANGE PLASTIC card.

Example files: beampiso2
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7.11 *CHANGE PLASTIC

Keyword type: step
With this option one can redefine plastic data of an elastically isotropic
material with explicitly defined isotropic or kinematic hardening data within a
step. Combined hardening or user-defined hardening data are not allowed.
There is one optional parameter HARDENING. Default is HARDENING=ISOTROPIC,
the only other value is HARDENING=KINEMATIC for kinematic hardening.
All constants may be temperature dependent.
For the selection of plastic output variables the reader is referred to Section
0.8.8

First line:
e *CHANGE PLASTIC

e Enter the HARDENING parameter and its value, if needed

Following sets of lines define the isotropic hardening curve for HARDEN-
ING=ISOTROPIC and the kinematic hardening curve for HARDENING=KINEMATIC:
First line in the first set:

e Von Mises stress.
e Equivalent plastic strain.

e Temperature.

Use as many lines in the first set as needed to define the complete hardening
curve for this temperature.

Use as many sets as needed to define complete temperature dependence.
Notice that it is not allowed to use more plastic strain data points or temperature
data points than the amount used for the first definition of the plastic behavior
for this material (in the FPLASTIC] card.

The raison d’étre for this card is its ability to switch from purely plastic be-
havior to creep behavior and vice-versa. The viscoplastic for isotropic materials
in CalculiX is an overstress model, i.e. creep only occurs above the yield stress.
For a lot of materials this is not realistic. It is observed in blades and vanes
that at high temperatures creep occurs at stresses well below the yield stress.
By using the *CHANGE PLASTIC card the yield stress can be lowered to zero
in a creep (*VISCO) step following a inviscid (*STATIC) plastic deformation
step.

Example:
*CHANGE PLASTIC

0.,0.
0.,1.e10

defines a material with yield stress zero.

Example files: beampiso2
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7.12 *CHANGE SOLID SECTION

Keyword type: step

This option is used to change material properties within a step for 3D,
plane stress, plane strain or axisymmetric element sets. The parameters ELSET
and MATERIAL are required, the parameter ORIENTATION is optional. The
parameter ELSET defines the element set to which the material specified by
the parameter MATERIAL applies. The parameter ORIENTATION allows
to assign local axes to the element set. If activated, the material properties
are applied to the local axis. This is only relevant for non isotropic material
behavior.

It is not allowed to change the thickness, which is important for plane stress
and plane strain elements. This is because these elements are expanded in three
dimensional elements within the first step. So no second line is allowed.

Changing material properties may be used to activate or deactivate elements
by assigning properties close to those of air to one material and the real prop-
erties to another material and switching between these.

First line:
e *CHANGE SOLID SECTION

e Enter any needed parameters.
Example:
*CHANGE SOLID SECTION,MATERIAL=EL,ELSET=Eall,ORIENTATION=0R1

reassigns material EL with orientation OR1 to all elements in (element) set
Eall.

Example files: changesolidsection.

7.13 *CHANGE SURFACE BEHAVIOR

Keyword type: step
With this option one can redefine the contact surface behavior within a
step. There is one required parameter INTERACTION, denoting the name of

the FSURFACE INTERACTIONI the surface behavior of which one would like
to change. This card must be followed by a FSURFACE BEHAVIOR] card to

become effective.

First and only line:
e *CHANGE SURFACE BEHAVIOR

e enter the required parameter INTERACTION and its parameter.
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Example:

*CHANGE SURFACE BEHAVIOR,INTERACTION=IN1

indicates that the surface behavior value of surface interaction IN1 is to be
changed to the value underneath the following *SURFACE BEHAVIOR card.

Example files: changesurfbeh

7.14 *CLEARANCE

Keyword type: model definition

With this option a clearance can be defined between the slave and master
surface of a contact pair. It only applies to face-to-face contact (penalty or
mortar). If this option is active, the actual clearance or overlapping based on
the distance between the integration point on the slave surface and its orthogonal
projection on the master surface is overwritten by the value specified here. There
are three required parameters: MASTER, SLAVE and VALUE. With MASTER
one specifies the master surface, with SLAVE the slave surface and with VALUE
the value of the clearance. Only one value per contact pair is allowed.

First and only line:
e *CLEARANCE

e enter the required parameters and their values.
Example:
*CLEARANCE ,MASTER=SURF1,SLAVE=SURF2,VALUE=0.1

indicates that the clearance between master surface SURF1 and slave surface
SURF2 should be 0.1 length units. SURF1 and SURF2 must be used on one
and the same FCONTACT PAIRI card.

Example files:

7.15 *CLOAD

Keyword type: step

This option allows concentrated forces to be applied to any node in the model
which is not fixed by a single or multiple point constraint. Optional parameters
are OP, AMPLITUDE, TIME DELAY, USER, LOAD CASE, SECTOR, SUB-
MODEL, STEP, DATA SET and OMEGAQ. OP can take the value NEW or
MOD. OP=MOD is default and implies that the concentrated loads applied to
different nodes in previous steps are kept. Specifying a force in a node for which
a force was defined in a previous step replaces this value. A force specified in a
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node and direction for which a force was already defined within the same step
is added to this value. OP=NEW implies that all concentrated loads applied
in previous steps are removed. If multiple *CLOAD cards are present in a step
this parameter takes effect for the first *CLOAD card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the force values are scaled (mainly used for nonlinear static and dy-
namic calculations). Thus, in that case the values entered on the *CLOAD card
are interpreted as reference values to be multiplied with the (time dependent)
amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time. In subsequent steps this value
is kept constant unless it is explicitly redefined or the amplitude is defined using
TIME=TOTAL TIME in which case the amplitude keeps its validity.

The AMPLITUDE parameter applies to all loads specified by the same
*CLOAD card. This means that, by using several *CLOAD cards, different
amplitudes can be applied to the forces in different coordinate directions in one
and the same node. An important exception to this rule are nodes in which
a transformation applies (by using the card): an amplitude
defined for such a node applies to ALL coordinate directions. If several are
defined, the last one applies.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

If the USER parameter is selected the concentrated load values are deter-
mined by calling the user subroutine [cloadfl which must be provided by the
user. This applies to all nodes listed beneath the *CLOAD keyword. Any load
values specified following the degree of freedom are not taken into account. If
the USER parameter is selected, the AMPLITUDE parameter has no effect and
should not be used.

The LOAD CASE parameter is only active inFSTEADY STATE DYNAMICS|
calculations. LOAD CASE = 1 means that the loading is real or in-phase.
LOAD CASE = 2 indicates that the load is imaginary or equivalently phase-
shifted by 90°. Default is LOAD CASE = 1.

The SECTOR parameter can only be used in FMODAL DYNAMIC| and
FSTEADY STATE DYNAMICS! calculations with cyclic symmetry. The datum
sector (the sector which is modeled) is sector 1. The other sectors are numbered
in increasing order in the rotational direction going from the slave surface to
the master surface as specified by the FTIE| card. Consequently, the SECTOR
parameters allows to apply a point load to any node in any sector. However,
the only coordinate systems allowed in a node in which a force is applied in a
sector different from the datum sector are restricted to the global Carthesian
system and a local cylindrical system. If the global coordinate system applies,
the force defined by the user (in the global system) is simply copied to the
appropriate sector without changing its direction. The user must make sure
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the direction of the force is the one needed in the destination sector. If a local
cylindrical system applies, this system must be identical with the one defined
underneath the FCYCLIC SYMMETRY MODEIL] card. In that case, the force
defined in the datum sector is rotated towards the destination sector, i.e. the
radial, circumferential and axial part of the force is kept.

The SUBMODEL parameter specifies that the forces in the specified de-
grees of freedom of the nodes listed underneath will be obtained by interpo-
lation from a global model. To this end these nodes have to be part of a
FSUBMODELI TYPE=NODE card. On the latter card the result file (frd file)
of the global model is defined. The use of the SUBMODEL parameter requires
the STEP or the DATA SET parameter.

In case the global calculation was a *STATIC calculation the STEP parame-
ter specifies the step in the global model which will be used for the interpolation.
If results for more than one increment within the step are stored, the last incre-
ment is taken.

In case the global calculation was a *FREQUENCY calculation the DATA
SET parameter specifies the mode in the global model which will be used for
the interpolation. It is the number preceding the string MODAL in the .frd-file
and it corresponds to the dataset number if viewing the .frd-file with CalculiX
GraphiX. Notice that the global frequency calculation is not allowed to contain
preloading nor cyclic symmetry.

Notice that the forces interpolated from the global model are not trans-
formed, no matter what coordinate system is applied to the nodes in the sub-
model. Consequently, if the forces of the global model are stored in a local co-
ordinate system, this local system also applies to the submodel nodes in which
these forces are interpolated. So the submodel nodes in which the forces of
the global model are interpolated, inherit the coordinate system in which the
forces of the global model were stored. The SUBMODEL parameter and the
AMPLITUDE parameter are mutually exclusive.

Notice that the interpolation of the forces from a global model onto a sub-
model is only correct if the global and submodel mesh coincide. Else, force
equilibrium is violated. Therefore, the option to interpolate forces on sub-
models only makes sense if it is preceded by a submodel calculation (the same
submodel) with displacement interpolation and force output request. Summa-
rizing, in order to create a force-driven calculation of a submodel, knowing the
displacement results in the global model one would proceed as follows:

e perform a submodel calculation with displacement boundary conditions
obtained by interpolation from the global model; request the output of
the forces in the nodes on the boundary of the submodel in frd-format (let
us call this file submodel.frd).

e repeat the submodel calculation but now with force boundary conditions
obtained by interpolation from the previous submodel calculation (i.e.
replace the global file in the submodel input deck by submodel.frd and
the *BOUNDARY,SUBMODEL card by a *CLOAD,SUBMODEL card).
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Applications of this technique include force-driven fracture mechanics calcu-
lations.

Finally, the OMEGAOQ parameter (notice that the last character is the num-
ber zero, not the letter O) specifies the value of wp in a step. It is a
required parameter in a *GREEN step.

If more than one *CLOAD card occurs within the input deck the following
rules apply:

If a *CLOAD card is applied to the same node AND in the same direction
as in a previous application, then

e if the previous application was in the same step the *CLOAD value is
added, else it is replaced

e the new amplitude (including none) overwrites the previous amplitude

First line:

e *CLOAD

e Enter any needed parameters and their value.
Following line:

e Node number or node set label.

e Degree of freedom.

e Magnitude of the load

Repeat this line if needed.

Example:

*CLOAD, OP=NEW, AMPLITUDE=A1,TIME DELAY=20.
1000,3,10.3

removes all previous point load forces and applies a force with magnitude
10.3 and amplitude A1 (shifted in positive time direction by 20 time units) for
degree of freedom three (global if no transformation was defined for node 1000,
else local) of node 1000.

Example files: achtelp, beamdelay.

