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1 Introduction.

This is a description of CalculiX CrunchiX. If you have any problems using
the program, this document should solve them. If not, send us an E-mail
(dhondt@t-online.de). The next sections contain some useful information on
how to use CalculiX in parallel, hints about units and golden rules you should
always keep in mind before starting an analysis. Section five contains a sim-
ple example problems to wet your appetite. Section six is a theoretical section
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giving some background on the analysis types, elements, materials etc. Then,
an overview is given of all the available keywords in alphabetical order, fol-
lowed by detailed instructions on the format of the input deck. If CalculiX
does not run because your input deck has problems, this is the section to look
at. Then, there is a section on the user subroutines and a short overview of
the program structure. The CalculiX distribution contains a large set of test
examples (ccx 2.17.test.tar.bz2). If you try to solve a new kind of problem you
haven’t dealt with in the past, check these examples. You can also use them to
check whether you installed CalculiX correctly (if you do so with the compare
script and if you experience problems with some of the examples, please check
the comments at the start of the corresponding input deck). Finally, the User’s
Manual ends with some references used while writing the code.

This manual is not a textbook on finite elements. Indeed, a working knowl-
edge of the Finite Element Method is assumed. For people not familiar with
the Finite Element Method, I recommend the book by Zienkiewicz and Taylor
[95] for engineering oriented students and the publications by Hughes [33] and
Dhondt [19] for mathematically minded readers.

2 How to perform CalculiX calculations in par-

allel

Nowadays most computers have one socket with several cores, allowing for the
calculations to be performed in a parallel way. In CalculiX one can

• create the element stiffness matrices in parallel. No special compilation
flag is needed. At execution time the environment variable OMP NUM THREADS
or the environment variable CCX NPROC STIFFNESS must be set to the
number of cores, default is 1. If both are set, CCX NPROC STIFFNESS
takes precedence. The maximum number of cores is detected automati-
cally by CalculiX by using the sysconf( SC NPROCESSORS CONF) func-
tion. It can be overriden by the user by means of environment variable
NUMBER OF CPUS.

Notice that older GNU-compiler versions (e.g. gcc 4.2.1) may have prob-
lems with this parallellization due to the size of the fields to be allocated
within each thread (e.g. s(100,100) in routine e 3d.f). This should not be
a problem with the actual compiler version.

• solve the system of equations with the multithreaded version of SPOOLES.
To this end

– the MT-version of SPOOLES must have been compiled. For further
information on this topic please consult the SPOOLES documenta-
tion

– CalculiX CrunchiX must have been compiled with the USE MT flag
activated in the Makefile, please consult the README.INSTALL file.
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– at execution time the environment variable OMP NUM THREADS
must have been set to the number of cores you want to use. In
Linux this can be done by “export OMP NUM THREADS=n” on
the command line, where n is the number of cores. Default is 1.
Alternatively, you can set the number of cores using the environment
variable CCX NPROC EQUATION SOLVER. If both are set, the
latter takes precedence.

• solve the system of equations with the multithreaded version of PARDISO.
PARDISO is proprietary. Look at the PARDISO documentation how to
link the multithreaded version. At execution time the environment vari-
able OMP NUM THREADS must be set to the number of cores, default
is 1.

• create material tangent matrices and calculate the stresses at the integra-
tion points in parallel. No special compilation flag is needed. At execution
time the environment variable OMP NUM THREADS or the environment
variable CCX NPROC RESULTS must be set to the number of cores, de-
fault is 1. If both are set, CCX NPROC RESULTS takes precedence.
The maximum number of cores is detected automatically by CalculiX by
using the sysconf( SC NPROCESSORS CONF) function. It can be over-
riden by the user by means of environment variable NUMBER OF CPUS.
Notice that if a material user subroutine (Sections 9.5 and 9.6) is used,
certain rules have to be complied with in order to allow parallelization.
These include (this list is possibly not exhaustive):

– no save statements

– no data statements

– avoid logical variables

– no write statements

• calculate the viewfactors for thermal radiation computations in paral-
lel. No special compilation flag is needed. At execution time the en-
vironment variable OMP NUM THREADS or the environment variable
CCX NPROC VIEWFACTORmust be set to the number of cores, default
is 1. If both are set, CCX NPROC VIEWFACTOR takes precedence. The
maximum number of cores is detected automatically by CalculiX by using
the sysconf( SC NPROCESSORS CONF) function. It can be overriden
by the user by means of environment variable NUMBER OF CPUS.

• perform several operations in CFD calculations (computational fluid dy-
namics) in parallel. No special compilation flag is needed. At execution
time the environment variable OMP NUM THREADS or the environment
variable CCX NPROC CFD must be set to the number of cores, default
is 1. If both are set, CCX NPROC CFD takes precedence. The maxi-
mum number of cores is detected automatically by CalculiX by using the
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sysconf( SC NPROCESSORS CONF) function. It can be overriden by
the user by means of environment variable NUMBER OF CPUS.

• Calculate the magnetic intensity by use of the Biot-Savart law in par-
allel. No special compilation flag is needed. At execution time the en-
vironment variable OMP NUM THREADS or the environment variable
CCX NPROC BIOTSAVART must be set to the number of cores, default
is 1. If both are set, CCX NPROC BIOTSAVART takes precedence. The
maximum number of cores is detected automatically by CalculiX by using
the sysconf( SC NPROCESSORS CONF) function. It can be overriden
by the user by means of environment variable NUMBER OF CPUS.

• Perform several vector and matrix operations needed by the SLATEC
iterative solvers or by ARPACK in parallel. To this end the user must
have defined the environment variable OMP NUM THREADS, and used
the openmp FORTRAN flag in the Makefile. The parallellization is done
in FORTRAN routines using openmp. The corresponding lines start with
“c$omp”. If the openmp flag is not used, these lines are interpreted by the
compiler as comment lines and no parallellization takes place. Notice that
this parallellization only pays off for rather big systems, let’s say 300,000
degrees of freedom for CFD-calculations or 1,000,000 degrees of freedom
for mechanical frequency calculations.

Examples:

• For some reason the function sysconf does not work on your computer
system and leads to a segmentation fault. You can prevent using the
function by defining the maximum number of cores explicitly using the
NUMBER OF CPUS environment variable

• You want to perform a thermomechanical calculation, but you are us-
ing a user defined material subroutine (Sections 9.5 and 9.6) which is
not suitable for parallelization. You can make maximum use of paral-
lelization (e.g. for the calculation of viewfactors) by setting the variable
OMP NUM THREADS to the maximum number of cores on your system,
and prevent parallelization of the material tangent and stress calculation
step by setting CCX NPROC RESULTS to 1.

3 Units

An important issue which frequently raises questions concerns units. Finite
element programs do not know any units. The user has to take care of that. In
fact, there is only one golden rule: the user must make sure that the numbers
he provides have consistent units. The number of units one can freely choose
depends on the application. For thermomechanical problems you can choose
four units, e.g. for length, mass, time and temperature. If these are chosen,
everything else is fixed. If you choose SI units for these quantities, i.e. m for
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length, kg for mass, s for time and K for temperature, force will be in kgm/s2 =
N, pressure will be in N/m2 = kg/ms2, density will be in kg/m3, thermal
conductivity in W/mK = J/smK = Nm/smK = kgm2/s3mK = kgm/s3K ,
specific heat in J/kgK = Nm/kgK = m2/s2K and so on. The density of steel in
the SI system is 7800 kg/m3.

If you choose mm for length, g for mass, s for time and K for temper-
ature, force will be in gmm/s2 and thermal conductivity in gmm/s3K. In
the {mm, g, s,K} system the density of steel is 7.8 × 10−3 since 7800kg/m3 =
7800× 10−6g/mm3.

However, you can also choose other quantities as the independent ones. A
popular system at my company is mm for length, N for force, s for time and K
for temperature. Now, since force = mass × length / time2, we get that mass
= force × time2/length. This leads to Ns2/mm for the mass and Ns2/mm4 for
density. This means that in the {mm,N, s,K} system the density of steel is
7.8× 10−9 since 7800kg/m3 = 7800Ns2/m4 = 7.8× 10−9Ns2/mm4.

Notice that your are not totally free in choosing the four basic units: you
cannot choose the unit of force, mass, length and time as basic units since they
are linked with each other through force = mass × length / time2.

Finally, a couple of additional examples. Young’s Modulus for steel is
210000N/mm2 = 210000×106N/m2 = 210000×106kg/ms2 = 210000×106g/mms2.
So its value in the SI system is 210× 109, in the {mm, g, s,K} system it is also
210× 109 and in the {mm,N, s,K} system it is 210× 103. The heat capacity of
steel is 446J/kgK = 446m2/s2K = 446× 106mm2/s2K, so in the SI system it is
446., in the {mm, g, s,K} and {mm,N, s,K} system it is 446× 106.

Table 1 gives an overview of frequently used units in three different systems:
the {m, kg, s,K} system, the {mm,N, s,K} system and the {cm, g, s,K} system.

Typical values for air, water and steel at room temperature are:

• air

– cp = 1005 J/kgK = 1005× 106 mm2/s2K

– λ = 0.0257W/mK = 0.0257 N/sK

– µ = 18.21× 10−6 kg/ms = 18.21× 10−12 Ns/mm2

– r (specific gas constant) = 287 J/kgK = 287× 106 mm2/s2K

• water

– ρ = 1000 kg/m3 = 10−9 Ns2/mm4

– cp = 4181.8 J/kgK = 4181.8× 106 mm2/s2K

– λ = 0.5984W/mK = 0.5984 N/sK

– µ = 10−3 Pa s = 10−9 Ns/mm2

• steel

– E = 2100006 N/m2 = 210000 N/mm2

– ν (Poisson coefficient)= 0.3
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Table 1: Frequently used units in different unit systems.

symbol meaning m,kg,s,K mm,N,s,K cm,g,s,K

E Young’s Modulus 1 N
m2 = 1 kg

ms2 = 10−6 N
mm2 = 1 g

mms2

ρ Density 1 kg
m3 = 10−12 Ns2

mm4 = 10−6 g
mm3

F Force 1N = 1kgms2 = 1N = 106 g mms2

cp Specific Heat 1 J
kgK = 1 m2

s2K = 106mm
2

s2K = 106mm
2

s2K

λ Conductivity 1 W
mK = 1kgms3K = 1 N

sK = 106 g mms3K

h Film Coefficient 1 W
m2K = 1 kg

s3K = 10−3 N
mm sK = 103 g

s3K

µ Dynamic Viscosity 1Nsm2 = 1 kgms = 10−6 Ns
mm2 = 1 g

mm s

– ρ = 7800 kg/m3 = 7.8× 10−9 Ns2/mm4

– cp = 446 J/kgK = 446× 106 mm2/s2K

– λ = 50W/mK = 50 N/sK

4 Golden rules

Applying the finite element method to real-life problems is not always a piece
of cake. Especially achieving convergence for nonlinear applications (large de-
formation, nonlinear material behavior, contact) can be quite tricky. However,
adhering to a couple of simple rules can make life a lot easier. According to my
experience, the following guidelines are quite helpful:

1. Check the quality of your mesh in CalculiX GraphiX or by using any other
good preprocessor.

2. If you are dealing with a nonlinear problem, RUN A LINEARIZED VER-
SION FIRST: eliminate large deformations (drop NLGEOM), use a linear
elastic material and drop all other nonlinearities such as contact. If the
linear version doesn’t run, the nonlinear problem won’t run either. The
linear version allows you to check easily whether the boundary conditions
are correct (no unrestrained rigid body modes), the loading is the one
you meant to apply etc. Furthermore, you get a feeling what the solution
should look like.
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3. USE QUADRATIC ELEMENTS (C3D10, C3D15, C3D20(R), S8, CPE8,
CPS8, CAX8, B32). The standard shape functions for quadratic elements
are very good. Most finite element programs use these standard functions.
For linear elements this is not the case: linear elements exhibit all kind of
weird behavior such as shear locking and volumetric locking. Therefore,
most finite element programs modify the standard shape functions for lin-
ear elements to alleviate these problems. However, there is no standard
way of doing this, so each vendor has created his own modifications with-
out necessarily publishing them. This leads to a larger variation in the
results if you use linear elements. Since CalculiX uses the standard shape
functions for linear elements too, the results must be considered with care.

4. If you are using shell elements or beam elements, use the option OUT-
PUT=3D on the *NODE FILE card in CalculiX (which is default). That
way you get the expanded form of these elements in the .frd file. You can
easily verify whether the thicknesses you specified are correct. Further-
more, you get the 3D stress distribution. It is the basis for the 1D/2D
stress distribution and the internal beam forces. If the former is incorrect,
so will the latter be.

5. If you include contact in your calculations and you are using quadratic ele-
ments, use the face-to-face penalty contact method or the mortar method
(which is by default a face-to-face method). In general, for contact be-
tween faces the face-to-face penalty method and the mortar method will
converge much better than the node-to-face method. The type of contact
has to be declared on the *CONTACT PAIR card. Notice that the mortar
method in CalculiX can only be used for static calculations.