7.16 *COMPLEX FREQUENCY

Keyword type: step
This procedure card is used to determine frequencies taking into account

Coriolis forces (cf. Section [620.3). It must be preceded by a [fFREQUENCY]

step in which the eigenvalues and eigenmodes are calculated without Coriolis (do
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not forget to use the option STORAGE=YES in the frequency step, ensuring
that the eigenmodes and eigenvalues are stored in a .eig file). The frequency step
does not have to be in the same input deck. There is one required parameter
CORIOLIS.

Finally, the number of eigenfrequencies requested should not exceed the
corresponding number in the frequency step.

First line:

e *COMPLEX FREQUENCY

e use the required parameter CORIOLIS
Second line:

e Number of eigenfrequencies desired.

Example:

*COMPLEX FREQUENCY,CORIOLIS
10

requests the calculation of the 10 lowest eigenfrequencies and corresponding
eigenmodes.

Example files: rotor.

7.17 *CONDUCTIVITY

Keyword type: model definition, material

This option is used to define the conductivity coefficients of a material.
There is one optional parameter TYPE. Default is TYPE=ISO, other values are
TYPE=ORTHO for orthotropic materials and TYPE=ANISO for anisotropic
materials. All constants may be temperature dependent. The unit of the con-
ductivity coefficients is energy per unit of time per unit of length per unit of
temperature.

First line:

e *CONDUCTIVITY

e Enter the TYPE parameter and its values, if needed
Following line for TYPE=ISO:

° K.

e Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for TYPE=ORTHO:
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® Ki1-
® K22.
® K33.
e Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for TYPE=ANISO:

® KRi1.
® K99o.
® K33-
® Ki2.
® K13.
® K23.
e Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*CONDUCTIVITY
50.,373.
100.,573.

tells you that the conductivity coefficient in a body made of this material is
50 at T'= 373 and 100 at T' = 573. Below T = 373 its value is set to 50, above
T =573 it is set to 100 and in between linear interpolation is applied.

Example files: beamhtbo, oneel20fi.

7.18 *CONSTRAINT

Keyword type: step

With *CONSTRAINT one can define constraints on design responses in a
feasible direction step. It can only be used for design variables of type COOR-
DINATE. Furthermore, exactly one objective function has to be defined within
the same feasible direction step (using the FOBJECTIVEl keyword).

A constraint is an inequality expressing a condition on a design response
function. The inequality can be of type “smaller than or equal” (LE) or “larger
than or equal” (GE). The reference value for the inequality is to be specified
by a relative portion of an absolute value (the latter in the units used by the
user). For instance, suppose the user introduces an absolute value of 20 and
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a relative value of 0.9 for a LE constraint on the mass. Than the mass is not
allowed to exceed 0.9 x 20 = 18 mass units. If the absolute value is zero, the
initial value is taken, e.g. for the mass this corresponds to the mass at the start
of the calculation. If no relative value is given 1. is taken.

Right now, the following design responses are allowed:

e ALL-DISP: the square root of the sum of the square of the displacements
in all nodes of the structure or of a subset if a node set is defined

e X-DISP: the square root of the sum of the square of the x-displacements
in all nodes of the structure or of a subset if a node set is defined

e Y-DISP: the square root of the sum of the square of the y-displacements
in all nodes of the structure or of a subset if a node set is defined

e 7Z-DISP: the square root of the sum of the square of the z-displacements
in all nodes of the structure or of a subset if a node set is defined

e EIGENFREQUENCY: all eigenfrequencies calculated in a previous (ac-
tually, the eigenvalues, which are the square of the eigenfrequencies).

FREQUENCY] step

e MASS: mass of the total structure or of a subset if an element set is defined

e STRAIN ENERGY: internal energy of the total structure or of a subset
if an element set is defined

e MISESSTRESS: the maximum von Mises stress of the total structure or
of a subset if a node set is defined. The maximum is approximated by the
Kreisselmeier-Steinhauser function

1
f= ;anep?, (850)

where o; is the von Mises stress in node i, p and ¢ are user-defined pa-
rameters. The higher p the closer f is to the actual maximum (a value
of 10 is recommended; the higher this value, the sharper the turns in the
function). & is the target stress, it should not be too far away from the
actual maximum. The target stress must be positive.

e PSISTRESS: the maximum of the highest principal stress of the total
structure or of a subset if a node set is defined. The maximum is ap-
proximated by the Kreisselmeier-Steinhauser function (cf. MISESSTRESS
above, also here the target stress must be positive).

e PS3STRESS: the minimum of the lowest principal stress of the total struc-
ture or of a subset if a node set is defined. The minimum is approxi-
mated by the Kreisselmeier-Steinhauser function. The target stress for
PS3STRESS must be negative.
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e EQUIVALENT PLASTIC STRAIN: the maximum equivalent plastic strain
of the total structure or of a subset if a node set is defined. The maximum
is approximated by the Kreisselmeier-Steinhauser function. The target
equivalent plastic strain must be postive.

First line:

e *CONSTRAINT.

Second line:

e the name of the design response

e LE for “smaller than or equal”, GE for “larger than or equal”
e a relative value for the constraint

e an absolute value for the constraint

Repeat this line if needed.

Example:

*SENSITIVITY
*DESIGN RESPONSE,NAME=DESRESP1
MASS,E1

*FEASIBLE DIRECTION
*CONSTRAINT
DESRESP1,LE,,3.

specifies that the mass of element set E1 should not exceed 3 in the user’s
units.

Example files: optl.

7.19 *CONTACT DAMPING

Keyword type: model definition

With this option a damping constant can be defined for contact elements. It
is one of the optional cards one can use within a FSURFACE INTERACTIONI
definition. Contact damping is available for implicit FDYNAMIC]| calculations
only. For explicit calculations it has not been implemented yet.

The contact damping is applied in normal direction to the master surface
of the contact pair. The resulting damping force is the product of the damping
coefficient with the area times the local normal velocity difference between the
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master and slave surface. With the optional parameter TANGENT FRACTION
the user can define what fraction of the damping coefficient should be used
in tangential direction, default is zero. For a nonzero tangential damping a
tangential force results from the product of the tangential damping constant
multiplied with the area times the local tangential velocity difference vector. In
CalculiX, contact damping is implemented for small deformations.

First line:

e *CONTACT DAMPING

e enter the TANGENT FRACTION parameter if needed
Second line:

e Damping constant.

No temperature dependence is allowed
Example:

*SURFACE INTERACTION,NAME=SI1

*SURFACE BEHAVIOR,PRESSURE-OVERCLOSURE=LINEAR
1.e7

*CONTACT DAMPING

l.e-4

defines a contact damping with value 10~ for all contact pairs using the
surface interaction SI1.

Example files: contdampl, contdamp2.

7.20 *CONTACT FILE

Keyword type: step

This option is used to print selected nodal contact variables in file job-
name.frd for subsequent viewing by CalculiX GraphiX. The following variables
can be selected (the label is square brackets [] is the one used in the .frd file; for
frequency calculations with cyclic symmetry both a real and an imaginary part
may be stored, in all other cases only the real part is stored):

e CDIS [CONTACT (real), CONTACTI(imaginary)]: Relative contact dis-
placements (for node-to-face contact in frequency calculations with cyclic
symmetry only for the base sector); entities: [COPEN],[CSLIP1],[CSLIP2].

e CSTR [CONTACT (real), CONTACTI(imaginary)]: Contact stresses (for
node-to-face contact in frequency calculations with cyclic symmetry only
for the base sector); entities: [CPRESS],|CSHEAR1|[CSHEAR?2].
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e CELS [CELS]: Contact energy

e PCON [PCONTAC; entity: O=opening, SL=slip, P=pressure, SH=shear
stress]: Magnitude and phase of the relative contact displacements and
contact stresses in a frequency calculation with cyclic symmetry. PCON
can only be requested for face-to-face penalty contact.

Since contact is modeled by nonlinear springs the contact energy corresponds
to the spring energy. All variables are stored at the slave nodes.

The relative contact displacements constitute a vector with three compo-
nents. The first component is the clearance (entity [COPEN]), i.e. the distance
between the slave node and the master surface. Only negative values are stored;
they correspond to a penetration of the slave node into the master surface. Pos-
itive values (i.e. a proper clearance) are set to zero. The second and third
component (entities [CSLIP1],[CSLIP2]) represent the projection of the relative
displacement between the two contact surfaces onto the master surface. To this
end two local tangential unit vectors are defined on the master surface; the first
is the normalized projection of a vector along the global x-axis on the master
surface. If the global x-axis is nearly orthogonal to the master surface, the pro-
jection of a vector along the global z-axis is taken. The second is the vector
product of a vector locally normal to the master surface with the first tangential
unit vector. Now, the components of the projection of the relative displacement
between the two contact surfaces onto the master surface with respect to the
first and the second unit tangential vector are the second and third component
of CDIS, respectively. They are only calculated if a friction coefficient has been
defined underneath FERICTIONI

In the same way the contact stresses constitute a vector, the first component
of which is the contact pressure (entity [CPRESS]), while the second and third
component are the components of the shear stress vector exerted by the slave
surface on the master surface with respect to the first and second unit tangential
vector, respectively (entities [CSHEAR1], [CSHEAR2]).

The selected variables are stored for the complete model, but are only
nonzero in the slave nodes of contact definitions.

The first occurrence of a *CONTACT FILE keyword card within a step
wipes out all previous nodal contact variable selections for file output. If no
*CONTACT FILE card is used within a step the selections of the previous step
apply. If there is no previous step, no nodal contact variables will be stored.

There are four optional parameters: FREQUENCY, TIME POINTS, LAST
ITERATIONS and CONTACT ELEMENTS. The parameters FREQUENCY
and TIME POINTS are mutually exclusive.

FREQUENCY applies to nonlinear calculations where a step can consist
of several increments. Default is FREQUENCY=1, which indicates that the
results of all increments will be stored. FREQUENCY=N with N an integer
indicates that the results of every Nth increment will be stored. The final results
of a step are always stored. If you only want the final results, choose N very

big. The value of N applies to FOUTPUTIFELEMENT OUTPUT| FEL FILE
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FELPRINT], FNODE OUTPUTI FNODE FILE FNODE PRINTLFSECTION PRINT],
FCONTACT OUTPUT], FCONTACT FILE| and FCONTACT PRINTI If the

FREQUENCY parameter is used for more than one of these keywords with con-
flicting values of N, the last value applies to all. A frequency parameter stays
active across several steps until it is overwritten by another FREQUENCY value
or the TIME POINTS parameter.

With the parameter TIME POINTS a time point sequence can be refer-
enced, defined by a keyword. In that case, output will be
provided for all time points of the sequence within the step and additionally
at the end of the step. No other output will be stored and the FREQUENCY
parameter is not taken into account. Within a step only one time point se-
quence can be active. If more than one is specified, the last one defined on any

of the keyword cards FEL FILEl FELPRINT} FNODE FILE] FNODE PRINT)
FSECTION PRINT], FCONTACT FILE and FCONTACT PRINT] will be ac-

tive. The TIME POINTS option should not be used together with the DI-
RECT option on the procedure card. The TIME POINTS parameters stays
active across several steps until it is replaced by another TIME POINTS value
or the FREQUENCY parameter.