6. if you do not have enough space to run a problem, check the numbering.
The memory needed to run a problem depends on the largest node and
element numbers (the computational time, though, does not). So if you
notice large gaps in the numbering, get rid of them and you will need less
memory. In some problems you can save memory by choosing an iterative
solution method. The iterative scaling method (cf. *STATIC) needs less
memory than the iterative Cholesky method, the latter needs less memory
than SPOOLES or PARDISO.

If you experience problems you can:

1. look at the screen output. In particular, the convergence information for
nonlinear calculations may indicate the source of your problem.

2. look at the .sta file. This file contains information on the number of
iterations needed in each increment to obtain convergence

3. look at the .cvg file. This file is a synopsis of the screen output: it gives you
a very fast overview of the number of contact elements, the residual force
and the largest change in solution in each iteration (no matter whether
convergent or not).
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Figure 1: Geometry and boundary conditions of the beam problem

4. use the “last iterations” option on the *NODE FILE or similar card. This
generates a file with the name ResultsForLastIterations.frd with the de-
formation (for mechanical calculations) and the temperature (for thermal
calculations) for all non-converged iterations starting after the last con-
vergent increment.

5. if you have contact definitions in your input deck you may use the “contact
elements” option on the *NODE FILE or similar card. This generates a
file with the name jobname.cel with all contact elements in all iterations
of the increment in which this option is active. By reading this file in
CalculiX GraphiX you can visualize all contact elements in each iteration
and maybe find the source of your problems.

6. if you experience a segmentation fault, you may set the environment vari-
able CCX LOG ALLOC to 1 by typing “export CCX LOG ALLOC=1”
in a terminal window. Running CalculiX you will get information on which
fields are allocated, reallocated or freed at which line in the code (default
is 0).

7. this is for experts: if you experience problems with dependencies between
different equations you can print the SPC’s at the beginning of each step
by removing the comment in front of the call to writeboun in ccx 2.17.c
and recompile, and you can print the MPC’s each time they are set up
by decommenting the loop in which writempc is called at the beginning
of cascade.c and recompile.

5 Simple example problems

5.1 Cantilever beam

In this section, a cantilever beam loaded by point forces at its free end is ana-
lyzed.

The geometry, loading and boundary conditions of the cantilever beam are
shown in Figure 1. The size of the beam is 1x1x8 m3, the loading consists of
a point force of 9 × 106 N and the beam is completely fixed (in all directions)
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Figure 2: Mesh for the beam
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on the left end. Let us take 1 m and 1 MN as units of length and force,
respectively. Assume that the beam geometry was generated and meshed with
CalculiX GraphiX (cgx) resulting in the mesh in Figure 2. For reasons of clarity,
only element labels are displayed.

A CalculiX input deck basically consists of a model definition section de-
scribing the geometry and boundary conditions of the problem and one or more
steps (Figure 3) defining the loads.

The model definition section starts at the beginning of the file and ends at
the occurrence of the first *STEP card. All input is preceded by keyword cards,
which all start with an asterisk (*), indicating the kind of data which follows.
*STEP is such a keyword card. Most keyword cards are either model definition
cards (i.e. they can only occur before the first *STEP card) or step cards (i.e.
they can only occur between *STEP and *END STEP cards). A few can be
both.

In our example (Figure 4), the first keyword card is *HEADING, followed
by a short description of the problem. This has no effect on the output and only
serves for identification. Then, the coordinates are given as triplets preceded
by the *NODE keyword. Notice that data on the same line are separated by
commas and must not exceed a record length of 132 columns. A keyword card
can be repeated as often as needed. For instance, each node could have been
preceded by its own *NODE keyword card.

Next, the topology is defined by use of the keyword card *ELEMENT. Defin-
ing the topology means listing for each element its type, which nodes belong to
the element and in what order. The element type is a parameter on the keyword
card. In the beam case 20-node brick elements with reduced integration have
been used, abbreviated as C3D20R. In addition, by adding ELSET=Eall, all
elements following the *ELEMENT card are stored in set Eall. This set will be
later referred to in the material definition. Now, each element is listed followed
by the 20 node numbers defining it. With *NODE and *ELEMENT, the core
of the geometry description is finished. Remaining model definition items are
geometric boundary conditions and the material description.

The only geometric boundary condition in the beam problem is the fixation
at z=0. To this end, the nodes at z=0 are collected and stored in node set FIX
defined by the keyword card *NSET. The nodes belonging to the set follow on
the lines underneath the keyword card. By means of the card *BOUNDARY,
the nodes belonging to set FIX are subsequently fixed in 1, 2 and 3-direction,
corresponding to x,y and z. The three *BOUNDARY statements in Figure 4
can actually be grouped yielding:

*BOUNDARY

FIX,1

FIX,2

FIX,3

or even shorter:

*BOUNDARY
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material description

*END STEP

*STEP

*STEP

*END STEP

*STEP

*END STEP

Step n

Step 2

Step 1

Model Definition

Figure 3: Structure of a CalculiX input deck
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*HEADING
Model: beam     Date: 10−Mar−1998
*NODE
     1,      0.000000,      0.000000,      0.000000
     2,      1.000000,      0.000000,      0.000000
     3,      1.000000,      1.000000,      0.000000
     .
     .
     .
   260,      0.500000,      0.750000,      7.000000
   261,      0.500000,      0.500000,      7.500000
*ELEMENT, TYPE=C3D20R   , ELSET=Eall
     1,     1,    10,    95,    19,    61,   105,   222,   192,     9,    93,
           94,    20,   104,   220,   221,   193,    62,   103,   219,   190
     2,    10,     2,    13,    95,   105,    34,   134,   222,    11,    12,
           96,    93,   106,   133,   223,   220,   103,    33,   132,   219
     .
     .
     .
     .
    32,   258,   158,    76,   187,   100,    25,     7,    28,   259,   159,
          186,   260,   101,    26,    27,   102,   261,   160,    77,   189
*NSET, NSET=FIX
    97,    96,    95,    94,    93,    20,    19,    18,    17,    16,    15,
    14,    13,    12,    11,    10,     9,     4,     3,     2,     1
*BOUNDARY
FIX, 1
*BOUNDARY
FIX, 2
*BOUNDARY
FIX, 3
*NSET,NSET=Nall,GENERATE
1,261
*MATERIAL,NAME=EL
*ELASTIC
  210000.0,        .3
*SOLID SECTION,ELSET=Eall,MATERIAL=EL
*NSET,NSET=LOAD
5,6,7,8,22,25,28,31,100
**
*STEP
*STATIC
*CLOAD
LOAD,2,1.
*NODE PRINT,NSET=Nall
U
*EL PRINT,ELSET=Eall
S
*NODE FILE
U
*EL FILE
S
*END STEP

Figure 4: Beam input deck



5.1 Cantilever beam 23

Figure 5: Deformation of the beam

FIX,1,3

meaning that degrees of freedom 1 through 3 are to be fixed (i.e. set to
zero).

The next section in the input deck is the material description. This section
is special since the cards describing one and the same material must be grouped
together, although the section itself can occur anywhere before the first *STEP
card. A material section is always started by a *MATERIAL card defining
the name of the material by means of the parameter NAME. Depending on
the kind of material several keyword cards can follow. Here, the material is
linear elastic, characterized by a Young’s modulus of 210,000.0 MN/m2 and
a Poisson coefficient of 0.3 (steel). These properties are stored beneath the
*ELASTIC keyword card, which here concludes the material definition. Next,
the material is assigned to the element set Eall by means of the keyword card
*SOLID SECTION.

Finally, the last card in the model definition section defines a node set LOAD
which will be needed to define the load. The card starting with two asterisks
in between the model definition section and the first step section is a comment
line. A comment line can be introduced at any place. It is completely ignored
by CalculiX and serves for input deck clarity only.

In the present problem, only one step is needed. A step always starts with
a *STEP card and concludes with a *END STEP card. The keyword card
*STATIC defines the procedure. The *STATIC card indicates that the load
is applied in a quasi-static way, i.e. so slow that mass inertia does not play a
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Figure 6: Axial normal stresses in the beam

role. Other procedures are *FREQUENCY, *BUCKLE, *MODAL DYNAMIC,
*STEADY STATE DYNAMICS and *DYNAMIC. Next, the concentrated load
is applied (keyword *CLOAD) to node set LOAD. The forces act in y-direction
and their magnitude is 1, yielding a total load of 9.

Finally, the printing and file storage cards allow for user-directed output
generation. The print cards (*NODE PRINT and *EL PRINT) lead to an
ASCII file with extension .dat. If they are not selected, no .dat file is generated.
The *NODE PRINT and *EL PRINT cards must be followed by the node and
element sets for which output is required, respectively. Element information is
stored at the integration points.

The *NODE FILE and *EL FILE cards, on the other hand, govern the
output written to an ASCII file with extension .frd. The results in this file can
be viewed with CalculiX GraphiX (cgx). Quantities selected by the *NODE
FILE and *EL FILE cards are always stored for the complete model. Element
quantities are extrapolated to the nodes, and all contributions in the same node
are averaged. Selection of fields for the *NODE PRINT, *EL PRINT, *NODE
FILE and *EL FILE cards is made by character codes: for instance, U are the
displacements and S are the (Cauchy) stresses.

The input deck is concluded with an *END STEP card.

The output files for the beam problem consist of file beam.dat and beam.frd.
The beam.dat file contains the displacements for set Nall and the stresses in the
integration points for set Eall. The file beam.frd contains the displacements
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Figure 7: Von Mises stresses in the beam

and extrapolated stresses in all nodes. It is the input for the visualization
program CalculiX GraphiX (cgx). An impression of the capabilities of cgx can
be obtained by looking at Figures 5, 6 and 7.

Figure 5 shows the deformation of the beam under the prevailing loads. As
expected, the beam bends due to the lateral force at its end. Figure 6 shows
the normal stress in axial direction. Due to the bending moment one obtains a
nearly linear distribution across the height of the beam. Finally, Figure 7 shows
the Von Mises stress in the beam.

5.2 Frequency calculation of a beam loaded by compres-
sive forces

Let us consider the beam from the previous section and determine its eigenfre-
quencies and eigenmodes. To obtain different frequencies for the lateral direc-
tions the cross section is changed from 1x1 to 1x1.5. Its length is kept (8 length
units). The input deck is very similar to the one in the previous section, Figure
8. The full deck is part of the test example suite (beamf2.inp).

The only significant differences relate to the steps. In the first step the
preload is applied in the form of compressive forces at the end of the beam. In
each node belonging to set LAST a compressive force is applied with a value
of -48.155 in the positive z-direction, or, which is equivalent, with magnitude
48.155 in the negative z-direction. The second step is a frequency step. By using
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**
**   Structure: beam under compressive forces.
**   Test objective: Frequency analysis; the forces are that 
**                   high that the lowest frequency is nearly 
**                   zero, i.e. the buckling load is reached.
**
*HEADING
Model: beam     Date: 10−Mar−1998
*NODE
     1,      0.000000,      0.000000,      0.000000
     .
     .
*ELEMENT, TYPE=C3D20R
     1,     1,    10,    95,    19,    61,   105,   222,   192,     9,    93,
           94,    20,   104,   220,   221,   193,    62,   103,   219,   190
     .
     .
*NSET, NSET=CN7
    97,    96,    95,    94,    93,    20,    19,    18,    17,    16,    15,
    14,    13,    12,    11,    10,     9,     4,     3,     2,     1
*BOUNDARY
CN7, 1
*BOUNDARY
CN7, 2
*BOUNDARY
CN7, 3
*ELSET,ELSET=EALL,GENERATE
1,32
*MATERIAL,NAME=EL
*ELASTIC
  210000.0,        .3
*DENSITY
7.8E−9
*SOLID SECTION,MATERIAL=EL,ELSET=EALL
*NSET,NSET=LAST
     5,  
     6,  
     .
     .
*STEP
*STATIC
*CLOAD
LAST,3,−48.155
*END STEP
*STEP,PERTURBATION
*FREQUENCY
10
*NODE FILE
U
*EL FILE
S
*END STEP

Figure 8: Frequency input deck
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Table 2: Frequencies without and with preload (cycles/s).

without preload with preload
CalculiX ABAQUS CalculiX ABAQUS
13,096. 13,096. 705. 1,780.
19,320. 19,319. 14,614. 14,822.
76,840. 76,834. 69,731. 70,411.
86,955. 86,954. 86,544. 86,870.
105,964. 105,956. 101,291. 102,148.
162,999. 162,998. 162,209. 163,668.
197,645. 197,540. 191,581. 193,065.
256,161. 256,029. 251,858. 253,603.
261,140. 261,086. 259,905. 260,837.
351,862. 351,197. 345,729. 347,688.

the parameter PERTURBATION on the *STEP keyword card the user specifies
that the deformation and stress from the previous static step should be taken
into account in the subsequent frequency calculation. The *FREQUENCY card
and the line underneath indicate that this is a modal analysis step and that the
10 lowest eigenfrequencies are to be determined. They are automatically stored
in the .dat file. Table 2 shows these eigenfrequencies for the beam without and
with preload together with a comparison with ABAQUS (the input deck for the
modal analysis without preload is stored in file beamf.inp of the test example
suite). One notices that due to the preload the eigenfrequencies drop. This is
especially outspoken for the lower frequencies. As a matter of fact, the lowest
bending eigenfrequency is so low that buckling will occur. Indeed, one way of
determining the buckling load is by increasing the compressive load up to the
point that the lowest eigenfrequency is zero. For the present example this means
that the buckling load is 21 x 48.155 = 1011.3 force units (the factor 21 stems
from the fact that the same load is applied in 21 nodes). An alternative way of
determining the buckling load is to use the *BUCKLE keyword card. This is
illustrated for the same beam geometry in file beamb.inp of the test suite.

Figures 9 and 10 show the deformation of the second bending mode across
the minor axis of inertia and deformation of the first torsion mode.

5.3 Frequency calculation of a rotating disk on a slender
shaft

This is an example for a complex frequency calculation. A disk with an outer
diameter of 10, an inner diameter of 2 and a thickness of 0.25 is mounted on a
hollow shaft with outer diamter 2 and inner diameter 1 (example rotor.inp in
het test examples). The disk is mounted in het middle of the shaft, the ends of
which are fixed in all directions. The length of the shaft on either side of the
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Figure 9: Second bending mode across the minor axis of inertia

Figure 10: First torsion mode
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Figure 11: Input deck for the rotor
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Figure 12: Eigenfrequencies for the rotor
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Figure 13: Eigenfrequencies as a function of shaft speed

disk is 50. The input deck for this example is shown in Figure 11.

The deck start with the definition of the nodes and elements. The set Nfix
contains the nodes at the end of the shaft, which are fixed in all directions. The
material is ordinary steel. Notice that the density is needed for the centrifugal
loading.

Since the disk is rotation there is a preload in the form of centrifugal forces.
Therefore, the first step is a nonlinear geometric static step in order to calculate
the deformation and stresses due to this loading. By selecting the parameter
perturbation in the subsequent frequency step this preload is taken into account
in the calculation of the stiffness matrix in the frequency calculation. The
resulting eigenfrequencies are stored at the top of file rotor.dat (Figure 12 for a
rotational speed of 9000 rad/s). In a *FREQUENCY step an eigenvalue problem
is solved, the eigenvalues of which (first column on the top of Figure 12) are
the square of the eigenfrequencies of the structure (second to fourth column). If
the eigenvalue is negative, an imaginary eigenfrequency results. This is the case
for the two lowest eigenvalues for the rotor rotating at 9000 rad/s. For shaft
speeds underneath about 6000 rad/s all eigenfrequencies are real. The lowest
eigenfrequencies as a function of rotating speeds up to 18000 rad/s are shown
in Figure 13 (+ and x curves).

What is the physical meaning of imaginary eigenfrequencies? The eigen-
modes resulting from a frequency calculation contain the term eiωt. If the
eigenfrequency ω is real, one obtains a sine or cosine, if ω is imaginary, one ob-
tains an increasing or decreasing exponential function [19]. Thus, for imaginary
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Figure 14: Two-node eigenmode

eigenfrequencies the response is not any more oscillatory: it increases indefi-
nitely, the system breaks apart. Looking at Figure 13 one observes that the
lowest eigenfrequency decreases for increasing shaft speed up to the point where
it is about zero at a shaft speed of nearly 6000 rad/s. At that point the eigenfre-
quency becomes imaginary, the rotor breaks apart. This has puzzled engineers
for a long time, since real systems were observed to reach supercritical speeds
without breaking apart.

The essential point here is to observe that the calculations are being per-
formed in a rotating coordinate system (fixed to the shaft). Newton’s laws are
not valid in an accelerating reference system, and a rotating coordinate system
is accelerating. A correction term to Newton’s laws is necessary in the form of a
Coriolis force. The introduction of the Coriolis force leads to a complex nonlin-
ear eigenvalue system, which can solved with the *COMPLEX FREQUENCY
procedure (cf. Section 6.9.3). One can prove that the resulting eigenfrequencies
are real, the eigenmodes, however, are usually complex. This leads to rotating
eigenmodes.

In order to use the *COMPLEX FREQUENCY procedure the eigenmodes
without Coriolis force must have been calculated and stored in a previous *FRE-
QUENCY step (STORAGE=YES) (cf. Figure 11). The complex frequency re-
sponse is calculated as a linear combination of these eigenmodes. The number
of eigenfrequencies requested in the *COMPLEX FREQUENCY step should
not exceed those of the preceding *FREQUENCY step. Since the eigenmodes
are complex, they are best stored in terms of amplitude and phase with PU
underneath the *NODE FILE card.

The correct eigenvalues for the rotating shaft lead to the straight lines in
Figure 13. Each line represents an eigenmode: the lowest decreasing line is a
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Figure 15: Three-node eigenmode

two-node counter clockwise (ccw) eigenmode when looking in (-z)-direction, the
highest decreasing line is a three-node ccw eigenmode, the lowest and highest
increasing lines constitute both a two-node clockwise (cw) eigenmode. A node
is a location at which the radial motion is zero. Figure 14 shows the two-node
eigenmode, Figure 15 the three-node eigenmode. Notice that if the scales on
the x- and y-axis in Figure 13 were the same the lines would be under 45◦.

It might surprise that both increasing straight lines correspond to one and
the same eigenmode. For instance, for a shaft speed of 5816 rad/s one and the
same eigenmode occurs at an eigenfrequency of 0 and 11632 rad/s. Remember,
however, that the eigenmodes are calculated in the rotating system, i.e. as
observed by an observer rotating with the shaft. To obtain the frequencies for
a fixed observer the frequencies have to be considered relative to a 45◦ straight
line through the origin and bisecting the diagram. This observer will see one
and the same eigenmode at 5816 rad/s and -5816 rad/s, so cw and ccw.

Finally, the Coriolis effect is not always relevant. Generally, slender rotat-
ing structures (large blades...) will exhibit important frequency shifts due to
Coriolis.

5.4 Thermal calculation of a furnace

This problem involves a thermal calculation of the furnace depicted in Figure
16. The furnace consists of a bottom plate at a temperature Tb, which is
prescribed. It changes linearly in an extremely short time from 300 K to 1000
K after which it remains constant. The side walls of the furnace are isolated
from the outer world, but exchange heat through radiation with the other walls
of the furnace. The emissivity of the side walls and bottom is ǫ = 1. The top of
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Figure 16: Description of the furnace

the furnace exchanges heat through radiation with the other walls and with the
environmental temperature which is fixed at 300 K. The emissivity of the top is
ǫ = 0.8. Furthermore, the top exchanges heat through convection with a fluid
(air) moving at the constant rate of 0.001 kg/s. The temperature of the fluid at
the right upper corner is 300 K. The walls of the oven are made of 10 cm steel.
The material constants for steels are: heat conductivity κ = 50W/mK, specific
heat c = 446W/kgK and density ρ = 7800kg/m3. The material constants
for air are : specific heat cp = 1000W/kgK and density ρ = 1kg/m3. The
convection coefficient is h = 25W/m2K. The dimensions of the furnace are
0.3× 0.3× 0.3m3 (cube). At t = 0 all parts are at T = 300K. We would like to
know the temperature at locations A,B,C,D and E as a function of time.

The input deck is listed in Figure 17. It starts with the node definitions. The
highest node number in the structure is 602. The nodes 603 up to 608 are fluid
nodes, i.e. in the fluid extra nodes were defined (z=0.3 corresponds with the
top of the furnace, z=0 with the bottom). Fluid node 603 corresponds to the
location where the fluid temperature is 300 K (“inlet”), node 608 corresponds
to the “outlet”, the other nodes are located in between. The coordinates of the
fluid nodes actually do not enter the calculations. Only the convective defini-
tions with the keyword *FILM govern the exchange between furnace and fluid.
With the *ELEMENT card the 6-node shell elements making up the furnace
walls are defined. Furthermore, the fluid nodes are also assigned to elements
(element type D), so-called network elements. These elements are needed for
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furnace.txt Sun Feb 12 13:12:10 2006 1

*NODE, NSET=Nall

       1,  3.00000e−01,  3.72529e−09,  3.72529e−09 

...

603,−0.1,0.5,1.

...

613,0.8,0.5,1.

*ELEMENT, TYPE=S6, ELSET=furnace

     1,      1,      2,      3,      4,      5,      6

...

*ELEMENT,TYPE=D,ELSET=EGAS

301,603,609,604

...

305,607,613,608

*NSET,NSET=NGAS,GENERATE

603,608

*NSET,NSET=Ndown 

1, 

...

*PHYSICAL CONSTANTS,ABSOLUTE ZERO=0.,STEFAN BOLTZMANN=5.669E−8

*MATERIAL,NAME=STEEL

*DENSITY

7800.

*CONDUCTIVITY

50.

*SPECIFIC HEAT

446.

*SHELL SECTION,ELSET=furnace,MATERIAL=STEEL

0.01

*MATERIAL,NAME=GAS

*DENSITY

1.

*SPECIFIC HEAT

1000.

*FLUID SECTION,ELSET=EGAS,MATERIAL=GAS

*INITIAL CONDITIONS,TYPE=TEMPERATURE

Nall,300.

*AMPLITUDE,NAME=A1

0.,.3,1.,1.

*STEP,INC=100

*HEAT TRANSFER

0.1,1.

*BOUNDARY,AMPLITUDE=A1

Ndown,11,11,1000.

*BOUNDARY

603,11,11,300.

*BOUNDARY

609,1,1,0.001

...

*RADIATE

** Radiate based on down

1, R1CR,1000., 1.000000e+00

...

** Radiate based on top

51, R1CR, 1000.000000, 8.000000e−01

...

** Radiate based on side

101, R1CR, 1000.000000, 1.

...

** Radiate based on top

51, R2, 300.000000, 8.000000e−01

...

*FILM

51, F2FC, 604, 2.500000e+01

...

*NODE FILE

NT

*NODE PRINT,NSET=NGAS

NT

*END STEP

Figure 17: Input deck for the furnace
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the assignment of material properties to the fluid. Indeed, traditionally material
properties are assigned to elements and not to nodes. Each network element
consists of two end nodes, in which the temperature is unknown, and a midside
node, which is used to define the mass flow rate through the element. The fluid
nodes 603 up to 613 are assigned to the network elements 301 up to 305.

Next, two node sets are defined: GAS contains all fluid nodes, Ndown con-
tains all nodes on the bottom of the furnace.

The *PHYSICAL CONSTANTS card is needed in those analyses in which
radiation plays a role. It defines absolute zero, here 0 since we work in Kelvin,
and the Stefan Boltzmann constant. In the present input deck SI units are used
throughout.

Next, the material constants for STEEL are defined. For thermal analyses
the conductivity, specific heat and density must be defined. The *SHELL SEC-
TION card assigns the STEEL material to the element set FURNACE, defined
by the *ELEMENT statement before. It contains all elements belonging to the
furnace. Furthermore, a thickness of 0.01 m is assigned.

The material constants for material GAS consist of the density and the
specific heat. These are the constants for the fluid. Conduction in the fluid is
not considered. The material GAS is assigned to element set EGAS containing
all network elements.

The *INITIAL CONDITIONS card defines an initial temperature of 300 K
for all nodes, i.e. furnace nodes AND fluid nodes. The *AMPLITUDE card
defines a ramp function starting at 0.3 at 0.0 and increasing linearly to 1.0 at
1.0. It will be used to define the temperature boundary conditions at the bottom
of the furnace. This ends the model definition.

The first step describes the linear increase of the temperature boundary con-
dition between t = 0 and t = 1. The INC=100 parameter on the *STEP card
allows for 100 increments in this step. The procedure is *HEAT TRANSFER,
i.e. we would like to perform a purely thermal analysis: the only unknowns
are the temperature and there are no mechanical unknowns (e.g. displace-
ments). The step time is 1., the initial increment size is 0.1. Both appear on
the line underneath the *HEAT TRANSFER card. The absence of the param-
eter STEADY STATE on the *HEAT TRANSFER card indicates that this is a
transient analysis.

Next come the temperature boundary conditions: the bottom plate of the
furnace is kept at 1000 K, but is modulated by amplitude A1. The result is that
the temperature boundary condition starts at 0.3 x 1000 = 300K and increases
linearly to reach 1000 K at t=1 s. The second boundary conditions specifies
that the temperature of (fluid) node 603 is kept at 300 K. This is the inlet
temperature. Notice that “11” is the temperature degree of freedom.

The mass flow rate in the fluid is defined with the *BOUNDARY card applied
to the first degree of freedom of the midside nodes of the network elements. The
first line tells us that the mass flow rate in (fluid)node 609 is 0.001. Node 609
is the midside node of network element 301. Since this rate is positive the
fluid flows from node 603 towards node 604, i.e. from the first node of network
element 301 to the third node. The user must assure conservation of mass (this
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Figure 18: Temperature distribution at t=3001 s

is actually also checked by the program).