The parameter LAST ITERATIONS leads to the storage of the displace-
ments in all iterations of the last increment in a file with name ResultsFor-
LastIterations.frd (can be opened with CalculiX GraphiX). This is useful for
debugging purposes in case of divergence. No such file is created if this param-
eter is absent.

Finally, the parameter CONTACT ELEMENTS stores the contact elements
which have been generated in each iteration in a file with the name jobname.cel.
When opening the frd file with CalculiX GraphiX these files can be read with
the command “read jobname.cel inp” and visualized by plotting the elements
in the sets contactelements_sta_infS_at~y_itd, where « is the step number, 8 the
increment number, « the attempt number and § the iteration number.

Notice that CDIS and CSTR results are stored together, i.e. specifying CDIS
will automatically store CSTR too and vice versa.

First line:

e *CONTACT FILE

e Enter any needed parameters and their values.
Second line:

e Identifying keys for the variables to be printed, separated by commas.

Example:

*CONTACT FILE,TIME POINTS=T1
CDIS,CSTR
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requests the storage of the relative contact displacements and contact stresses
in the .frd file for all time points defined by the T1 time points sequence.

Example files: cubef2f2.

7.21 *CONTACT OUTPUT

Keyword type: step

This option is used to print selected nodal contact variables in file job-
name.frd for subsequent viewing by CalculiX GraphiX. The options and its use
are identical with the FCONTACT FILE keyword, however, the resulting .frd
file is a mixture of binary and ASCII (the .frd file generated by using *CON-
TACT FILE is completely ASCII). This has the advantage that the file is smaller
and can be faster read by cgx.

If FILE and OUTPUT cards are mixed within one and the same step the
last such card will determine whether the .frd file is completely in ASCII or a
mixture of binary and ASCII.

Example:

*CONTACT OUTPUT,TIME POINTS=T1
CDIS,CSTR

requests the storage of the relative contact displacements and contact stresses
in the .frd file for all time points defined by the T1 time points sequence.

Example files: .

7.22 *CONTACT PAIR

Keyword type: model definition

This option is used to express that two surfaces can make contact. There
are two required parameters: INTERACTION and TYPE, and two optional
parameters: SMALL SLIDING and ADJUST. The dependent surface is called
the slave surface, the independent surface is the master surface. Surfaces are
defined using the FSURFACE] keyword card. The dependent surface can be
defined as a nodal surface (option TYPE=NODE on the *SURFACE keyword)
or as an element face surface (default for the *SURFACE card), whereas the
independent surface has to be defined as an element face surface. If you are using
quadratic elements, or if you select face-to-face contact, however, the slave (=
dependent) surface has to be defined based on element faces too and not on
nodes.

If the master surface is made up of edges of axisymmetric elements make sure
that none of the edges contains nodes on the axis of symmetry. Indeed, such
edges are expanded into collapsed quadrilaterals the normals on which cannot
be determined in the usual way.
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The INTERACTION parameter takes the name of the surface interaction
(keyword FSURFACE INTERACTION]) which applies to the contact pair. The
surface interaction defines the nature of the contact (hard versus soft contact..)

The TYPE parameter can take the value NODE TO SURFACE, SURFACE
TO SURFACE, MORTAR, LINMORTAR, PGLINMORTAR or MASSLESS.
NODE TO SURFACE triggers node-to-face penalty contact, SURFACE TO
SURFACE face-to-face penalty contact. MORTAR triggers the mortar method
with standard dual shape functions for the Lagrange multipliers, LINMORTAR
the mortar method with linear dual shape functions and PGLINMORTAR the
Petrov-Galerkin method in which the usual shape functions are used to describe
the variation of the Lagrange multiplier. For details the reader is referred to
Section and [91]-[94]. If the reader wants to apply mortar contact, it is
suggested to start with MORTAR contact and to use LINMORTAR, or PGLIN-
MORTAR only if MORTAR fails. Finally, MASSLESS triggers the massless
contact explicit dynamics procedure. Notice that although several *CONTACT
PAIR cards can be used within one and the same input deck, all must be of
the same type. It is not allowed to mix NODE TO SURFACE, SURFACE
TO SURFACE MORTAR, LINMORTAR, PGLINMORTAR and MASSLESS
contact within one and the same input deck.

The SMALL SLIDING parameter only applies to node-to-face penalty con-
tact. If it is not active, the contact is large sliding. This means that the pairing
between the nodes belonging to the dependent surface and faces of the inde-
pendent surface is performed anew in every iteration. If the SMALL SLIDING
parameter is active, the pairing is done once at the start of every increment and
kept during the complete increment. SMALL SLIDING usually converges better
than LARGE SLIDING, since changes in the pairing can deteriorate the con-
vergence rate. For face-to-face contact (SURFACE TO SURFACE, MORTAR,
LINMORTAR or PGLINMORTAR) small sliding is active by default.

The ADJUST parameter allows the user to move selected slave nodes at
the start of the calculation (i.e. at the start of the first step) such that they
make contact with the master surface. This is a change of coordinates, i.e. the
geometry of the structure at the start of the calculation is changed. This can be
helpful if due to inaccuracies in the modeling a slave node which should lie on
the master surface at the start of the calculation actually does not. Especially
in static calculations this can lead to a failure to detect contact in the first
increment and large displacements (i.e. acceleration due to a failure to establish
equilibrium). These large displacements may jeopardize convergence in any
subsequent iteration. The ADJUST parameter can be used with a node set
as argument or with a nonnegative real number. If a node set is selected, all
nodes in the set are adjusted at the start of the calculation. If a real number is
specified, all nodes for which the clearance is smaller or equal to this number are
adjusted. Penetration is interpreted as a negative clearance and consequently
all penetrating nodes are always adjusted, no matter how small the adjustment
size (which must be nonnegative). Notice that large adjustments can lead to
deteriorated element quality. The adjustments are done along a vector through
the slave node and locally orthogonal to the master surface.
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First line:
e *CONTACT PAIR

e enter the required parameter INTERACTION and any optional parame-
ters.

Following line:
e Name of the slave surface (can be nodal or element face based).
e Name of the master surface (must be based on element faces).

Repeat this line if needed.

Example:

*CONTACT PAIR,INTERACTION=IN1,ADJUST=0.01
dep,ind

defines a contact pair consisting of the surface dep as dependent surface and
the element face surface ind as independent surface. The name of the surface

interaction is IN1. All slave nodes for which the clearance is smaller than or
equal to 0.01 will be moved onto the master surface.

Example files: contactl, contact2.

7.23 *CONTACT PRINT

Keyword type: step
This option is used to print selected nodal and/or integration point and/or
surface variables in file jobname.dat. The following variables can be selected:

e Relative contact displacements (key=CDIS)

e Contact stresses (key=CSTR)

e Contact spring energy (key=CELS)

e Total number of contact elements (key=CNUM)
e Total force on a slave surface (key=CF)

e Total normal force on a slave surface (key=CFN)

e Total shear force on a slave surface (key=CFS)
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Contact quantities CDIS, CSTR and CELS are stored for all active slave
nodes in the model for node-to-face penalty contact and for all active inte-
gration points in the slave face for face-to-face penalty contact. The relative
contact displacements and the stresses consist of one component normal to the
master surface and two components tangential to it. Positive values of the
normal components represent the normal material overlap and the pressure, re-
spectively. For the direction of the tangential unit vectors used to calculate
the relative tangential displacement and shear stresses the user is referred to
FCONTACT FILEl The energy is a scalar quantity.

The contact quantity CNUM is one scalar listing the total number of contact
elements in the model.

The quantities CF, CFN and CFS represent the total force, total normal
force and total shear force acting on the slave surface, respectively, for a selected
face-to-face penalty contact pair. In addition, moments of these forces about
the global origin, the location of the center of gravity and the area of the contact
area and the moment about the center of gravity are printed.

There are five parameters, FREQUENCY, TIME POINTS, TOTALS, SLAVE
and MASTER. FREQUENCY and TIME POINTS are mutually exclusive.

The parameter FREQUENCY is optional, and applies to nonlinear cal-
culations where a step can consist of several increments. Default is FRE-
QUENCY=1, which indicates that the results of all increments will be stored.
FREQUENCY=N with N an integer indicates that the results of every Nth
increment will be stored. The final results of a step are always stored. If
you only want the final results, choose N very big. The value of N applies to
FOUTPUTIFELEMENT OUTPUT] FEL FILE, FELPRINT] FNODE OUTPUT]
and FCONTACT PRINT! If the FREQUENCY parameter is used for more than
one of these keywords with conflicting values of N, the last value applies to all.
A frequency parameter stays active across several steps until it is overwritten
by another FREQUENCY value or the TIME POINTS parameter.

With the parameter TIME POINTS a time point sequence can be referenced,
defined by a FTIME POINTS keyword. In that case, output will be provided for
all time points of the sequence within the step and additionally at the end of the
step. No other output will be stored and the FREQUENCY parameter is not
taken into account. Within a step only one time point sequence can be active.
If more than one is specified, the last one defined on any of the keyword cards
FNODE FILE] FEL FILE] FNODE PRINT] FEL PRINT or FEACE PRINT] will
be active. The TIME POINTS option should not be used together with the
DIRECT option on the procedure card. The TIME POINTS parameters stays
active across several steps until it is replaced by another TIME POINTS value
or the FREQUENCY parameter.

The first occurrence of a *CONTACT PRINT keyword card within a step
wipes out all previous contact variable selections for print output. If no *CON-
TACT PRINT card is used within a step the selections of the previous step
apply, if any.

The parameter TOTALS only applies to the energy. If TOTALS=YES the
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sum of the contact spring energy for all contact definitions is printed in addi-
tion to their value for each active slave node (node-to-face contact) or active
slave face integration point (face-to-face penalty contact) separately. If TO-
TALS=ONLY is selected the sum is printed but the individual contributions
are not. If TOTALS=NO (default) the individual contributions are printed,
but their sum is not.

If the model contains axisymmetric elements the spring energy applies to a
segment of 2°. So for the total spring energy this value has to be multiplied by
180.

The parameters SLAVE and MASTER are used to define a contact pair.
They are only needed for the output variables CF, CFN and CFS. They have to
correspond to the face based master of slave surface of an existing contact pair.

First line:
e *CONTACT PRINT
Second line:

e Identifying keys for the variables to be printed, separated by commas.

Example:

*CONTACT PRINT
CDIS

requests the storage of the relative displacements in all slave nodes in the
.dat file.

Example files: beampkin, beamrb, contact5.

7.24 *CONTROLS

Keyword type: step

This option is used to change the iteration control parameters. It should only
be used by those users who know what they are doing and are expert in the
field. A detailed description of the convergence criteria is given in Section
There are two, mutually exclusive parameter: PARAMETERS and RESET.
The RESET parameter resets the control parameters to their defaults. The
parameter PARAMETERS is used to change the defaults. It can take the value
TIME INCREMENTATION, FIELD, LINE SEARCH, NETWORK, CFD or
CONTACT. If the TIME INCREMENTATION value is selected, the number
of iterations before certain actions are taken (e.g. the number of divergent
iterations before the increment is reattempted) can be changed and effect of
these actions (e.g. the increment size is divided by two). The FIELD parameter
can be used to change the convergence criteria themselves.