The first set of radiation boundary conditions specifies that the top face of
the bottom of the furnace radiates through cavity radiation with an emissivity
of 1 and an environment temperature of 1000 K. For cavity radiation the envi-
ronment temperature is used in case the viewfactor at some location does not
amount to 1. What is short of 1 radiates towards the environment. The first
number in each line is the element, the number in the label (the second entry
in each line) is the face of the element exposed to radiation. In general, these
lines are generated automatically in cgx (CalculiX GraphiX).

The second and third block define the internal cavity radiation in the furnace
for the top and the sides. The fourth block defines the radiation of the top face
of the top plate of the furnace towards the environment, which is kept at 300
K. The emissivity of the top plate is 0.8.

Next come the film conditions. Forced convection is defined for the top face
of the top plate of the furnace with a convection coefficient h = 25W/mK.
The first line underneath the *FILM keyword indicates that the second face of
element 51 interacts through forced convection with (fluid)node 604. The last
entry in this line is the convection coefficient. So for each face interacting with
the fluid an appropriate fluid node must be specified with which the interaction
takes place.

Finally, the *NODE FILE card makes sure that the temperature is stored in
the .frd file and the *NODE PRINT card takes care that the fluid temperature
is stored in the .dat file.
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The complete input deck is part of the test examples of CalculiX (fur-
nace.inp). For the present analysis a second step was appended keeping the
bottom temperature constant for an additional 3000 seconds.

What happens during the calculation? The walls and top of the furnace heat
up due to conduction in the walls and radiation from the bottom. However, the
top of the furnace also loses heat through radiation with the environment and
convection with the fluid. Due to the interaction with the fluid the temperature
is asymmetric: at the inlet the fluid is cool and the furnace will lose more
heat than at the outlet, where the temperature of the fluid is higher and the
temperature difference with the furnace is smaller. So due to convection we
expect a temperature increase from inlet to outlet. Due to conduction we expect
a temperature minimum in the middle of the top. Both effects are superimposed.
The temperature distribution at t = 3001s is shown in Figure 18. There is a
temperature gradient from the bottom of the furnace towards the top. At the
top the temperature is indeed not symmetric. This is also shown in Figure 19,
where the temperature of locations A, B, C, D and E is plotted as a function of
time.

Notice that steady state conditions have not been reached yet. Also note
that 2D elements (such as shell elements) are automatically expanded into 3D
elements with the right thickness. Therefore, the pictures, which were plotted
from within CalculiX GraphiX, show 3D elements.

5.5 Seepage under a dam

In this section, groundwater flow under a dam is analyzed. The geometry of
the dam is depicted in Figure 20 and is taken from exercise 30 in Chapter 1 of
[28]. All length measurements are in feet (0.3048 m). The water level upstream
of the dam is 20 feet high, on the downstream side it is 5 feet high. The soil
underneath the dam is anisotropic. Upstream the permeability is characterized
by k1 = 4k2 = 10−2cm/s, downstream we have 25k3 = 100k4 = 10−2cm/s.
Our primary interest is the hydraulic gradient, i.e. ∇h since this is a measure
whether or not piping will occur. Piping means that the soil is being carried
away by the groundwater flow (usually at the downstream side) and constitutes
an instable condition. As a rule of thumb, piping will occur if the hydraulic
gradient is about unity.

From Section 6.9.14 we know that the equations governing stationary ground-
water flow are the same as the heat equations. The equivalent quantity of the
total head is the temperature and of the velocity it is the heat flow. For the
finite element analysis SI units were taken, so feet was converted into meter.
Furthermore, a vertical impermeable wall was assumed far upstream and far
downstream (actually, 30 m upstream from the middle point of the dam and 30
m downstream).

Now, the boundary conditions are:

1. the dam, the left and right vertical boundaries upstream and downstream,
and the horizontal limit at the bottom are impermeable. This means that
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Figure 20: Geometry of the dam

the water velocity perpendicular to these boundaries is zero, or, equiva-
lently, the heat flux.

2. taking the reference for the z-coordinate in the definition of total head
at the bottom of the dam (see Equation 362 for the definition of total
head), and assuming that the atmospheric pressure p0 is zero, the total
head upstream is 28 feet and downstream it is 13 feet. In the thermal
equivalent this corresponds to temperature boundary conditions.

The input deck is summarized in Figure 21. The complete deck is part of
the example problems. The problem is really two-dimensional and consequently
qu8 elements were used for the mesh generation within CalculiX GraphiX. To
obtain a higher resolution immediately adjacent to the dam a bias was used (the
mesh can be seen in Figure 22).

At the start of the deck the nodes are defined and the topology of the el-
ements. The qu8 element type in CalculiX GraphiX is by default translated
by the send command into a S8 (shell) element in CalculiX CrunchiX. How-
ever, a plane element is here more appropriate. Since the calculation at stake
is thermal and not mechanical, it is really immaterial whether one takes plane
strain (CPE8) or plane stress (CPS8) elements. With the *ELSET keyword
the element sets for the two different kinds of soil are defined. The nodes on
which the constant total head is to be applied are defined by *NSET cards.
The permeability of the soil corresponds to the heat conduction coefficient in
a thermal analysis. Notice that the permeability is defined to be orthotropic,
using the *CONDUCTIVITY,TYPE=ORTHO card. The values beneath this
card are the permeability in x, y and z-direction (SI units: m/s). The value
for the z-direction is actually immaterial, since no gradient is expected in that
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dam.txt Sun Feb 12 13:17:58 2006 1

**

**   Structure: dam.

**   Test objective: groundwater flow analysis.

**

*NODE, NSET=Nall

       1, −3.00000e+01, −1.34110e−07,  0.00000e+00 

       2, −3.00000e+01, −4.53062e−01,  0.00000e+00 

       3, −2.45219e+01, −4.53062e−01,  0.00000e+00

...

*ELEMENT, TYPE=CPS8, ELSET=Eall

     1,      1,      2,      3,      4,      5,      6,      7,      8

     2,      4,      3,      9,     10,      7,     11,     12,     13

     3,     10,      9,     14,     15,     12,     16,     17,     18

...

*ELSET,ELSET=Earea1 

1, 

2, 

...

*ELSET,ELSET=Earea2 

161, 

162, 

...

*NSET,NSET=Nup 

342, 

345, 

...

*NSET,NSET=Ndown 

982, 

985, 

...

*MATERIAL,NAME=MAT1

*CONDUCTIVITY,TYPE=ORTHO

1.E−2,25.E−4,1.E−4

*MATERIAL,NAME=MAT2

*CONDUCTIVITY,TYPE=ORTHO

1.E−4,4.E−4,1.E−4

*SOLID SECTION,ELSET=Earea1,MATERIAL=MAT1

*SOLID SECTION,ELSET=Earea2,MATERIAL=MAT2

*INITIAL CONDITIONS,TYPE=TEMPERATURE

Nall,0.

**

*STEP

*HEAT TRANSFER,STEADY STATE

*BOUNDARY

Nup,11,11,8.5344

*BOUNDARY

Ndown,11,11,3.9624

*NODE PRINT,NSET=Nall

NT

*NODE FILE

NT

*EL FILE

HFL

*END STEP

Figure 21: Input deck of the dam problem
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Figure 22: Total head

Figure 23: Discharge velocity in y-direction
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direction. The *SOLID SECTION card is used to assign the materials to the ap-
propriate soil regions. The *INITIAL CONDITIONS card is not really needed,
since the calculation is stationary, however, CalculiX CrunchiX formally needs
it in a heat transfer calculation.

Within the step a *HEAT TRANSFER, STEADY STATE calculation is
selected without any additional time step information. This means that the
defaults for the step length (1) and initial increment size (1) will be taken. With
the *BOUNDARY cards the total head upstream and downstream is defined (11
is the temperature degree of freedom). Finally, the *NODE PRINT, *NODE
FILE and *EL FILE cards are used to define the output: NT is the temperature,
or, equivalently, the total head (Figure 22) , and HFL is the heat flux, or,
equivalently, the groundwater flow velocity (y-component in Figure 23).

Since the permeability upstream is high, the total head gradient is small.
The converse is true downstream. The flow velocity is especially important
downstream. There it reaches values up to 2.25 × 10−4 m/s (the red spot in
Figure 23), which corresponds to a hydraulic gradient of about 0.56, since the
permeability in y-direction downstream is 4× 10−4 m/s. This is smaller than 1,
so no piping will occur. Notice that the velocity is naturally highest immediately
next to the dam.

This example shows how seepage problems can be solved by using the heat
transfer capabilities in CalculiX GraphiX. The same applies to any other phe-
nomenon governed by a Laplace-type equation.

5.6 Capacitance of a cylindrical capacitor

In this section the capacitance of a cylindrical capacitor is calculated with inner
radius 1 m, outer radius 2 m and length 10 m. The capacitor is filled with air,
its permittivity is ǫ0 = 8.8542× 10−12 C2/Nm2. An extract of the input deck,
which is part of the test example suite, is shown below:

*NODE, NSET=Nall

...

*ELEMENT, TYPE=C3D20, ELSET=Eall

...

*NSET,NSET=Nin

1,

2,

...

*NSET,NSET=Nout

57,

58,

...

*SURFACE,NAME=S1,TYPE=ELEMENT

6,S3

1,S3

*MATERIAL,NAME=EL
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Figure 24: Heat flux in the capacitor’s thermal analogy

*CONDUCTIVITY

8.8541878176e-12

*SOLID SECTION,ELSET=Eall,MATERIAL=EL

*STEP

*HEAT TRANSFER,STEADY STATE

*BOUNDARY

Nin,11,11,2.

Nout,11,11,1.

*EL FILE

HFL

*SECTION PRINT,SURFACE=S1

FLUX

*END STEP

As explained in Section 6.9.13 the capacitance can be calculated by deter-
mining the total heat flux through one of the capacitor’s surfaces due to a unit
temperature difference between the surfaces. The material in between the sur-
faces of the capacitor is assigned a conductivity equal to its permittivity. Here,
only one degree of the capacitor has been modeled. In axial direction the mesh is
very coarse, since no variation of the temperature is expected. Figure 24 shows
that the heat flux at the inner radius is 1.27× 10−11 W/m2 . This corresponds
to a total heat flow of 7.98−10 W. The analytical formula for the capacitor yields
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Figure 25: Geometry of the hydraulic network

2πǫ0/ ln(2) = 8.0261−10 C/V.
The total flux through the inner surface S1 is also stored in the .dat file

because of the *SECTION PRINT keyword card in the input deck. It amounts
to −2.217 × 10−12 W. This value is negative, because the flux is entering the
space in between the capacitor’s surfaces. Since only one degree was modeled,
this value has to be multiplied by 360 and yields the same value as above.

5.7 Hydraulic pipe system

In CalculiX it is possible to perform steady-state hydraulic and aerodynamic
network calculations, either as stand-alone applications, or together with me-
chanical and/or thermal calculations of the adjacent structures. Here, a stand-
alone hydraulic network discussed in [10] is analyzed. The input deck pipe.f can
be found in the test suite.

The geometry of the network is shown in Figure 25. It is a linear network
consisting of:

• an upstream reservoir with surface level at 14.5 m

• an entrance with a contraction of 0.8

• a pipe with a length of 5 m and a diameter of 0.2 m

• a bend of 45 o and a radius of 0.3 m
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• a pipe with a length of 5 m and a diameter of 0.2 m

• a pipe with a length of 5 m and a diameter of 0.3 m

• a pipe with a length of 2.5 m and a diameter of 0.15 m

• a gate valve in E with α = 0.5

• a pipe with a length of 1.56 m and a diameter of 0.15 m

• an exit in a reservoir with surface level at 6.5 m

All pipes are characterized by a Manning friction coefficient n=0.015. The
input deck looks like:

**

** Structure: pipe connecting two reservoirs.

** Test objective: hydraulic network.

**

*NODE,NSET=NALL

2,0.,0.,14.5

3,0.,0.,14.5

4,0.,0.,12.325

...

26,14.9419,0.,6.5

*ELEMENT,TYPE=D,ELSET=EALL

1,0,2,3

2,3,4,5

...

13,25,26,0

*MATERIAL,NAME=WATER

*DENSITY

1000.

*FLUID CONSTANTS

4217.,1750.E-6,273.

*ELSET,ELSET=E1

2

*ELSET,ELSET=E2

3,5

*ELSET,ELSET=E3

4

*ELSET,ELSET=E4

6

*ELSET,ELSET=E5

7

*ELSET,ELSET=E6

8

*ELSET,ELSET=E7
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9,11

*ELSET,ELSET=E8

10

*ELSET,ELSET=E9

12

*ELSET,ELSET=E10

1,13

*FLUID SECTION,ELSET=E1,TYPE=PIPE ENTRANCE,MATERIAL=WATER

0.031416,0.025133

*FLUID SECTION,ELSET=E2,TYPE=PIPE MANNING,MATERIAL=WATER

0.031416,0.05,0.015

*FLUID SECTION,ELSET=E3,TYPE=PIPE BEND,MATERIAL=WATER

0.031416,1.5,45.,0.4

*FLUID SECTION,ELSET=E4,TYPE=PIPE ENLARGEMENT,MATERIAL=WATER

0.031416,0.070686

*FLUID SECTION,ELSET=E5,TYPE=PIPE MANNING,MATERIAL=WATER

0.070686,0.075,0.015

*FLUID SECTION,ELSET=E6,TYPE=PIPE CONTRACTION,MATERIAL=WATER

0.070686,0.017671

*FLUID SECTION,ELSET=E7,TYPE=PIPE MANNING,MATERIAL=WATER

0.017671,0.0375,0.015

*FLUID SECTION,ELSET=E8,TYPE=PIPE GATE VALVE,MATERIAL=WATER

0.017671,0.5

*FLUID SECTION,ELSET=E9,TYPE=PIPE ENLARGEMENT,MATERIAL=WATER

0.017671,1.E6

*FLUID SECTION,ELSET=E10,TYPE=PIPE INOUT,MATERIAL=WATER

*BOUNDARY

3,2,2,1.E5

25,2,2,1.E5

*STEP

*HEAT TRANSFER,STEADY STATE

*DLOAD

EALL,GRAV,9.81,0.,0.,-1.

*NODE PRINT,NSET=NALL

U

*END STEP

In CalculiX linear networks are modeled by means of 3-node network ele-
ments (D-type elements). In the corner nodes of the element the temperature
and the pressure are unknown. They are assigned to the degrees of freedom
0 and 2, respectively. In the midside node the mass flux is unknown and is
assigned to degree of freedom 1. The properties of the network elements are
defined by the keyword *FLUID SECTION. They are treated extensively in
Section 6.4 (gases), 6.5 (liquid pipes) and 6.6 (liquid channels). For the network
at stake we need:

• a dummy network entrance element expressing that liquid is entering the
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network (element 1). It is characterized by a node number 0 as first node

• a network element of type PIPE ENTRANCE at location A (element 2).
This element also takes the water depth into account. Notice that there is
no special reservoir element. Differences in water level can be taken into
account in any element type by assigning the appropriate coordinates to
the corner nodes of the element.

• a network element of type PIPE MANNING for the pipe between location
A and B (element 3)

• a network element of type PIPE BEND for the bend at location B (element
4)

• a network element of type PIPE MANNING for the pipe between location
B and C (element 5)

• a network element of type PIPE ENLARGEMENT for the increase of
diameter at location C (element 6)

• a network element of type PIPE MANNING for the pipe between location
C and D (element 7)

• a network element of type PIPE CONTRACTION to model the decrease
in diameter at location D (element 8)

• a network element of type PIPE MANNING for the pipe between location
D and E (element 9)

• a network element of type PIPE GATE VALVE for the valve at location
E (element 10)

• a network element of type PIPE MANNING for the pipe between location
E and F (element 11)

• a network element of type PIPE ENLARGEMENT for the exit in the
reservoir (element 12). Indeed, there is no special reservoir entrance ele-
ment. A reservoir entrance has to be modeled by a large diameter increase.

• a dummy network exit element expressing that liquid is leaving the net-
work (element 13)

In the input deck, all these elements are defined as D-type elements, their
nodes have the correct coordinates and by means of *FLUID SECTION cards
each element is properly described. Notice that the dummy network entrance
and exit elements are characterized by typeless *FLUID SECTION cards.

For a hydraulic network the material properties reduce to the density (on
the *DENSITY card), the specific heat and the dynamic viscosity (both on the
*FLUID SECTION card). The specific heat is only needed if heat transfer is
being modeled. Here, this is not the case. The dynamic viscosity of water is
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1750 × 10−6N s/m
2
[35]. The boundary conditions reduce to the atmospheric

pressure in node 3 and 25, both at the liquid surface of the reservoir. Remember
that the pressure has the degree of freedom 2 in the corner nodes of the network
elements.

Networks are only active in *COUPLED TEMPERATURE-DISPLACEMENT
or *HEAT TRANSFER procedures. Here, we do not take the structure into ac-
count, so a heat transfer analysis will do. Finally, the gravity loading has to be
specified, this is indeed essential for hydraulic networks. Regarding the nodal
output, remember that NT requests degree of freedom 0, whereas U requests
degrees of freedom 1 to 3. Since we are interested in the mass flux (DOF 1 in
the middle nodes) and the pressure (DOF 2 in the corner nodes), U is selected
underneath the *NODE PRINT line. Officially, U are displacements, and that’s
the way they are labeled in the .dat file.

The results in the .dat file look as follows:

displacements (vx,vy,vz) for set NALL and time 1.

2 8.9592E+01 0.0000E+00 0.0000E+00

3 0.0000E+00 1.0000E+05 0.0000E+00

4 8.9592E+01 0.0000E+00 0.0000E+00

5 0.0000E+00 1.3386E+05 0.0000E+00

6 8.9592E+01 0.0000E+00 0.0000E+00

7 0.0000E+00 1.2900E+05 0.0000E+00

8 8.9592E+01 0.0000E+00 0.0000E+00

9 0.0000E+00 1.2859E+05 0.0000E+00

10 8.9592E+01 0.0000E+00 0.0000E+00

11 0.0000E+00 1.5841E+05 0.0000E+00

12 8.9592E+01 0.0000E+00 0.0000E+00

13 0.0000E+00 1.6040E+05 0.0000E+00

14 8.9592E+01 0.0000E+00 0.0000E+00

15 0.0000E+00 1.9453E+05 0.0000E+00

16 8.9592E+01 0.0000E+00 0.0000E+00

17 0.0000E+00 1.7755E+05 0.0000E+00

18 8.9592E+01 0.0000E+00 0.0000E+00

19 0.0000E+00 1.8361E+05 0.0000E+00

20 8.9592E+01 0.0000E+00 0.0000E+00

21 0.0000E+00 1.5794E+05 0.0000E+00

22 8.9592E+01 0.0000E+00 0.0000E+00

23 0.0000E+00 1.6172E+05 0.0000E+00

24 8.9592E+01 0.0000E+00 0.0000E+00

25 0.0000E+00 1.0000E+05 0.0000E+00

26 8.9592E+01 0.0000E+00 0.0000E+00

The mass flux in the pipe (first DOF in the midside nodes, column 1) is
constant and takes the value 89.592 kg/s. This agrees well with the result in
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[10] of 89.4 l/s. Since not all node and element definitions are listed it is useful
for the interpretation of the output to know that location A corresponds to node
5, location B to nodes 7-9, location C to nodes 11-13, location D to nodes 15-17,
location E to nodes 19-21 and location F to node 23. The second column in the
result file is the pressure. It shows that the bend, the valve and the contraction
lead to a pressure decrease, whereas the enlargement leads to a pressure increase
(the velocity drops).

If the structural side of the network (e.g. pipe walls) is modeled too, the
fluid pressure can be mapped automatically onto the structural element faces.
This is done by labels of type PxNP in the *DLOAD card.

5.8 Lid-driven cavity (FEM)

The lid-driven cavity is a well-known benchmark problem for viscous incom-
pressible fluid flow [96]. The geometry at stake is shown in Figure 26. We are
dealing with a square cavity consisting of three rigid walls with no-slip condi-
tions and a lid moving with a tangential unit velocity. The lower left corner has
a reference static pressure of 0. We are interested in the velocity and pressure
distribution for a Reynolds number of 400.

**

** Structure: lid-driven cavity.

** Test objective: incompressible, viscous, laminar, 3D fluid flow

**

*NODE,NSET=Nall

1,0.00000,0.00000,0.

...

*ELEMENT,TYPE=F3D6,ELSET=Eall

1,1543,1626,1624,3918,4001,3999

...

*NSET,NSET=Nin

1774,

...

*NSET,NSET=Nwall

1,

...

*NSET,NSET=N1

1374,

...

*BOUNDARY

Nall,3,3,0.

Nwall,1,2,0.

Nin,2,2,0.

1,8,8,0.

2376,8,8,0.

*MATERIAL,NAME=WATER
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Figure 26: Geometry of the lid-driven cavity
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Figure 27: Mesh of the lid-driven cavity

*DENSITY

1.

*FLUID CONSTANTS

,.25E-2,293.

*SOLID SECTION,ELSET=Eall,MATERIAL=WATER

*INITIAL CONDITIONS,TYPE=FLUID VELOCITY

Nall,1,0.

Nall,2,0.

Nall,3,0.

*INITIAL CONDITIONS,TYPE=PRESSURE

Nall,0.

**

*STEP,INCF=20000

*CFD,STEADY STATE,FEM

*BOUNDARY

Nin,1,1,1.

*NODE FILE,FREQUENCYF=200

VF,PSF

*END STEP

The input deck is listed above (this deck is also available in the test suite
as file liquid1.inp). Although the problem is essentially 2-dimensional it was
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modeled as a 3-dimensional problem with unit thickness since 2-dimensional
fluid capabilities are not available in CalculiX. The mesh (2D projection) is
shown in Figure 27. It consists of 6-node wedge elements. There is one element
layer across the thickness. This is sufficient, since the results do not vary in
thickness direction. The input deck starts with the coordinates of the nodes and
the topology of the elements. The element type for fluid volumetric elements is
the same as for structural elements with the C replaced by F (fluid): F3D6. The
nodes making up the lid and those belonging to the no-slip walls are collected
into the nodal sets Nin and Nwall, respectively. The nodal set N1 is created for
printing purposes. It contains a subset of nodes close to the lid.

The homogeneous boundary conditions (i.e. those with zero value) are listed
next underneath the *BOUNDARY keyword: The velocity in all nodes in z-
direction is zero, the velocity at the walls is zero (no-slip condition) as well as
the normal velocity at the lid. Furthermore, the reference point in the lower
left corner of the cavity has a zero pressure (node 1 and its corresponding node
across the thickness 2376). The material definition consists of the density, the
heat capacity and the dynamic viscosity. The density is set to 1. The heat capac-
ity and dynamic viscosity are entered underneath the *FLUID CONSTANTS
keyword. The heat capacity is not needed since the calculation is steady state,
so its value here is irrelevant. The value of the dynamic viscosity was chosen
such that the Reynolds number is 400. The Reynolds number is defined as
velocity times length divided by the kinematic viscosity. The velocity of the
lid is 1, its length is 1 and since the density is 1 the kinematic and dynamic
viscosity coincide. Consequently, the kinematic viscosity takes the value 1/400.
The material is assigned to the elements by means of the *SOLID SECTION
card.

The unknowns of the problem are the velocity and static pressure. No ther-
mal boundary conditions are provided, so the temperature is irrelevant. All
initial values for the unknowns are set to 0 by means o the *INITIAL CONDI-
TIONS,TYPE=FLUID VELOCITY and *INITIAL CONDITIONS,TYPE=PRESSURE
cards. Notice that for the velocity the initial conditions have to be specified for
each degree of freedom separately.

The step is as usual started with the *STEP keyword. The maximum num-
ber of increments, however, is for fluid calculations governed by the parameter
INCF. For steady state FEM fluid calculations the keyword *CFD,STEADY
STATE,FEM is to be used. The values underneath this line are not relevant
for fluid calculations, since the increment size is automatically chosen such that
the procedure is stable. The nonzero tangential velocity of the lid is entered un-
derneath the *BOUNDARY card. Recall that non-homogeneous (i.e. nonzero)
boundary conditions have to be defined within a step. The step ends with a
nodal print request for the velocity VF and the static pressure PS. The printing
frequency is defined to be 200 by means of the FREQUENCYF parameter. This
means, that results will be stored every 200 increments.

The velocity distribution in x-direction (i.e. the direction tangential to the
lid) is shown in Figure 28. The smallest value (-0.33) and its location agree very
well with the results in [96]. Figure 29 shows a vector plot of the velocity. Near
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Figure 28: x-component of the velocity in the lid-driven cavity

Figure 29: Velocity distribution in the lid-driven cavity
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Figure 30: Pressure distribution in the lid-driven cavity

the lid there is a large gradient, in the lower left and lower right corner are dead
zones. The pressure plot (Figure 30) reveals a low pressure zone in the center
of the major vortex and in the left upper corner. The right upper corner is a
stagnation point for the x-component of the velocity and is characterized by a
significant pressure built-up.

5.9 Lid-driven cavity (FVM)

The lid-driven cavity is a well-known benchmark problem for viscous incom-
pressible fluid flow [96]. The geometry at stake is shown in Figure 26. We are
dealing with a square cavity consisting of three rigid walls with no-slip condi-
tions and a lid moving with a tangential unit velocity. We are interested in the
velocity and pressure distribution for a Reynolds number of 400.

The input deck looks like (this deck is also available in the cfd test suite as
file lid400.inp):

**

** Structure: lid-driven cavity

** Test objective: incompressible, viscous, laminar, 3D fluid

**

*NODE, NSET=Nall

1,5.000000000000e-01,5.000000000000e-01,0.0

...
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Figure 31: Mesh of the lid-driven cavity

*ELEMENT, TYPE=F3D8, ELSET=Eall

1, 1, 2, 3, 4, 5, 6, 7, 8

...