LINE SEARCH can be used to change the line search parameters (only for
face-to-face penalty contact). The line search parameter scales the correction to
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the solution calculated by the Newton-Raphson algorithm such that the residual
force is orthogonal to the correction. This requires the solution of a nonlinear
equation, and consequently an iterative procedure. In CalculiX this procedure
is approximated by a linear connection between:

e the scalar product of the residual force from the last iteration with the
solution correction in the present iteration (corresponds to a line search
parameter of zero) and

e the scalar product of the residual force in the present iteration with the
solution correction in the present iteration (corresponds to a line search
parameter of one).

For details of the line seach algorithm the reader is referred to [109).

With the NETWORK parameter the convergence criteria for network iter-
ations can be changed. The parameters ci¢, c1r and ¢, express the fraction
of the mean energy balance, mass balance and element balance the energy bal-
ance residual, the mass balance residual and the element balance residual is not
allowed to exceed, respectively. The parameters ca;, cay, cap and cyq is the frac-
tion of the change in temperature, mass flow, pressure and geometry since the
beginning of the increment the temperature, mass flow, pressure and geometry
change in the actual network iteration is not allowed to exceed, respectively.
The same applies to the parameters a¢, a1y, a1p, a2, 25, 2p and ag,, except
that they are absolute values and not fractions, e.g. the mean enery balance
residual should not exceed aq; etc. Therefore they have appropriate units.

With the CFD parameter the maximum number of iterations in certain fluid
loops can be influenced. A fluid calculation within CalculiX is triggered at the
start of a new mechanical increment. This increment is subdivided into fluid
increments based on the physical fluid properties. For each fluid increment iter-
ations are performed. Usually, iterations are performed until convergence of the
fluid increment or until the maximum allowed number of iterations is reached.
This is the first parameter ¢itt (“transient”). In fluid calculations the unknowns
in the equation systems are the quantities (velocity..) at the element centers.
The values at the face centers and the gradients are calculated based on these
element center quantities. In case the mesh is not orthogonal, iterations have
to be performed. The number of these iterations is expressed by iitg (“geome-
try”) and #itp (taking non-orthogonality into account in the pressure correction
equation, “pressure”). This is the second and third parameter. For a perfectly
rectangular grid these values can be set to zero. Finally, the parameter jit spec-
ifies how many coupled pressure-temperature iterations have to be performed.
For incompressible flow the default value of 1 should not be changed. For invis-
cid compressible flow this value may have to be increased up to 4, whereas for
viscid compressible flow this value has rarely to be changed.

Finally, the CONTACT parameter is used to change defaults in the face-to-
face penalty contact convergence algorithm (cf. Section BI0.2). This relates
to
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the maximum relative difference in number of contact elements to allow
for convergence (delcon). The corresponding absolute difference, which
may not be exceeded is defined as the number of contact elements in the
previous iteration times delcon.

the fraction of contact elements which is removed in an aleatoric way
before repeting an increment in case of a local mimimum in the solution
(alea)

the integer factor by which the normal spring stiffness (in case of linear
pressure-overclosure) and stick slope are reduced in case of divergence or
too slow convergence (kscalemax)

the maximum number of iterions per increment (itf2f).

First line:

*CONTROLS

Enter the PARAMETERS parameter and its value, or the RESET pa-
rameter.

There are no subsequent lines if the parameter RESET is selected.
Following lines if PARAMETERS=TIME INCREMENTATION is selected:
Second line:

I iteration after which a check is made whether the residuals increase in
two consecutive iterations (default: 4). If so, the increment is reattempted
with Dy times its size.

IR iteration after which a logarithmic convergence check is performed in
each iteration (default: 8). If more than I iterations are needed, the
increment is reattempted with D¢ its size.

Ip iteration after which the residual tolerance Ry is used instead of Rj
(default: 9).

I maximum number of iterations allowed (default: 16).

I;, number of iterations after which the size of the subsequent increment
will be reduced (default: 10).

I maximum number of iterations allowed in two consecutive increments
for the size of the next increment to be increased (default: 4).

Is Currently not used.

I4 Maximum number of cutbacks per increment (default: 5). A cutback
is a reattempted increment.

Iy Currently not used.
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I Currently not used.

Third line:

Dy Cutback factor if the solution seems to diverge(default: 0.25).

D¢ Cutback factor if the logarithmic extrapolation predicts too many
iterations (default: 0.5).

Dp Cutback factor for the next increment if more than Iy, iterations were
needed in the current increment (default: 0.75).

D, Cutback factor if the temperature change in two subsequent incre-
ments exceeds DELTMX (default: 0.85).

Dg Currently not used.
Dy Currently not used.

Dp Factor by which the next increment will be increased if less than I
iterations are needed in two consecutive increments (default: 1.5).

W¢ Currently not used.

Following line if PARAMETERS=FIELD is selected:
Second line:

R Convergence criterion for the ratio of the largest residual to the av-
erage force (default: 0.005). The average force is defined as the average
over all increments in the present step of the instantaneous force. The
instantaneous force in an increment is defined as the mean of the absolute
value of the nodal force components within all elements.

C% Convergence criterion for the ratio of the largest solution correction
to the largest incremental solution value (default: 0.01).

q& Initial value at the start of a new step of the time average force (default:
the time average force from the previous steps or 0.01 for the first step).

g% user-defined average force. If defined, the calculation of the average
force is replaced by this value.

Ry Alternative residual convergence criterion to be used after Ip iterations
instead of RY (default: 0.02).

€ Criterion for zero flux relative to ¢® (default: 1075).

C& Convergence criterion for the ratio of the largest solution correction to
the largest incremental solution value in case of zero flux (default: 1073).

Rj* Convergence criterion for the ratio of the largest residual to the average
force for convergence in a single iteration (default: 107%).
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Following line if PARAMETERS=LINE SEARCH is selected:
Second line:
e not used.

ls

e 5% Maximum value of the line search parameter (default: 1.01).

e s!s. Minimum value of the line search parameter (default: 0.25).
e not used.

e not used.

Following line if PARAMETERS=NETWORK is selected:
Second line:

e ¢y (default: 5-1077).
e cis (default: 5-1077).
e ¢y, (default: 5-1077).
e ¢y (default: 5-1077).
e cof (default: 5-1077).
e ¢, (default: 5-1077).
o cy, (default: 5-1077).
Third line:

e ay; (default: 102°[M][L]?/[t]; unit in SI: Watt).

e ays (default: 102°[M]/[t]; unit in SI: kg/s).
e aj, (default: 102°[-]; dimensionless).
e ay; (default: 102°[T]; unit in SI: K).
e ayy (default: 102°[M]/[t]; unit in SI: kg/s).

a9 (
e ay, (default: 102°[M]/([t]?[L]); unit in SI: Pa).
a9 (

o default: 10%°[L]; unit in SI: m).

a

Here, [M], [L], [T] and [t] are the units for mass, length, temperature and
time.

Following line if PARAMETERS=CFD is selected:

Second line:

o jitt (default: 20).

e iitg (default: 0).
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e iitp (default: 1).
e jit (default: 1).

Following line if PARAMETERS=CONTACT is selected:
Second line:

e delcon (> 0; default: 0.001).

e alea (0 < alea < 1; default: 0.1).

kscalemax (> 1, integer; default: 100).

itf2f (> 1, integer; default: 60).

Example:

*CONTROLS , PARAMETERS=FIELD
1.e30,1.e30,0.01,,0.02,1.e-5,1.e-3,1.e-8

leads to convergence in just one iteration since nearly any residuals are ac-
cepted for convergence (R® = 103% and C = 103°.

Example files: beammrco.

7.25 *CORRELATION LENGTH

Keyword type: step

This option is used to define the correlation length to be used to calculate
the random fields in a FROBUST DESIGN| analysis. It has the unit of length
and is a measure for how connected the outer geometry is. A small correlation
length means that the surface finish of the structure allows for high frequency
geometric deviations such as very local dents. A large correlation length allows
only for low frequency deviations, i.e. any deviations are rather smooth and
extend over a larger area. A small correlation length will require a larger set of
random field vectors to represent the geometric tolerances to a given accuracy.

First line:

e *CORRELATION LENGTH
Second line:

e correlation length

Example:

*CORRELATION LENGTH
20.

specifies a correlation length of 20 length units.

Example files: beamprand.
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7.26 *COUPLED TEMPERATURE-DISPLACEMENT

Keyword type: step

This procedure is used to perform a coupled thermomechanical analysis. A
thermomechanical analysis is a nonlinear calculation in which the displacements
and temperatures are simultaneously solved. In this way the reciprocal action of
the temperature on the displacements and the displacements on the temperature
can be taken into account. At the present state, the influence of the temperature
on the displacements is calculated through the thermal expansion, the effect of
the displacements on the temperature is limited to radiation effects. In addition,
the influence of the network fluid pressure on the deformation of a structure and
the influence of the structural deformation on the network fluid mass flow can
be considered. Other heating effects, e.g. due to plasticity, or not yet taken into
account.

The coupling is not done on matrix level, i.e. the left hand side matrix
of the equation system does not contain any coupling terms. The coupling
is rather done by an update of the boundary conditions after each iteration.
Indeed, the calculation of an increment usually requires several iterations to
obtain convergence. By including the thermomechanical interaction after each
iteration it is automatically taken into account at convergence of the increment.

There are eight optional parameters: SOLVER, DIRECT, ALPHA, STEADY
STATE, DELTMX, TIME RESET, TOTAL TIME AT START and COM-
PRESSIBLE.

SOLVER determines the package used to solve the ensuing system of equa-
tions. The following solvers can be selected:

o the SGI solver

e PaStiX

e PARDISO

e SPOOLES [3] 4].
e TAUCS

e the iterative solver by Rank and Ruecker [79], which is based on the algo-
rithms by Schwarz [85].

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LL” decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
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either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the pre-conditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVE CHOLESKY triggers Incomplete Cholesky pre-conditioning.
Cholesky pre-conditioning leads to a better convergence and maybe to shorter
execution times, however, it requires additional storage roughly corresponding
to the non-zeros in the matrix. If you are short of memory, diagonal scal-
ing might be your last resort. The iterative methods perform well for truly
three-dimensional structures. For instance, calculations for a hemisphere were
about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

The parameter DIRECT indicates that automatic incrementation should be
switched off. The increments will have the fixed length specified by the user on
the second line.

The parameter ALPHA takes an argument between -1/3 and 0. It controls
the dissipation of the high frequency response: lower numbers lead to increased
numerical damping ([62]). The default value is -0.05.

The parameter STEADY STATE indicates that only the steady state should
be calculated. If this parameter is absent, the calculation is assumed to be time
dependent and a transient analysis is performed. For a transient analysis the
specific heat of the materials involved must be provided. In a steady state
analysis any loading is applied using linear ramping, in a transient analysis step
loading is applied.

The parameter DELTMX can be used to limit the temperature change in
two subsequent increments. If the temperature change exceeds DELTMX the
increment is restarted with a size equal to D4 times DELTMX divided by the
temperature change. The default for D4 is 0.85, however, it can be changed by
the FCONTROLS] keyword. DELTMX is only active in transient calculations.
Default value is 103°.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter
underneath the *COUPLED TEMPERATURE-DISPLACEMENT keyword).
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Consequently, if the time at the end of the previous step is 10. and the present
time period is 1., the total time at the end of the present step is 11. If the
TIME RESET parameter is used, the total time at the beginning of the present
step is 9. and at the end of the present step it will be 10. This is sometimes
useful if transient coupled temperature-displacement calculations are preceded
by a stationary heat transfer step to reach steady state conditions at the start of
the transient coupled temperature-displacement calculations. Using the TIME
RESET parameter in the stationary step (the first step in the calculation) will
lead to a zero total time at the start of the subsequent instationary step.

The parameter TOTAL TIME AT START can be used to set the total time
at the start of the step to a specific value.

Finally, the parameter COMPRESSIBLE is only used in 3-D CFD calcula-
tions. It specifies that the fluid is compressible. Default is incompressible.

First line:

*COUPLED TEMPERATURE-DISPLACEMENT

e Enter any needed parameters and their values.

e Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

e Time period of the step (default 1.).
e Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the

step, whichever is smaller.

e Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

o Initial time increment for CFD applications (default 1.e-2)
Example:

*COUPLED TEMPERATURE-DISPLACEMENT
.1,1.

defines a thermomechanical step and selects the SPOOLES solver as linear
equation solver in the step (default). The second line indicates that the initial
time increment is .1 and the total step time is 1.

Example files: thermomech.
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7.27 *COUPLING

Keyword type: model definition

This option is used to generate a kinematic or a distributing coupling. It
must be followed by the keyword FKINEMATIC] or

The parameters REF NODE, SURFACE and CONSTRAINT NAME are
mandatory, the parameter ORIENTATION is optional.

With REF NODE a reference node is chosen, the degrees of freedom of which
are used to define the constraint. In the reference node six degrees of freedom
are available: 1 to 3 for translations in the x-, y- and z- direction and 4 to
6 for rotations about the x-, y- and z- axis. For *KINEMATIC couplings the
location of the reference node determines the center of the rigid motion. For
*DISTRIBUTING couplings any forces specified by the user are applied at the
location of the reference node. Choosing another reference node will change
the effect of these forces (e.g. the moment about the center of gravity of the
coupling surface will be different). The reference node should not be one of the
nodes of the surface to which the constraint applies.

With SURFACE the nodes are selected to which the constraint applies (so-
called coupling nodes). This surface must be face-based.

The parameter CONSTRAINT NAME is used to assign a name to the cou-
pling condition. This name is not used so far.

Finally, with the ORIENTATION parameter one can assign a local coor-
dinate system to the coupling constraint. Notice that this does not induce a
change of coordinate system in the reference node (for this a *TRANSFORM
card is needed). For distributing couplings only rectangular local systems are
allowed, for kinematic couplings both rectangular and cylindrical systems are
alllowed, cf. FORIENTATIONI

For *DISTRIBUTING couplings it is not recommended to apply any other
forces but the forces and/or moments in the reference node to any node be-
longing to the coupling surface and no transformation is allowed in these nodes.
Furthermore, it is not recommended to use the reference node in any other
construct.

First line:
e *COUPLING

e Enter any needed parameters.

Example:

*COUPLING,REF NODE=200,SURFACE=SURF,CONSTRAINT NAME=C1,0RIENTATION=0R1

defines a coupling constraint with name C1 for the nodes belonging to the
surface SURF. The reference node is node 200 and an orientation OR1 was
applied.

Example files: couplingl.
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7.28 *CRACK PROPAGATION

Keyword type: step

This procedure is used to perform a crack propagation analysis. Prerequisite
is the performance of a static calculation for the uncracked structure, which may
consist of several steps. The results of this calculation must be stored in a frd-
file. The crack propagation calculation must be done in a separate input deck.
The model in this input deck should contain a triangulation of the crack(s) with
S3 shell elements. It may also contain the mesh of the uncracked structure.

There are two required parameters INPUT and MATERIAL and one op-
tional parameter LENGTH. With the parameter INPUT the frd-file with the
uncracked results is referenced. It should contain stresses and may, in addition,
contain temperatures for all steps of the uncracked calculation. The parameter
MATERIAL refers to the material definition containing the crack propagation
parameters. Right now, a Paris-type law with threshold and critical corrections
is available, cf. Section

The LENGTH parameter indicates how the crack length is to be calculated:

e CUMULATIVE means that the crack length is the crack length of the
initial crack augmented by the crack propagation increments of the sub-
sequent increments

e INTERSECTION means that the crack length at a certain location along
the crack front is determined by the distance from the point on the crack
front opposite to this location.

Since the jobname.frd file is created from scratch in every FCRACK PROPAGATION]

step (this is because every *CRACK PROPAGATION step changes the number
of nodes and elements in the model due to the growing crack) it does not make
sense to have more than one such step in an input deck. In fact, any other step
is senseless and ideally the *CRACK PROPAGATION step should be the only
step in the deck. If the user defines more than one *CRACK PROPAGATION
step in his/her input deck, the jobname.frd file will only contain the output
requested, if any, from the last *CRACK PROPAGATION step. This rule also
applies to restart calculations.

First line:

e *CRACK PROPAGATION

e Enter any parameters and their value
Second line:

e Maximum crack propagation increment.

e Maximum deflection angle per increment.
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Example:

*MATERIAL ,NAME=CRACK
*USER MATERIAL,CONSTANTS=8
1.E-4,772.86,3.1,10.,177.09,10.,3162.,0.5

*STEP , INC=50
*CRACK PROPAGATION,INPUT=master.frd,MATERIAL=CRACK , LENGTH=CUMULATIVE
0.05,10.

defines a crack propagation calculation. The results of the uncracked calcu-
lation are stored in master.frd. The propagation data are defined underneath
the material definition for material CRACK. The crack length calculation is
based on a sum of the initial crack length and the subsequent crack increments.
The maximum crack length increment ist 0.05 length units, the maximum de-
flection angle per increment is 10°. The maximum number of increments is

defined using the INC parameter on the FSTEP] card.

Example files: crackllcum, cracklIlint, crackIIprin.

7.29 *CREEP

Keyword type: model definition, material

This option is used to define the creep properties of a viscoplastic mate-
rial. There is one optional parameter LAW. Default is LAW=NORTON, the
only other value is LAW=USER for a user-defined creep law. The Norton law
satisfies:

¢ = Ao™t™ (851)

where € is the equivalent creep strain, o is the true Von Mises stress an
t is the total time. For LAW=USER the creep law must be defined in user
subroutine creep.f (cf. Section BT]).

All constants may be temperature dependent. The card should be preceded
by a FELASTIC] card within the same material definition, defining the elastic
properties of the material. If for LAW=NORTON the temperature data points
under the *CREEP card are not the same as those under the *ELASTIC card,
the creep data are interpolated at the *ELASTIC temperature data points. If
a *PLASTIC card is defined within the same material definition, it should be
placed after the *ELASTIC and before the *CREEP card. If no *PLASTIC
card is found, a zero yield surface without any hardening is assumed.

If the elastic data is isotropic, the large strain viscoplastic theory treated in
[89] and [90] is applied. If the elastic data is orthotropic, the infinitesimal strain
model discussed in Section is used. If a *PLASTIC card is used for an
orthotropic material, the LAW=USER option is not available.

First line:
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e *CREEP

e Enter the LAW parameter and its value, if needed

Following lines are only needed for LAW=NORTON (default): First line:
o A.

e n.

e m.

e Temperature.

Use as many lines as needed to define the complete temperature dependence.

Example:

*CREEP
1.E-10,5.,0.,100.
2.E-10,5.,0.,200.

defines a creep law with A=10"1°, n=5 and m=0 for T(temperature)=100.
and A=2-1071% and n=5 for T(temperature)=200.

Example files: beamcr.

7.30 *CYCLIC HARDENING

Keyword type: model definition,material

This option is used to define the isotropic hardening curves of an incremen-
tally plastic material with combined hardening. All constants may be tempera-
ture dependent. The card should be preceded by an FELASTIC] card within the
same material definition, defining the isotropic elastic properties of the material.

If the elastic data is isotropic, the large strain viscoplastic theory treated
in [89] and [90] is applied. If the elastic data is orthotropic, the infinitesimal
strain model discussed in Section is used. Accordingly, for an elasti-
cally orthotropic material the hardening can be at most linear. Furthermore,
if the temperature data points for the hardening curves do not correspond to
the *ELASTIC temperature data points, they are interpolated at the latter
points. Therefore, for an elastically isotropic material, it is advisable to define
the hardening curves at the same temperatures as the elastic data.

Please note that, for each temperature, the (von Mises stress,equivalent plas-
tic strain) data have to be entered in ascending order of the equivalent plastic
strain.

First line:

e *CYCLIC HARDENING
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Following sets of lines defines the isotropic hardening curve: First line in the
first set:

e Von Mises stress.
e Equivalent plastic strain.
e Temperature.

Use as many lines in the first set as needed to define the complete hardening
curve for this temperature.
Use as many sets as needed to define complete temperature dependence.

Example:

*CYCLIC HARDENING
800.,0.,100.
1000.,.1,100.
900.,0.,500.
1050.,.11,500.

defines two (stress,plastic strain) data points at T=100. and two data points
at T=500. Notice that the temperature must be listed in ascending order. The
same is true for the plastic strain within a temperature block.

Example files: beampik.

7.31 *CYCLIC SYMMETRY MODEL

Keyword type: model definition

This keyword is used to define the number of sectors and the axis of sym-
metry in a cyclic symmetric structure for use in a cyclic symmetry calculation
(structural or 3D-fluid).

It must be preceded by two *SURFACE cards defining the nodes belonging
to the left and right boundary of the sector and a *TIE card linking those
surfaces. The axis of symmetry is defined by two points a and b, defined in
global Cartesian coordinates.

For structural calculations there are six parameters, N, NGRAPH, TIE,
ELSET, MATRIX and CHECK. The parameter N, specifying the number of
sectors, is required, TIE is required if more than one cyclic symmetry tie is
defined.

The parameter NGRAPH is optional and indicates for how many sectors the
solutions should be stored in .frd format. Setting NGRAPH=N for N sectors
stores the solution for the complete structure for subsequent plotting purposes.
Default is NGRAPH=1. The rotational direction for the multiplication of the
datum sector is from the dependent surface (slave) to the independent surface
(master).
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The parameter TIE specifies the name of the tie constraint to which the
cyclic symmetry model definition applies. It need not be specified if only one
*TIE card has been defined.

The element set specified by ELSET specifies the elements to which the
parameter NGRAPH should be applied. Default if only one cyclic symmetry
*TIE card is used in the input deck is the complete model.