*SURFACE, NAME=SOLIDSURFACE

40, S2

...

*MATERIAL,NAME=WATER

*DENSITY

1.

*FLUID CONSTANTS

1.,.25E-2,293.

*SOLID SECTION,ELSET=Eall,MATERIAL=WATER

*INITIAL CONDITIONS,TYPE=FLUID VELOCITY

Nall,1,0.

Nall,2,0.

Nall,3,0.

*INITIAL CONDITIONS,TYPE=PRESSURE

Nall,1.

**

*STEP,INCF=5000

*STATIC

*BOUNDARYF

** BOUNDARYF based on fixz
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1, S3, 3,, 0.000000

...

** BOUNDARYF based on in

1601, S1, 1,, 0.000000

...

** BOUNDARYF based on in

1601, S1, 2,, 1.000000

...

** BOUNDARYF based on in

1601, S1, 3,, 0.000000

...

** BOUNDARYF based on wall

40, S2, 1,, 0.000000

...

** BOUNDARYF based on wall

40, S2, 2,, 0.000000

...

** BOUNDARYF based on wall

40, S2, 3,, 0.000000

...

*BOUNDARYF

1600, S3, 8,8, 1.000000

*NODE FILE,FREQUENCYF=5000

VF,PSF

*END STEP

Although the problem is essentially 2-dimensional it was modeled as a 3-
dimensional problem with unit thickness since 2-dimensional fluid capabilities
are not available in CalculiX. The mesh (2D projection) is shown in Figure
31. It consists of 8-node brick elements. There is one element layer across the
thickness. This is sufficient, since the results do not vary in thickness direction.
The input deck starts with the coordinates of the nodes and the topology of
the elements. The element type for fluid volumetric elements is the same as
for structural elements with the C replaced by F (fluid): F3D6. The faces
belonging to solid surfaces are listed next. A face is characterized by an element
number and an internal face number. Solid surfaces are surfaces at which the
fluid adheres, i.e. in the presence of viscosity the velocity vector adjacent to a
solid surface is the same as the velocity of the surface itself. All solid surfaces
must be collected into a SURFACE definition with the name SOLIDSURFACE
(no upper case required, though).

The material definition consists of the density, the heat capacity and the
dynamic viscosity. The density is set to 1. The heat capacity and the dynamic
viscosity are entered underneath the *FLUID CONSTANTS keyword. The heat
capacity is not needed since the calculation does not involve temperatures, so its
value here is irrelevant. The value of the dynamic viscosity was chosen such that
the Reynolds number is 400. The Reynolds number is defined as velocity times
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length divided by the kinematic viscosity. The velocity of the lid is 1, its length
is 1 and since the density is 1 the kinematic and dynamic viscosity coincide.
Consequently, the kinematic viscosity takes the value 1/400. The material is
assigned to the elements by means of the *SOLID SECTION card.

The unknowns of the problem are the velocity and static pressure. No ther-
mal boundary conditions are provided, so the temperature is irrelevant. All ini-
tial values for the velocity and pressure are set by means of the *INITIAL CON-
DITIONS,TYPE=FLUID VELOCITY and *INITIAL CONDITIONS,TYPE=PRESSURE
cards. Notice that for the velocity the initial conditions have to be specified for
each degree of freedom separately.

The step is as usual started with the *STEP keyword. The maximum num-
ber of increments, however, is for fluid calculations governed by the parameter
INCF. For steady state calculations the keyword *STATIC is to be used. If
there are no time increment values beneath this line the increment size is auto-
matically chosen such that the procedure is stable. The boundary conditions for
fluid calculations are defined on the faces and are prescribed using the *BOUND-
ARYF card. Recall that non-homogeneous (i.e. nonzero) boundary conditions
have to be defined within a step, homogeneous ones may be defined before or
within the step. Here, all boundary conditions have been defined within the
step. They include zero velocity at the fixed walls, a velocity of 1 in the y-
direction on the lid, and zero velocity in z-direction on the side walls. The
pressure has been set to 1 on face 3 of element 1600. In CFD pressure boundary
conditions can only be set on faces for which not all velocity components are
prescribed. Consequently, in the present example, the pressure could not have
been set on faces belonging to the walls and the lid.

The step ends with a nodal print request for the velocity VF and the static
pressure PSF. The printing frequency is defined to be 5000 by means of the
FREQUENCYF parameter. This means, that results will be stored every 5000
increments.

The velocity distribution in y-direction (i.e. the direction tangential to the
lid) is shown in Figure 32. The smallest value (-0.33) and its location agree very
well with the results in [96]. Figure 33 shows a vector plot of the velocity. Near
the lid there is a large gradient, in the lower left and lower right corner are dead
zones. The pressure plot (Figure 34) reveals a low pressure zone in the center
of the major vortex and in the left upper corner. The right upper corner is a
stagnation point for the y-component of the velocity and is characterized by a
significant pressure built-up.

5.10 Transient laminar incompressible Couette problem
(FEM)

Another well-known problem is the incompressible laminar flow between two
parallel plates. At time zero both plates are at rest, whereas at positive times
one of the plates is moved parallel to the other plate with a velocity of 1. The an-
alytical solution can be found in [72] in the form of a series expansion containing
the complementary error function erfc. In the steady state regime the velocity
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Figure 32: y-component of the velocity in the lid-driven cavity

Figure 33: Velocity distribution in the lid-driven cavity (excerpt)
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Figure 34: Pressure distribution in the lid-driven cavity

profile is linear across the space in between the plates. The velocity profiles at
different times are shown in Figure 35 and compared with the analytical solution
for a unity distance between the plates and a kinematic viscosity ν = 1. The
input deck for the CalculiX results can be found in the test suite (couette1.inp).
The figure shows a good agreement between the numerical and analytical values,
indicating that the time integration in the CFD-implementation in CalculiX is
correct. The small deviations at small times are due to the rather course mesh.

5.11 Stationary laminar inviscid compressible airfoil flow
(FEM)

In [69] the results of CFD-calculations for several airfoils are reported. Here,
the computations for M∞ = 1.2 (Mach number at infinity) and α = 7. (angle
of attack) are reported. The input deck for this calculation can be found in the
fluid examples test suite (agard05.inp).

To explain the differences in the input deck between incompressible and com-
pressible flow the crucial section from the compressible input deck is reproduced
below.

*EQUATION

2

3,2,-0.99030509E+00,3,1,-0.13890940E+00

2



5.11 Stationary laminar inviscid compressible airfoil flow (FEM) 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u/
um

ax
 (

-)

y/h (-)

t=0.003094 s (Schlichting)
t=0.003094 s (CalculiX)    
t=0.015440 s (Schlichting)
t=0.015440 s (CalculiX)    
t=0.061736 s (Schlichting)
t=0.061736 s (CalculiX)    
t=0.250010 s (Schlichting)
t=0.250010 s (CalculiX)    

Figure 35: Velocity across the space in between the plates for different times

Figure 36: Mesh for the naca012 airfoil flow
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Figure 37: Mach number in the naca012 airfoil flow

Figure 38: Pressure coefficient in the naca012 airfoil flow
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3756,2,-0.99030509E+00,3756,1,-0.13890940E+00

...

*MATERIAL,NAME=AIR

*CONDUCTIVITY

0.

*FLUID CONSTANTS

1.,1.d-20,293.

*SPECIFIC GAS CONSTANT

0.285714286d0

*SOLID SECTION,ELSET=Eall,MATERIAL=AIR

*PHYSICAL CONSTANTS,ABSOLUTE ZERO=0.

*INITIAL CONDITIONS,TYPE=FLUID VELOCITY

Nall,1,0.99254615

Nall,2,0.12186934

Nall,3,0.d0

*INITIAL CONDITIONS,TYPE=PRESSURE

Nall,0.49603175

*INITIAL CONDITIONS,TYPE=TEMPERATURE

Nall,1.73611111

*VALUES AT INFINITY

1.73611111,1.,0.49603175,1.,1.

**

*STEP,INCF=40000,SHOCK SMOOTHING=0.1

*STATIC,EXPLICIT

1.,1.

*BOUNDARY

BOU1,11,11,1.73611111

BOU1,1,1,0.99254615

BOU1,2,2,0.12186934

BOU1,8,8,0.49603175

Nall,3,3,0.

*NODE FILE,FREQUENCYF=40000

V,PS,CP,TS,TT,MACH

*END STEP

Since for compressible flow the temperature, velocity and pressure are linked
through the ideal gas equation, the definition of the thermal conductivity and
specific heat is mandatory. Inviscid flow was triggered by the definition of a
very low viscosity AND slip boundary conditions at the airfoil surface through
equations. The specific gas constant is defined with the appopriate keyword.
It only depends on the kind of gas and not on the temperature. The physical
constants card is used to define absolute zero for the temperature scale. This
information is needed since the temperature in the gas equation must be speci-
fied in Kelvin. Initial conditions must be specified for the velocity, pressure and
temperature. Careful selection of these values can shorten the computational
time. The values at infinity (defined with the *VALUES AT INFINITY card)
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are used to calculate the pressure coefficient. In viscous calculations they are
used for the computation of the friction coefficient too. The smoothing parame-
ter on the *STEP card is used to define shock smoothing and will be discussed in
the next paragraph. Finally, compressible calculations are performed explicitly.
Therefore, the EXPLICIT parameter on the *STATIC or *DYNAMIC keyword
is mandatory. It is the EXPLICIT parameter which tells CalculiX whether the
flow is compressible or incompressible. With the EXPLICIT parameter the flow
is assumed to be compressible, else it is assumed to be incompressible. The use
of the *STATIC keyword tells CalculiX that the calculation is stationary. Insta-
tionary calculations are triggered with the *DYNAMIC keyword. In reality, all
CFD-calculations in CalculiX are instationary. The *STATIC keyword, how-
ever, forces the calculations to be pursued until steady state is reached (so the
time used is virtual). Dynamic calculations stop as soon as the final time is
reached (the time is real).

In compressible calculations shock smoothing is frequently needed in order
to avoid divergence. Shock smoothing, however, can change the solution. There-
fore, the shock smoothing coefficient, which can take values between 0. and 2.,
should be chosen as small as possible. For the agard05 example a value of 0.1
was needed. In general, additional viscosity will reduced the shock smoothing
needed to avoid divergence. There is a second effect of the shock smoothing
coefficient: there is no clear steady state convergence any more. In order to un-
derstand this some additional information about the way CFD-calculations in
CalculiX are performed. The initial increment size which is specified by the user
underneath the *STATIC or *DYNAMIC card is a mechanical increment size.
For each mechanical increment an instationary CFD-calculation is performed
subject to the actual loads (up to steady state for a *STATIC calculation). For
this CFD-calculations subincrements are used, the size of which depends on the
physical characteristics of the flow (viscosity, heat conductivity etc.). They are
determined such that stability is assured (or at least very likely). In CalculiX,
steady state convergence is detected as soon as the change in the conservative
variables (ρ, ρu, ρv etc.) from subincrement to subincrement does not exceed
1.−8 times the actual values of these variables. In calculations with a nonzero
shock smoothing coefficient the change in variables at first decreases down to
a certain level about which it oscillates erraticaly. In that case, steady state is
detected as soon as the tangent of a linear regression curve through the last half
of the change in variables values drops below a given number. The change in
the conservative variables is stored in a file with the name jobname.cvg. The
user may force convergence by limiting the number of subincrements with the
INCF parameter on the *STEP card. As soon as INCF subincrements are cal-
culated the CFD-calculation is assumed to be finished and the next mechanical
increment is started.

Figure 36 shows the mesh used for the agard05 calculation. It consists of
linear wedge elements. In CalculiX, only linear elements (tetrahedra, hexahedra
or wedges) are allowed for CFD-calculations. It is finer along the airfoil (but not
as fine as needed to capture the boundary layer in viscous calculations). Figures
37 and 38 shows the Mach number and the pressure coefficient, respectively. The
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maximum Mach number in [69] is about 1.78, the maximum pressure coefficient
is about -0.55. This agrees well with the present results. Increasing the shock
smoothing coefficient leads to smoothing fringe plots, however, the actual values
become worse.

5.12 Stationary laminar inviscid compressible airfoil flow
(FVM)

This section treats the laminar inviscid compressible flow across a NACA012-
airfoil at Mach 0.95. The input deck (which is available in the large fluid exam-
ples test suite under the name naca012 mach0.95 veryfine.inp) runs like:

*NODE, NSET=Nall

1,7.600000000000e-04,-1.412800000000e-01,0.000000000000e+00

...

*ELEMENT, TYPE=F3D8, ELSET=Eall

1, 1, 34101, 39113, 34104, 34109, 34113,140301, 47554

...

MATERIAL,NAME=AIR

*CONDUCTIVITY

5.e-4

*FLUID CONSTANTS

1.,1.e-20,293.

*SPECIFIC GAS CONSTANT

0.285714286d0

*SOLID SECTION,ELSET=Eall,MATERIAL=AIR

*PHYSICAL CONSTANTS,ABSOLUTE ZERO=0.