The MATRIX parameter is needed if a substructure, the matrices for which
were read from file, is present in the model. The value of MATRIX is the name
of the matrix, which contains at most 4 characters, e.g. MATRIX=TEST for a
substructure with the name TEST. The parameters ELSET and MATRIX are
mutually exclusive.

The last parameter, CHECK, specifies whether CalculiX should compare
the sector angle based on its geometry with its value based on N. If the devi-
ation exceeds 0.01 radians the program issues an error message and stops. If
CHECK=NO is specified, the check is not performed, else it is. If the user
wants to find eigenmodes with fractional nodal diameters, i.e. vibrations for
which the phase shift is smaller than the sector angle, a value of N has to be
specified which exceeds the number of sectors in the model. In that case the
check should be turned off. Notice that in the case of the check being turned
off the sector angle based on the geometry is still calculated for other purposes,
it is just not compared to the sector angle based on the value of N.

Several *CYCLIC SYMMETRY MODEL cards within one input deck defin-
ing several cyclic symmetries about the same axis within one and the same model
are allowed. This, however, always is an approximation, since several cyclic sym-
metries within one model cannot really exist. Good results are only feasible if
the values of N for the different *CYCLIC SYMMETRY MODEL cards do not
deviate substantially.

The *CYCLIC SYMMETRY MODEL card triggers the creation of cyclic
symmetry multiple point constraints between the slave and master side. If the
nodes do not match on a one-to-one basis a slave node is connected to a master
face. To this end the master side is triangulated. The resulting triangulation
is stored in file TriMasterCyclicSymmetryModel.frd and can be viewed with
CalculiX GraphiX.

First line for all but fluid periodic calculations:
e *CYCLIC SYMMETRY MODEL

e Enter the required parameters N and TIE (the latter only if more than
one cyclic symmetry tie is defined) and their value.

Second line:
e X-coordinate of point a.
e Y-coordinate of point a.

e Z-coordinate of point a.
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e X-coordinate of point b.
e Y-coordinate of point b.

e Z-coordinate of point b.

Example:

*CYCLIC SYMMETRY MODEL, N=12, NGRAPH=3
0.,0.,0.,1.,0.,0.

defines a cyclic symmetric structure consisting of 30° sectors and axis of
symmetry through the points (0.,0.,0.) and (1.,0.,0.). The solution will be
stored for three connected sectors (120°).

Example files: segment, fullseg, couettelper, couettecyl4.

7.32 *DAMPING

Keyword type: model definition, if structural damping: material

This card is used to define Rayleigh damping for implicit and explicit dy-
namic calculations (FDYNAMIC) and structural damping for steady state dy-
namics calculations (FSTEADY STATE DYNAMICS).

For Rayleigh damping there are two required parameters: ALPHA and
BETA.

Rayleigh damping is applied in a global way, i.e. the damping matrix [C] is
taken to be a linear combination of the stiffness matrix [K] and the mass matrix
[M]:

[C] = a[M]+ B [K]. (852)

The damping force satisfies:

{F} = [C]{v}, (853)

where {v} is the velocity vector. For Rayleigh damping only one *DAMPING
card can be used in the input deck. It applies to the whole model.

For explicit dynamic calculations only mass proportional damping is allowed,
i.e. § must be zero.

For structural damping the damping is a material characteristic. Each mate-
rial can have its own damping value. There is one required parameter STRUC-
TURAL, defining the value ¢ of the damping. For structural damping the
element damping force is displacement dependent and satisfies:

{17}6 ==iCe[f(Lz{$}e7 (854)



7.33 *DASHPOT 447

where i = /—1, [K]. is the element stiffness matrix, and {z}. is the element
displacement vector. (. is the structural damping value for the material of
element e (default is zero). The global damping force is assembled from the
element damping forces.

First line:
o *DAMPING

e Enter ALPHA and BETA and their values for Rayleigh damping or STRUC-
TURAL and its value for structural damping.

Example:
*DAMPING, ALPHA=5000. ,BETA=2.e-3

indicates that a damping matrix is created by multiplying the mass matrix
with 5000. and adding it to the stiffness matrix multiplied by 2 - 1074

Example:
*DAMPING, STRUCTURAL=0.03

defines a structural damping value of 0.03 (3 %). This card must be part of
a material description.

Example files: beamimpdy1l, beamimpdy2.

7.33 *DASHPOT

Keyword type: model definition

With this option the force-velocity relationship can be defined for dashpot
elements. Dashpot elements only make sense for dynamic calculations (implicit
FDYNAMIC, FMODAL DYNAMIC| and FSTEADY STATE DYNAMICS)). For
explicit FDYNAMIC] calculations they have not been implemented yet. There is
one required parameter ELSET. With this parameter the element set is referred
to for which the dashpot behavior is defined. This element set should contain
dashpot elements of type DASHPOTA only.

The dashpot constant can depend on frequency and temperature. Frequency
dependence only makes sense for FSTEADY STATE DYNAMICS] calculations.

First line:
e *DASHPOT

e Enter the parameter ELSET and its value
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Second line: enter a blank line
For each temperature a set of lines can be entered. First line in the first set:

e Dashpot constant.
e Frequency (only for steady state dynamics calculations, else blank).
e Temperature.

Use as many lines in the first set as needed to define the complete frequency
dependence of the dashpot constant (if applicable) for this temperature. Use as
many sets as needed to define complete temperature dependence.

Example:

*DASHPOT ,ELSET=Eall
1.e-5

defines a dashpot constant with value 1072 for all elements in element set
Eall and all temperatures.

Example:

*DASHPOT ,ELSET=Eall
1.e-5,1000.,273.
1.e-6,2000.,273.
1.e-4,,373.

defines a dashpot constant with value 107° at a frequency of 1000 and with
value 1079 at a frequency of 2000, both at a temperature of 273. At a temper-
ature of 373 the dashpot constant is frequency independent and takes the value
10~%. These constants apply to all dashpot elements in set Eall.

Example files: dashpotl, dashpot2, dashpot3.

7.34 *DEFORMATION PLASTICITY

Keyword type: model definition, material
This option defines the elasto-plastic behavior of a material by means of the
generalized Ramberg-Osgood law. The one-dimensional model takes the form:

n—1
Ee=o0+a (|0|> o (855)

where € is the logarithmic strain and o the Cauchy stress. In the present imple-
mentation, the Eulerian strain is used, which is very similar to the logarithmic
strain (about 1.3 % difference dat 20 % engineering strain). All coefficients may
be temperature dependent.

First line:
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e *DEFORMATION PLASTICITY
Following line:
e Young’s modulus (E).

e Poisson’s ratio (v).

Yield stress (o)

Exponent (n).
Yield offset ().

e Temperature.
Repeat this line if needed to define complete temperature dependence.
Example:
*DEFORMATION PLASTICITY
210000.,.3,800.,12.,0.4

defines a Ramberg-Osgood law. No temperature dependence is introduced.

Example files: beampl.

7.35 *DENSITY

Keyword type: model definition, material

With this option the mass density of a material can be defined. The mass
density is required for a frequency analysis (*FREQUENCY), for a dynamic
analysis (*DYNAMIC or *HEAT TRANSFER) and for a static analysis with
gravity loads (GRAV) or centrifugal loads (CENTRIF). The density can be
temperature dependent.

First line:
e *DENSITY
Following line:
e Mass density.
e Temperature.
Repeat this line if needed to define complete temperature dependence.
Example:
*DENSITY
7.8E-9

defines a density with value 7.8 x 10~ for all temperatures.

Example files: achtelc, segment], segment2, beamf.
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7.36 *DEPVAR

Keyword type: model definition, material

This keyword is used to define the number of internal state variables for a
user-defined material. They are initialized to zero at the start of the calculation
and can be used within a material user subroutine. There are no parameters.

This card must be preceded by a card.

First line:
e *DEPVAR
Second line:

e Number of internal state variables.
Example:

*DEPVAR
12

defines 12 internal state variables for the user-defined material at stake.

Example files: .

7.37 *DESIGN RESPONSE

Keyword type: step

With *DESIGN RESPONSE one can define the design response functions
in a sensitivity analysis. Right now the following design response functions are
allowed for TYPE=COORDINATE design variables:

e ALL-DISP: the square root of the sum of the square of the displacements
in all nodes of the structure or of a subset if a node set is defined

e x-DISP: the square root of the sum of the square of the x-displacements
in all nodes of the structure or of a subset if a node set is defined

e Y-DISP: the square root of the sum of the square of the y-displacements
in all nodes of the structure or of a subset if a node set is defined

e Z-DISP: the square root of the sum of the square of the z-displacements
in all nodes of the structure or of a subset if a node set is defined

e EIGENFREQUENCY: all eigenfrequencies calculated in a previous|"FREQUENCY/]
step (actually the eigenvalues, which are the square of the eigenfrequen-
cies)

e MASS: mass of the total structure or of a subset if an element set is defined
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STRAIN ENERGY: internal energy of the total structure or of a subset
if an element set is defined

MISESSTRESS: the maximum von Mises stress of the total structure or
of a subset if a node set is defined. The maximum is approximated by the
Kreisselmeier-Steinhauser function

1
f==In) e'7, (856)
P i

where o; is the von Mises stress in node i, p and ¢ are user-defined pa-
rameters. The higher p the closer f is to the actual maximum (a value
of 10 is recommended; the higher this value, the sharper the turns in the
function). & is the target stress, it should not be too far away from the
actual maximum. The target stress must be positive.

PS1STRESS: the maximum of the highest principal stress of the total
structure or of a subset if a node set is defined. The maximum is ap-
proximated by the Kreisselmeier-Steinhauser function (cf. MISESSTRESS
above, also here the target stress must be positive).

PS3STRESS: the minimum of the lowest principal stress of the total struc-
ture or of a subset if a node set is defined. The minimum is approxi-
mated by the Kreisselmeier-Steinhauser function. The target stress for
PS3STRESS must be negative.

MODALSTRESS: the maximum von Mises modal stress of the total struc-
ture or of a subset if a node set is defined. The maximum is approximated
by the Kreisselmeier-Steinhauser function.

EQUIVALENT PLASTIC STRAIN: the maximum equivalent plastic strain
of the total structure or of a subset if a node set is defined. The maximum
is approximated by the Kreisselmeier-Steinhauser function. The target
equivalent plastic strain must be postive.

and for TYPE=ORIENTATION design variables:

ALL-DISP: the displacements in all nodes.

EIGENFREQUENCY: all eigenfrequencies (actually the eigenvalues, which
are the square of the eigenfrequencies) and eigenmodes calculated in a pre-

vious ["FREQUENCY]| step.
GREEN: the Green functions calculated in a previous FGREEN] step.

MASS: mass of the total structure or of a subset if an element set is defined

STRAIN ENERGY: internal energy of the total structure or of a subset
if an element set is defined
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e MISESSTRESS: the von Mises stress in all nodes.

There is one parameter NAME which is compulsary for TYPE=COORDINATE
design variables and not used for TYPE=ORIENTATION design variables. It
is used for the sake of choosing design responses for the objective and/or con-
straints in an optimization. It should not be longer than 80 characters.

Exactly one *DESIGN RESPONSE keyword is required in a *SENSITIVITY
step of type ORIENTATION. This keyword has to be followed by at least one
design response function.

For a *SENSITIVITY step of type COORDINATE at least one *DESIGN
RESPONSE keyword is required. This keyword has to be followed by exactly
one design response function.

First line:
o *DESIGN RESPONSE.

e specify the parameter NAME and its value for TYPE=COORDINATE
design variables.

Second line:

e a response function
e an element or node set, if appropriate

e p for the Kreisselmeier-Steinhauser function (only for the coordinates as
design variables and the stress or strain as target)

e g for the Kreisselmeier-Steinhauser function (only for the coordinates as
design variables and the stress or strain as target)

Repeat this line if needed.

The design response functions STRAIN ENERGY, MASS, ALL-DISP, MISESSTRESS,
PSISTRESS, PS3STRESS and EQUIVALENT PLASTIC STRAIN require a
*STATIC step before the FSENSITIVITY] step, the design response function
EIGENFREQUENCY requires a *FREQUENCY step immediately preceding
the *SENSITIVITY step and the design response function GREEN requires a
*GREEN step before the *SENSITIVITY step. Therefore, the {STRAIN EN-
ERGY, MASS, ALL-DISP, MISESSTRESS, PSISTRESS, PS3STRESS} design
response functions, the {EIGENFREQUENCY} design response function and
the {GREEN} design response function are mutually exclusive within one and
the same *SENSITIVITY step.

Example:

*DESIGN RESPONSE
ALL-DISP,N1

defines the square root of the sum of the square of the displacements in set
N1 to be the design response function.

Example files: sensitivity_I.
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7.38 *DESIGN VARIABLES

Keyword type: model definition

This option is used to define the design variables for a sensitivity study.
The parameter TYPE is required and can take the value COORDINATE or
ORIENTATION. In case of COORDINATE a second line is needed to define
the nodes whose coordinates are to be changed. These nodes should be part of
the surface of the structure (a change in position of nodes internal to the struc-
ture does not change the geometry). They will be varied in a direction locally
orthogonal to the structure (in-surface motions do not change the geometry).
In the case of ORIENTATION the sensitivity of all orientations expressed by
FORIENTATION] cards is calculated successively.

This keyword card should only occur once in the input deck. If it occurs
more than once only the first occurrence is taken into account.

First line:

e *DESIGN VARIABLES

e Enter the TYPE parameter and its value.
Following line if TYPE=COORDINATE:

e Node set containing the design variables.

Example:

*DESIGN VARIABLES, TYPE=COORDINATE
N1

defines the set N1 as the node set containing the design variables.

Example files: sensitivity_I.

7.39 *DFLUX

Keyword type: step

This option allows the specification of distributed heat fluxes. These include
surface flux (energy per unit of surface per unit of time) on element faces and
volume flux in bodies (energy per unit of volume per unit of time).

In order to specify which face the flux is entering or leaving the faces are
numbered. The numbering depends on the element type.

For hexahedral elements the faces are numbered as follows (numbers are
node numbers):

e Face 1: 1-2-3-4
e Face 2: 5-8-7-6
e Face 3: 1-5-6-2
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e Face 4: 2-6-7-3
e Face 5: 3-7-8-4
e Face 6: 4-8-5-1
for tetrahedral elements:
e Face 1: 1-2-3

e Face 2: 1-4-2

e Face 3: 2-4-3

e Face 4: 3-4-1

for wedge elements:
e Face 1: 1-2-3
Face 2: 4-5-6

Face 3: 1-2-5-4

Face 4: 2-3-6-5

Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

Face 1: 1-2

Face 2: 2-3

Face 3: 3-4

Face 4: 4-1

e Face N: in negative normal direction (only for plane stress)

e Face P: in positive normal direction (only for plane stress)

for triangular plane stress, plane strain and axisymmetric elements:
e Face 1: 1-2

e Face 2: 2-3

Face 3: 3-1

e Face N: in negative normal direction (only for plane stress)
e Face P: in positive normal direction (only for plane stress)

for quadrilateral shell elements:
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Face NEG or 1: in negative normal direction

Face POS or 2: in positive normal direction

Face 3: 1-2

Face 4: 2-3
Face 5: 3-4

e Face 6: 4-1

for triangular shell elements:

e Face NEG or 1: in negative normal direction
e Face POS or 2: in positive normal direction
e Face 3: 1-2

e Face 4: 2-3

e Face 5: 3-1

The labels NEG and POS can only be used for uniform flux and are introduced
for compatibility with ABAQUS. Notice that the labels 1 and 2 correspond to
the brick face labels of the 3D expansion of the shell (Figure B3]).

for beam elements:

e Face 1: in negative 1-direction
e Face 2: in positive 1-direction
e Face 3: in positive 2-direction
e Face 5: in negative 2-direction

The beam face numbers correspond to the brick face labels of the 3D expansion
of the beam (Figure [T4]).

The surface flux is entered as a uniform flux with distributed flux type label
Sx where x is the number of the face. For flux entering the body the magnitude
of the flux is positive, for flux leaving the body it is negative. If the flux
is nonuniform the label takes the form SxNUy and a user subroutine
must be provided specifying the value of the flux. The label can be up to 20
characters long. In particular, y can be used to distinguish different nonuniform
flux patterns (maximum 16 characters).

For body generated flux (energy per unit of time per unit of volume) the
distributed flux type label is BF for uniform flux and BFNUy for nonuniform
flux. For nonuniform flux the user subroutine dflux must be provided. Here too,
y can be used to distinguish different nonuniform body flux patters (maximum
16 characters).
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Optional parameters are OP, AMPLITUDE and TIME DELAY. OP takes
the value NEW or MOD. OP=MOD is default and implies that the surface fluxes
on different faces in previous steps are kept. Specifying a distributed flux on a
face for which such a flux was defined in a previous step replaces this value, if a
flux was defined for the same face within the same step it is added. OP=NEW
implies that all previous surface flux is removed. If multiple *DFLUX cards are
present in a step this parameter takes effect for the first *DFLUX card only.

The AMPLITUDE parameter allows for the specification of an amplitude by
which the flux values are scaled (mainly used for dynamic calculations). Thus,
in that case the values entered on the *DFLUX card are interpreted as reference
values to be multiplied with the (time dependent) amplitude value to obtain the
actual value. At the end of the step the reference value is replaced by the actual
value at that time. In subsequent steps this value is kept constant unless it is
explicitly redefined or the amplitude is defined using TIME=TOTAL TIME in
which case the amplitude keeps its validity. The AMPLITUDE parameter has
no effect on nonuniform fluxes.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

Notice that in case an element set is used on any line following *DFLUX
this set should not contain elements from more than one of the following groups:
{plane stress, plane strain, axisymmetric elements}, {beams, trusses}, {shells,
membranes}, {volumetric elements}.

In order to apply a distributed flux to a surface the element set label under-
neath may be replaced by a surface name. In that case the “x” in the flux type
label is left out.

If more than one *DFLUX card occurs within the input deck the following
rules apply:

If a *DFLUX with label S1 up to S6 or BF is applied to an element for which
a *DFLUX with the SAME label was already applied before, then

e if the previous application was in the same step the flux value is added,
else it is replaced

e the new amplitude (including none) overwrites the previous amplitude

First line:

e *DFLUX

e Enter any needed parameters and their value
Following line for surface flux:

e Element number or element set label.
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e Distributed flux type label.
e Actual magnitude of the load (power per unit of surface).

Repeat this line if needed.
Following line for body flux:

e Element number or element set label.
o Distributed flux type label (BF or BENU).
e Actual magnitude of the load (power per unit of volume).

Repeat this line if needed.

Example:

*DFLUX, AMPLITUDE=A1
20,81,10.

assigns a flux entering the surface with magnitude 10 times the value of
amplitude A1 to surface 1 of element 20.

Example:

*DFLUX
15,BF,10.

assigns a body flux with magnitude 10. to element 15.

Example files: oneel20df,beamhtbf,oneel20df2.

7.40 *DISTRIBUTING

Keyword type: model definition

With this keyword distributing constraints can be established between the
nodes belonging to an element surface and a reference node. A distributing
constraint specifies that a force or a moment in the reference node is distributed
among the nodes belonging to the element surface. The weights are calculated
from the area within the surface the reference node corresponds with.

The *DISTRIBUTING card must be immediately preceded by aFCOQUPLING]
keyword card, specifying the reference node and the element surface. If no ORI-
ENTATION was specified on the *COUPLING card, the degrees of freedom
apply to the global rectangular system, if an ORIENTATION was used, they
apply to the local system. For a *DISTRIBUTING constraint the local system
cannot be cylindrical.

The degrees of freedom to which the distributing constraint should apply,
have to be specified underneath the *DISTRIBUTING card. They should be-
long to the range 1 to 6. Degrees of freedom 1 to 3 correspond to translations
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along the local axes, if any, else the global axes are taken. Degrees of freedom 4
to 6 correspond to rotations about the local axes (4 about the local x-axis and
so on), if any, else the global axes are taken. No matter what the user specifies,
forces are always distributed (degree of freedom 1 to 3). Consequently, the only
freedom the user has is to decide whether any additional moments should be
distributed.

In the degrees of freedom in the reference node a force/moment can be
applied by a[FCLOADI card. This load system is replaced by an equivalent force
distribution in the nodes belonging to the coupling surface. No matter what
force and/or moment is applied to the reference node, all translational degrees
of freedom of the nodes in the surface are updated. This means that for the first
FCLOADI definition in the reference node in a step the parameter OP=NEW is
de facto active.

No kinematic relations are created between the reference node and the cou-
pling surface, so applying displacement constraints in the reference node has no
effect. In fact, the displacements at the reference node remain zero through-
out the calculation. In order to check the force and/or moment in the reference
node the user should use FSECTION PRINT]to obtain the global force and mo-
ment on the selected surface. To check the global displacements of the surface
a[*DISTRIBUTING COUPLING| may be defined for the nodes in the surface.
For the global rotations a mean rotation MPC (cf. Section R7.1]) can be used.

Please note that it is not allowed to define transformations (FTRANSFORMI)
in the nodes belonging to a distributing coupling surface.

A *DISTRIBUTING coupling is usually selected in order to distribute a
force or moment area-weighted among the nodes of a surface. For this to work
properly the surface should be plane.

If any of these conditions is not satisfied, the results will be inaccurate.

There is one optional parameter: CYCLIC SYMMETRY. If it is active, the
structure is assumed to be cyclic symmetric. In that case the reference node
on the preceding *COUPLING keyword has to be on the cyclic symmetry axis.
For cyclic symmetric structures only forces and moments aligned with the cyclic
symmetry axis will be correctly redistributed.

First line:

e *DISTRIBUTING

Following line:

e first degree of freedom (only 1 to 6 allowed)

o last degree of freedom (only 1 to 6 allowed); if left blank the last degree
of freedom coincides with the first degree of freedom.