*INITIAL CONDITIONS,TYPE=FLUID VELOCITY

Nall,1,1.d0

Nall,2,0.d0

Nall,3,0.d0

*INITIAL CONDITIONS,TYPE=PRESSURE

Nall,0.79145232

*INITIAL CONDITIONS,TYPE=TEMPERATURE

Nall,2.77008310

*VALUES AT INFINITY

2.77008310,1,0.79145232,1.,1.

**

*STEP,INCF=100000

*CFD,STEADY STATE,COMPRESSIBLE

1.,1.,,,

*BOUNDARYF

** BOUNDARYF based on in

6401, S6, 11,, 2.770083

...

*DFLUX
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Figure 39: Global mesh

Figure 40: Detailed mesh along the NACA profile

** DFlux based on airfoil

309, S2, 0.000000e+00

...

*MASS FLOW

** DFlux based on airfoil

309, M2, 0.000000e+00

...

*NODE FILE,FREQUENCYF=5000

MACH,VF,TSF,PSF,TTF

*END STEP

After the definition of the nodes and the elements (8-noded brick elements;
they are internally treated as finite volume cells; cf. Figure 39 and Figure 40
for the mesh and geometry of the domain) the material is defined. The heat
capacity at constant pressure cp is normalized to 1, the dynamic viscosity µ
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Figure 41: Mach number

Figure 42: Static pressure

Figure 43: Static temperature
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Figure 44: Total temperature

is set to a very low number (10−20), so the flow is frictionless. The specific
gas constant is such that κ = cp/cv = 1.4. The initial conditions are set to
a unit velocity in x-direction vx and a static pressure and static temperature
value such that the density ρ = 1 and the Mach number M = vx/(µL) = 0.95
where L is the length of the airfoil in x-direction, which happens to be 1. These
are also the boundary conditions at the inlet, set by a *BOUNDARYF card.
Other boundary conditions are zero mass flow through the airfoil surface, zero
mass flow in z-direction (the flow is modeled as a 2-dimensional flow) and zero
mass flow at part of the far-away-boundary, all obtained by use of the *MASS
FLOW card. On these same boundaries the heat flow is set to zero by use of a
*DFLUX card. Finally, output is requested for the Mach number, the velocity,
the static temperature, the static pressure and the total temperature. Due to
the parameters on the *CFD card the fluid flow is compressible (the definition
of the density is not required on the material cards) and will continue till steady
state. Right no, no check on steady state is implemented and the calculation
will continue till the number of iterations on the *STEP card is reached.

The results are presented in Figures 41, 42, 43 and 44. The calculation
was interrupted after 75,000 iterations, the maximum Mach number may still
increase a little by continuing the calculation. The total temperature is nearly
constant. Recall that the total change of the total temperature along a stream
line is given by:

DρcpTt
Dt

= (tlmvm),l −∇ · q + ρhθ +
∂p

∂t
+ ρfmvkδmk. (1)

The terms on the right hand side correspond to the viscous work (zero), the
heat flow (nonzero, since the heat conduction coefficient is nonzero), the heat
introduced per unit mass (zero), the change in pressure (zero in the steady state
regime) and the work by external body forces (zero).
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Figure 45: Mach number for the Carter problem

5.13 Laminar viscous compressible compression corner flow
(FEM)

This benchmark example is described in [15]. The input deck for the CalculiX
computation is called carter 10deg mach3.inp and can be found in the fluid test
example suite. The flow is entering at Mach 3 parallel to a plate of length
16.8 after which a corner of 10◦ arises. The Reynolds number based on a unit
length is 1000., which yields for a unit velocity a dynamic viscosity coefficient
µ = 10−3. No units are specified: the user can choose appropriate consistent
units. Choosing cp = 1 and κ = 1.4 leads to a specific gas constant r = 0.286.
The selected Mach number leads to an inlet temperature of T = 0.778. The
ideal gas law yields a static inlet pressure of p = 0.0794 (assuming an unit
inlet density). The wall is assumed to be isothermal at a total temperature of
Tt = 0.778. Finally, the assumed Prandl number (Pr=µcp/λ) of 0.72 leads to a
conduction coefficient of 0.00139.

A very fine mesh with about 425,000 nodes was generated, gradually finer
towards the wall (y+ = 1.28 for the closest node near the wall at L=1 from the
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Figure 46: velocity profile across the flow for the Carter problem
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Figure 47: Static pressure at the wall for the Carter problem
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Figure 48: Pressure coefficient for laminar viscous flow about a naca012 airfoil

inlet). The Mach number is shown in Figure 45. The shock wave emanating
from the front of the plate and the separation and reattachment compression
fan at the kink in the plate are cleary visible. One also observes the thickening
of the boundary layer near the kink leading to a recirculation zone. Figure 46
shows the velocity component parallel to the inlet plate orientation across a line
perpendicular to a plate at unit length from the entrance. One notices that
the boundary layer in the CalculiX calculation is smaller than in the Carter
solution. This is caused by the temperature-independent viscosity. Applying
the Sutherland viscosity law leads to the same boundary layer thickness as in the
reference. In CalculiX, no additional shock smoothing was necessary. Figure
47 plots the static pressure at the wall relative to the inlet pressure versus
a normalized plate length. The reference length for the normalization was the
length of the plate between inlet and kink (16.8 unit lengths). So the normalized
length of 1 corresponds to the kink. There is a good agreement between the
CalculiX and the Carter results, apart from the outlet zone, where the outlet
boundary conditions influence the CalculiX results.

5.14 Laminar viscous compressible airfoil flow (FEM)

A further example is the laminar viscous compressible flow about a naca012 air-
foil. Results for this problem were reported by [57]. The entrance Mach number
is 0.85, the Reynolds number is 2000. Of interest is the steady state solution.
In CalculiX this is obtained by performing a transient CFD-calculation up to
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Figure 49: Friction coefficient for laminar viscous flow about a naca012 airfoil

steady state. The input deck for this example is called naca012 visc mach0.85.inp
and can be found amoung the CFD test examples. Basing the Reynolds number
on the unity chord length of the airfoil, an entrance unity velocity and a en-
trance unity density leads to a dynamic viscosity of µ = 5×10−4. Taking cp = 1
and κ = 1.4 leads to a specific gas constant r = 0.2857 (all in consistent units).
Use of the entrance Mach number determines the entrance static temperature
to be Ts = 3.46. Finally, the ideal gas law leads to a entrance static pressure of
ps = 0.989. Taking the Prandl number to be 1 determines the heat conductivity
λ = 5−4. The surface of the airfoil is assumed to be adiabatic.

The results for the pressure and the friction coefficient at the surface of
the airfoil are shown in Figures 48 and 49, respectively, as a function of the
shock smoothing coefficient. The pressure coefficient is defined by cp = (p −
p∞)/(0.5ρ∞v

2
∞), where p is the local static pressure, p∞, ρ∞ and v∞ are the

static pressure, density and velocity at the entrance, respectively. From Figure
48 it is clear that a reduction of the shock smoothing coefficient improves the
results. For a zero shock smoothing coefficient, however, the results oscillate
and do not make sense any more. Taking into account that the reference results
do not totally agree either, a shock smoothing coefficient of 0.025, which is
the smallest smoothing coefficient yielding non-oscillating values, leads to the
best results. The friction coefficient is defined by τw/(0.5ρ∞v

2
∞), where τw is

the local shear stress. Here too, a too large shock smoothing coefficient clearly
leads to wrong results. A value of 0.05 best agrees with the results by Mittal,
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Figure 50: Pressure coefficient for laminar viscous flow about a naca012 airfoil

however, in the light of the cp-results from the literature a value of 0.025 might
be good as well. The cf -peak at the front of the airfoil is not very well hit:
the literature result is 0.17, the CalculiX peak reaches only up to 0.15. While
decreasing the shock smoothing coefficient increases the peak, a too coarse mesh
density at that location may also play a role. The general advice is to use as
little shock smoothing as possible.

5.15 Stationary laminar viscous compressible airfoil flow
(FVM)

A further example is the laminar viscous compressible flow about a naca012 air-
foil. Results for this problem were reported by [57]. The entrance Mach number
is 0.85, the Reynolds number is 2000. Of interest is the steady state solution.
In CalculiX this is obtained by performing a transient CFD-calculation up to
steady state. The input deck for this example is called naca012 visc mach0.85 veryfine.inp
and can be found amoung the CFD test examples. Basing the Reynolds num-
ber on the unity chord length of the airfoil, an entrance unity velocity and a
entrance unity density leads to a dynamic viscosity of µ = 5 × 10−4. Taking
cp = 1 and κ = 1.4 leads to a specific gas constant r = 0.2857 (all in consistent
units). Use of the entrance Mach number determines the entrance static tem-
perature to be Ts = 3.46. Finally, the ideal gas law leads to a entrance static
pressure of ps = 0.989. Taking the Prandl number to be one determines the
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Figure 51: Friction coefficient for laminar viscous flow about a naca012 airfoil

heat conductivity λ = 5−4. The surface of the airfoil is assumed to be adiabatic.
The results for the pressure and the friction coefficient at the surface of

the airfoil are shown in Figures 50 and 51, respecively, as a function of the
shock smoothing coefficient. The pressure coefficient is defined by cp = (p −
p∞)/(0.5ρ∞v

2
∞), where p is the local static pressure, p∞, ρ∞ and v∞ are the

static pressure, density and velocity at the entrance, respectively. The friction
coefficient is defined by τw/(0.5ρ∞v

2
∞), where τw is the local shear stress. Both

graphs agree quite well with the literature, especially if one takes into account
that the sources cited by Mittal also vary. Notice that the mesh at the airfoil is
very fine. Indeed, y+ at the boundary of the first layer of elements adjacent to
the airfoil, defined by

y+ =

√
uh

ν
(2)

where u is the velocity in x-direction at that position, h is the element height
and ν is the kinematic viscosity, reaches the value of 0.2. In general,no value
exceeding 1 is recommended.

5.16 Channel with hydraulic jump

That open channel flow can be modeled as a one-dimensional network is maybe
not so well known. The governing equation is the Bresse equation (cf. Section
6.9.18) and the available fluid section types are listed in Section 6.6.
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Figure 52: Water depth in a channel with hydraulic jump

The input deck for the present example is shown below.

**

** Structure: channel connecting two reservoirs.

** Test objective: steep slope, frontwater - jump -

** backwater curve

**

*NODE,NSET=NALL

1,0.,0.,0.

2,1.,0.,0.

3,2.,0.,0.

4,3.,0.,0.

5,4.,0.,0.

6,5.,0.,0.

7,6.,0.,0.

8,7.,0.,0.

9,8.,0.,0.

10,9.,0.,0.

11,10.,0.,0.

*ELEMENT,TYPE=D,ELSET=EALL

1,0,1,2

2,2,3,4

3,4,5,6
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4,6,7,8

5,8,9,10

6,10,11,0

*MATERIAL,NAME=WATER

*DENSITY

1000.

*FLUID CONSTANTS

4217.,1750.E-6,273.

*ELSET,ELSET=E1

1,6

*ELSET,ELSET=E2

2

*ELSET,ELSET=E3

3

*ELSET,ELSET=E4

4

*ELSET,ELSET=E5

5

*FLUID SECTION,ELSET=E1,TYPE=CHANNEL INOUT,MATERIAL=WATER

*FLUID SECTION,ELSET=E2,TYPE=CHANNEL SLUICE GATE,MANNING,MATERIAL=WATER

10.,0.005,0.8,,3

*FLUID SECTION,ELSET=E3,TYPE=CHANNEL SLUICE OPENING,MANNING,MATERIAL=WATER

10.,0.005,0.1,0.,0.01,2

*FLUID SECTION,ELSET=E4,TYPE=CHANNEL STRAIGHT,MANNING,MATERIAL=WATER

10.,0.005,49.8,0.,0.01,2

*FLUID SECTION,ELSET=E5,TYPE=CHANNEL RESERVOIR,MANNING,MATERIAL=WATER

10.,0.005,0.1,0.,0.01,2

*BOUNDARY

10,2,2,2.7

*BOUNDARY,MASS FLOW

1,1,1,60000.

*STEP

*HEAT TRANSFER,STEADY STATE

*DLOAD

EALL,GRAV,9.81,0.,0.,-1.

*NODE PRINT,NSET=NALL

U

*END STEP

It is one of the examples in the CalculiX test suite. The channel is made
up of six 3-node network elements (type D) in one long line. The nodes have
fictitious coordinates. They do not enter the calculations, however, they will be
listed in the .frd file. For a proper visualization with CalculiX GraphiX it may
be advantageous to use the correct coordinates. As usual in networks, the final
node of the entry and exit element have the label zero. The material is water
and is characterized by its density, heat capacity and dynamic viscosity. Next,
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the elements are stored in appropriate sets (by using *ELSET) for the sake of
referencing in the *FLUID SECTION card.