Repeat this line if needed to constrain other degrees of freedom.

Example:
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*0RIENTATION,NAME=0R1,SYSTEM=RECTANGULAR
0.,1.,0.,0.,0.,1.

*COUPLING,REF NODE=262,SURFACE=SURF,CONSTRAINT NAME=C1,0RIENTATION=0R1
*DISTRIBUTING

4,4

*NSET , NSET=N1

262

*3STEP

*STATIC

*CLOAD

262,4,1.

specifies a moment of size 1. about the local x-axis, which happens to coincide
with the global y-axis.

Example files: coupling?, cyl, coupling13, coupling 14.

7.41 *DISTRIBUTING COUPLING

Keyword type: model definition

This option is used to apply translational loading (force or displacement)
on a set of nodes in a global sense (for rotations and/or moments the reader
is referred to the mean rotation MPC, Section B7.1]). There is one required
parameter: ELSET. With the parameter ELSET an element set is referred
to, which should contain exacty one element of type DCOUP3D. This type of
element contains only one node, which is taken as the reference node of the
distributing coupling. This node should not be used elsewhere in the model. In
particular, it should not belong to any element. The coordinates of this node
are immaterial. The distributing coupling forces or the distributing coupling
displacements should be applied to the reference node with a FCLOADI card or
aFBOUNDARY] card, respectively.

Underneath the keyword card the user can enter the nodes on which the
load is to be distributed, together with a weight. Internally, for each coordinate
direction a multiple point constraint is generated between these nodes with the
weights as coefficients. The last term in the equation is the reference node
with as coefficient the negative of the sum of all weights. The more nodes are
contained in the distributing coupling condition the longer the equation. This
leads to a large, fully populated submatrix in the system of equations leading
to long solution times. Therefore, it is recommended not to include more than
maybe 50 nodes in a distributing coupling condition.

The first node underneath the keyword card is taken as dependent node n
the MPC. Therefore, this node should not be repeated in any other MPC or
at the first location in any other distributing coupling definition. It can be
used as independent node in another distributing coupling (all but the first
position), though, although certain limitations exist due to the mechanism by
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which the MPC’s are substituted into each other. Basically, not all dependent
nodes in distributing couplings should be used as independent nodes as well.
For example:

*DISTRIBUTING COUPLING,ELSET=E1
LOAD,1.

*DISTRIBUTING COUPLING,ELSET=E2
LOAD2,1.

*NSET , NSET=L0OAD
5,6,7,8,22,25,28,31,100
*NSET,NSET=LOAD2

8,28,100,31

will work while

*DISTRIBUTING COUPLING,ELSET=E1
LOAD,1.

*DISTRIBUTING COUPLING,ELSET=E2
LOAD2,1.

*NSET , NSET=LOAD
5,6,7,8,22,25,28,31,100
*NSET , NSET=L0OAD2

8,28,100,31,5

will not work because the dependent nodes 5 and 8 are used as independent
nodes as well in EACH of the distributing coupling definitions. An error message
will result in the form:

*ERROR in cascade: zero coefficient on the
dependent side of an equation
dependent node: 5

First line:

e *DISTRIBUTING COUPLING

e Enter the ELSET parameter and its value
Following line:

e Node number or node set

o Weight

Repeat this line if needed.
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Example:

*DISTRIBUTING COUPLING,ELSET=E1
3,1.

100,1.

51,1.

428,1.

*ELSET,ELSET=E1

823

*ELEMENT, TYPE=DCOUP3D

823,4000

defines a distributing coupling between the nodes 3, 100, 51 and 428, each
with weight 1. The reference node is node 4000. A point force of 10 in direction
1 can be applied to this distributing coupling by the cards:

*CLOAD
4000,1,10.

while a displacement of 0.5 is obtained with

*BOUNDARY
4000,1,1,0.5

Example files: distcoup.

7.42 *DISTRIBUTION

Keyword type: model definition

The *DISTRIBUTION keyword can be used to define elementwise local co-
ordinate systems. In each line underneath the keyword the user lists an element
number or element set and the coordinates of the points “a” and “b” describing
the local system according to Figure or [I63] depending on whether the lo-
cal system is rectangular or cylindrical. However, the first line underneath the
*DISTRIBUTION keyword is reserved for the default local system and the ele-
ment or element set entry should be left empty. There is one required parameter
NAME specifying the name (maximum 80 characters) of the distribution.

Whether the local system is rectangular or cylindrical is determined by the
FORIENTATIONI card using the distribution. The local orientations defined
underneath the *DISTRIBUTION card do not become active unless:

e the distribution is referred to by an *ORIENTATION card
o this *ORIENTATION card is used on a *SOLID SECTION card.

So far, a distribution can only be used in connection with aFSOLID SECTION]
card and not by any other SECTION cards (such as *SHELL SECTION, *BEAM
SECTION etc.).

Two restrictions apply to the use of a distribution:
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e an element should not be listed underneath more than one *DISTRIBU-
TION card

e a distribution cannot be used by more than one *ORIENTATION card.

First line:

e *DISTRIBUTION

e Enter the required parameter NAME.
Second line:

e cmpty

e X-coordinate of point a.

e Y-coordinate of point a.

Z-coordinate of point a.

X-coordinate of point b.
e Y-coordinate of point b.
e Z-coordinate of point b.
Following lines
e clement label or element set label
e X-coordinate of point a.
e Y-coordinate of point a.

e Z-coordinate of point a.

X-coordinate of point b.
e Y-coordinate of point b.
e Z-coordinate of point b.

Example:

*DISTRIBUTION,NAME=DI
,1.,0.,0.,0.,1.,0.
E1,0.,0.,1.,0.,1.,0.

defines a distribution with name DI. The default local orientation is defined
by a=(1,0,0) and b=(0,1,0). The local orientation for the elements in set E1 is
described by a=(0,0,1) and b(0,1,0).

Example files: beampo4.
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7.43 *DLOAD

Keyword type: step

This option allows the specification of distributed loads. These include con-
stant pressure loading on element faces, edge loading on shells and mass loading
(load per unit mass) either by gravity forces or by centrifugal forces.

For surface loading the faces of the elements are numbered as follows (for
the node numbering of the elements see Section 3.1):

for hexahedral elements:

o face 1: 1-2-3-4

o face 2: 5-8-7-6

o face 3: 1-5-6-2

o face 4: 2-6-7-3

o face 5: 3-7-8-4

o face 6: 4-8-5-1
for tetrahedral elements:
e Face 1: 1-2-3

e Face 2: 1-4-2

e Face 3: 2-4-3

e Face 4: 3-4-1

for wedge elements:
e Face 1: 1-2-3

e Face 2: 4-5-6

e Face 3: 1-2-5-4
e Face 4: 2-3-6-5

e Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

1

e Face 1: 1-2
e Face 2: 2-3

Face 3: 3-4

Face 4: 4-1
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for triangular plane stress, plane strain and axisymmetric elements:
e Face 1: 1-2

e Face 2: 2-3

e Face 3: 3-1

for beam elements:

e Face 1: pressure in 1-direction

e Face 2: pressure in 2-direction

For shell elements no face number is needed since there is only one kind of
loading: pressure in the direction of the normal on the shell.

The surface loading is entered as a uniform pressure with distributed load
type label Px where x is the number of the face. Thus, for pressure loading the
magnitude of the load is positive, for tension loading it is negative. For nonuni-
form pressure the label takes the form PxNUy, and the user subroutine
must be provided. The label can be up to 20 characters long. In particular,
y can be used to distinguish different nonuniform loading patterns (maximum
16 characters). A typical example of a nonuniform loading is the hydrostatic
pressure. Another option is to assign the pressure of a fluid node to an element
side. In that case the label takes the form PxNP, where NP stands for network
pressure. The fluid node must be an corner node of a network element. Instead
of a concrete pressure value the user must provide the fluid node number.

Edge loading is only provided for shell elements. Its units are force per unit
length. The label is EDNORx where x can take a value between one and three
for triangular shells and between one and four for quadrilateral shells. This
type of loading is locally orthogonal to the edge. Internally, it is replaced by
a pressure load, since shell elements in CalculiX are expanded into volumetric
elements. The numbering is as follows:

for triangular shell elements:

e Edge 1: 1-2
o Edge 2: 2-3
e Edge 3: 3-1
for quadrilateral shell elements:
e Edge 1: 1-2
e Edge 2: 2-3
e Edge 3: 34

e Edge 4: 4-1
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For centrifugal loading (label CENTRIF) the rotational speed square (w?)
and two points on the rotation axis are required, for gravity loading with known
gravity vector (label GRAV) the size and direction of the gravity vector are to be
given. Whereas more than one centrifugal load for one and the same set is not
allowed, several gravity loads can be defined, provided the direction of the load
varies. If the gravity vector is not known it can be calculated based on the mo-
mentaneous mass distribution of the system (label NEWTON). This requires the
value of the Newton gravity constant by means of a
card.

The limit of one centrifugal load per set does not apply to linear dynamic
(FMODAL DYNAMIC) and steady state (FSTEADY STATE DYNAMICS)) cal-
culations. Here, the limit is two. In this way a rotating eccentricity can be
modeled. Prerequisite for the centrifugal loads to be interpreted as distinct is
the choice of distinct rotation axes.

Optional parameters are OP, AMPLITUDE, TIME DELAY, LOAD CASE
and SECTOR. OP takes the value NEW or MOD. OP=MOD is default. For
surface loads it implies that the loads on different faces are kept from the pre-
vious step. Specifying a distributed load on a face for which such a load was
defined in a previous step replaces this value, if a load was defined on the same
face within the same step it is added. OP=NEW implies that all previous
surface loading is removed. For mass loading the effect is similar. If multiple
*DLOAD cards are present in a step this parameter takes effect for the first
*DLOAD card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the force values are scaled (mainly used for dynamic calculations).
Thus, in that case the values entered on the *DLOAD card are interpreted as
reference values to be multiplied with the (time dependent) amplitude value to
obtain the actual value. At the end of the step the reference value is replaced
by the actual value at that time. In subsequent steps this value is kept constant
unless it is explicitly redefined or the amplitude is defined using TIME=TOTAL
TIME in which case the amplitude keeps its validity. For nonuniform loading
the AMPLITUDE parameter has no effect.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

The LOAD CASE parameter is only active inFSTEADY STATE DYNAMICS|
calculations with harmonic loading. LOAD CASE = 1 means that the loading
is real or in-phase. LOAD CASE = 2 indicates that the load is imaginary or
equivalently phase-shifted by 90°. Default is LOAD CASE = 1.

The SECTOR parameter can only be used in FMODAL DYNAMIC and
FSTEADY STATE DYNAMICS] calculations with cyclic symmetry. The datum
sector (the sector which is modeled) is sector 1. The other sectors are numbered
in increasing order in the rotational direction going from the slave surface to



466 7 INPUT DECK FORMAT

the master surface as specified by the FTIE| card. Consequently, the SECTOR
parameters allows to apply a distributed load to any e