The structure of the channel becomes apparent when analyzing the *FLUID
SECTION cards: upstream there is a sluice gate, downstream there is a large
reservoir and both are connected by a straight channel. Like most upstream
elements the sluice gate actually consists of two elements: the actual sluice
gate element and a sluice opening element. This is because, although the gate
fixes the water depth at its lower end, this water depth may be overrun by a
backwater curve controlled by the downstream water level. The sluice gate is
described by its width (10 m, which is constant along the channel), a slope of
0.005 (also constant along the channel) and a gate height of 0.8m. Furthermore,
the label of the downstream gate opening element has to be provided as well
(3). The sluice opening element has the same width and slope, its length is
0.1 m. If a nonpositive length is provided, the true length is calculated from
the nodal coordinates. The angle θ is zero, which means that the cross section
is rectangular and not trapezoidal. Since the parameter MANNING has been
used on the *FLUID SECTION card, the next parameter (0.01 m−1/3s) is the
Manning coefficient. Finally, the label of the upstream sluice gate element is
given (2). The constants for the straight channel element can be checked in
Section 6.6. Important here is the length of 49.8 m. The last element, the
reservoir, is again a very short element (length 0.1 m). The length of elements
such as the sluice opening or reservoir element, which do not really have a
physical length, should be kept small.

Next, the boundary conditions are defined: the reservoir fluid depth is 2.7
m, whereas the mass flow is 60000 kg/s. Network calculations in CalculiX are
a special case of steady state heat transfer calculations, therefore the *HEAT
TRANSFER, STEADY STATE card is used. The prevailing force is gravity.

When running CalculiX a message appears that there is a hydraulic jump
at relative location 0.67 in element 4 (the straight channel element). This is
also clear in Figure 52, where the channel has been drawn to scale. The sluice
gate is located at x=5 m, the reservoir starts at x=55 m. The bottom of the
channel is shaded black. The water level behind the gate was not prescribed
and is one of the results of the calculation: 3.667 m. The water level at the gate
is controlled by its height of 0.8 m. A frontwater curve (i.e. a curve controlled
by the upstream conditions - the gate) develops downstream and connects to
a backwater curve (i.e. a curve controlled by the downstream conditions - the
reservoir) by a hydraulic jump at a x-value of 38.5 m. In other words, the jump
connects the upstream supercritical flow to the downstream subcritical flow.
The critical depth is illustrated in the figure by a dashed line. It is the depth
for which the Froude number is 1: critical flow.

In channel flow, the degrees of freedom for the mechanical displacements are
reserved for the mass flow, the water depth and the critical depth, respectively.
Therefore, the option U underneath the *NODE PRINT card will lead to exactly
this information in the .dat file. The same information can be stored in the .frd
file by selecting MF, DEPT and HCRI underneath the *NODE FILE card.
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Figure 53: Geometry of the beam

5.17 Cantilever beam using beam elements

Previously, a thick cantilever beam was modeled with volume elements. In the
present section quadratic beam elements are used for a similar exercise (Section
6.2.33). Beam elements are easy to define: they consist of three nodes on a line.
Internally, they are expanded into volumetric elements. There are two types
of beam elements: B32 elements, which are expanded into C3D20 elements,
and B32R (reduced integration) elements, which are expanded into C3D20R
elements. Based on the results in the present section, the B32R element is
highly recommended. The B32 element, on the other hand, should be avoided
especially if section forces are needed.

The first cantilever beam which is looked at is 100 mm long and has a square
cross section of 2 x 2 mm2. The axis of the beam is along the global z-direction.
This beam is modeled with just one element and loaded at its end by a unit force
in x-direction, Figure 53. We are interested in the stresses at integration point a
and at node b, the section forces at the beam’s fixed end, and the displacement
in x at the free end. The location of the integration point a is at x = −1/

√
3,

y = 1/
√
3 and z = 50(1 + 1/

√
3), the nodal coordinates of b are x = −1, y = 1

and z = 100 [19]. The material is isotropic linear elastic with a Young’s modulus
of 100,000 MPa and a Poisson’s ratio of 0.3.

The input deck for this example is very similar to the simplebeam.inp ex-
ample in the test suite (Figure 54).

The stresses at the integration points are obtained by a *EL PRINT card,
the stresses at the nodes by the OUTPUT=3D option (default) on the *EL FILE
card, whereas for the section forces the SECTION FORCES option on the same
card is used (this option is mutually exclusive with the OUTPUT=3D option).
The displacements are best obtained in the non-expanded view, i.e. using the
OUTPUT=2D option. This means that for the present results the example
had to be run twice: once with the OUTPUT=3D option and once with the
SECTION FORCES option.
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Figure 54: Input deck for the beam
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The results are summarized in Table 3. The {mm,N, s,K} system is used.
The reference results are analytical results using simple beam theory [68]. The
agreement is overwhelming. The stresses at the integration points match ex-
actly, so do the extrapolated normal stresses to the nodes. The shear stresses
need special attention. For a beam the shear stress varies parabolically across
the section. A quadratic volumetric element can simulate only a linear stress
variation across the section. Therefore, the parabolic variation is approximated
by a constant shear stress across the section. Since the reduced integration
points (at ±1/

√
3) happen to be points at which the parabolic stress variation

attains its mean value the values at the integration points are exact! The ex-
trapolated values to the nodes take the same constant value and are naturally
wrong since the exact value at the corners is zero.

The section forces are obtained by

1. calculating the stresses at the integration points (inside the element, such
as integration point a)

2. extrapolating those stresses to the corner nodes (such as node b)

3. calculating the stresses at the middle nodes by interpolation between the
adjacent corner nodes

4. interpolating the stresses at all nodes within a section face onto the re-
duced integration points within the face (such as integration point c, using
the shape functions of the face)

5. integrating these stresses numerically.

As shown by Table 3 this procedure yields the correct section forces for the
square beam.

The displacements at the beam tip are off by 10 %. The deformation of a
beam subject to a shear force at its end is third order, however, the C3D20R
element can only simulate a quadratic behavior. The deviation is reduced to
2.4 % by using 5 elements (Table 4). Notice that integration point a is now
closer to the fixation (same position is before but in the element adjacent to the
fixation).

The same beam was now subjected to a torque of 1 Nmm at its free end.
The results are summarized in Table 5.

The torque is matched perfectly, the torsion at the end of the beam (uy is
the displacement in y-direction at the corresponding node of node b) is off by 15
% [68]. The shear stresses at node b are definitely not correct (there is no shear
stress at a corner node), however, the integration of the values interpolated from
the nodes at the facial integration points yields the exact torque! Using more
elements does not change the values in Table 5.

The same exercise is now repeated for a circular cross section (radius = 1
mm, same length, boundary conditions and material data as for the rectangular
cross section). For such a cross section the vertex nodes of the element lie
at x, y = ±0.7071,±0.7071, whereas the middle nodes lie at x, y = 0,±1 and
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Table 3: Results for the square section beam subject to bending (1 element).

result value reference
σzz(a) 34.151 34.151
σxz(a) -0.25 -0.25
Fxx -1. -1.
Myy 100. 100.
σzz(b) 75. 75.
σxz(b) -0.25 0.
ux 2.25 2.50

Table 4: Results for the square section beam subject to bending (5 elements).

result value reference
σzz(a) 41.471 41.471
σxz(a) -0.25 -0.25
Fxx -1. -1.
Myy 100. 100.
σzz(b) 75. 75.
σxz(b) -0.25 0.
ux 2.44 2.50

Table 5: Results for the square section beam subject to torsion (1 element).

result value reference
σxz(a) -0.21651 -
σyz(a) -0.21651 -
Mzz 1. 1.
σxz(b) -0.375 0
σyz(b) -0.375 0
uy 9.75 · 10−4 1.1525 · 10−3
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Table 6: Results for the circular section beam subject to bending (1 element).

result value reference
σzz(a) 34.00 52.26
σxz(a) -0.322 -0.318
Fxx -0.99996 -1.
Myy 58.7 100.
σzz(b) 62.8 90.03
σxz(b) -0.322 -0.318
ux 2.91 4.24

Table 7: Results for the circular section beam subject to bending (5 elements).

result value reference
σzz(a) 59.77 63.41
σxz(a) -0.322 -0.318
Fxx -0.99996 -1.
Myy 102. 100.
σzz(b) 109. 90.03
σxz(b) -0.322 -0.318
ux 3.86 4.24

x, y = ±1, 0. The integration points are located at x, y = ±0.5210. The results
for bending with just one element are shown in Table 6 and with 5 elements in
Table 7.

For just one element the shear stress is quite close to the analytical value,
leading to a even better match of the shear force. This is remarkable an can
only be explained by the fact that the cross area of the piecewise quadratic
approximation of the circular circumference is smaller and exactly compensates
the slightly higher shear stress. A similar effect will be noticed for the torque.
The normal stress, however, is far off at the integration points as well as at the
nodes leading to a bending moment which is way too small. The same applies
to the deformation in x-direction. Using five elements leads to a significant
improvement: the bending moment is only 2 % off, the deformation at the free
end 9 %. Here again one can argue that the deformation is of cubic order,
whereas a quadratic element can only simulate a quadratic change. Using more
elements consequently improves the results.

The results for a torque applied to a circular cross section beam is shown in
Table 8 (1 element; the results for 5 elements are identical).

Again, it is remarkable that the torque is perfectly matched, although the
shear stress at the integration points is 6 % off. This leads to shear values at the
vertex nodes which are 19 % off. Interpolation to the facial integration points
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Table 8: Results for the circular section beam subject to torsion (1 element).

result value reference
σxz(a) -0.309 -0.331
σyz(a) -0.309 -0.331
Mzz 0.999994 1.
σxz(b) -0.535 -0.450
σyz(b) -0.535 -0.450
uy 1.54 · 10−3 1.66 · 10−3

yields shear stresses of -0.305 MPa. Integration of these stresses finally leads to
the perfect torque values. The torsion angle at the end of the beam is 7 %off.

Summarizing, one can state that the use of C3D20R elements leads to quite
remarkable results:

• For a rectangular cross section:

– the section forces are correct

– the stresses at the integration points are correct

– the displacements for bending are correct, provided enough elements
are used

– the torsion angle is somewhat off (15 %).

• For a circular cross section:

– the shear force and torque section forces are correct

– the bending moment is correct if enough elements are used

– the displacements for bending are correct, provided enough elements
are used

– the torsion angle is somewhat off (7 %).

It is generally recommended to calculate the stresses from the section forces.
The only drawback is the C3D20R element may lead to hourglassing, leading to
weird displacements. However, the mean of the displacements across the cross
section is usually fine. An additional problem which can arise is that nonlinear
geometric calculations may not converge due to this hourglassing. This is reme-
died in CalculiX by slightly perturbing the coordinates of the expanded nodes
(by about 0.1 %).

A similar exercise was performed for the B32 element, however, the results
were quite discouraging. The section forces were, especially for bending, way
off.
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5.18 Reinforced concrete cantilever beam

Purpose of this exercise is to calculate the stresses in a reinforced concrete
cantilever beam due to its own weight. Special issues in this type of problem are
the treatment of the structure as a composite and the presence of a compression-
only material (the concrete).

The input deck runs like:

*NODE, NSET=Nall

1,1.000000000000e+01,0.000000000000e+00,0.000000000000e+00

...

*ELEMENT, TYPE=S8R, ELSET=Eall

1, 1, 2, 3, 4, 5, 6, 7, 8

2, 2, 9, 10, 3, 11, 12, 13, 6

...

** Names based on left

*NSET,NSET=Nleft

49,

50,

52,

** Names based on right

*NSET,NSET=Nright

1,

4,

8,

*MATERIAL,NAME=COMPRESSION_ONLY

*USER MATERIAL,CONSTANTS=2

1.4e10, 1.e5

*DENSITY

2350.

*MATERIAL,NAME=STEEL

*ELASTIC

210000.e6,.3

*DENSITY

7800.

*SHELL SECTION,ELSET=Eall,COMPOSITE

.09,,COMPRESSION_ONLY

.01,,STEEL

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY

.1,,COMPRESSION_ONLY
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*BOUNDARY

Nleft,1,6

*STEP,NLGEOM

*STATIC

1.,1.

*DLOAD

Eall,GRAV,9.81,0.,0.,-1.

*NODE FILE

U

*EL FILE

S

*END STEP

The beam has a cross section of 1 x 1 m2 and a length of 10 m. The density
of concrete is 2350 kg/m3, whereas the density of steel is 7800 kg/m3. The
Young’s moduli are 14000 MPa and 210000 MPa, respectively. Steel is provided
only on the top of the beam (tension side of the beam) at a distance of 9.5
cm from the upper surface. Its layer thickness is 1 cm (in reality the steel is
placed within the concrete in the form of bars. The modeling as a thin layer is
an approximation. One has to make sure that the complete section of the bars
equals the section of the layer). Using the composite feature available for shell
structures significantly simplifies the input. Notice that this feature is not (yet)
available for beam elements. Consequently the beam was modeled as a plate
with a width of 1 m and a length of 10 m. Underneath the *SHELL SECTION
card the thickness of the layers and their material is listed, starting at the top of
the beam. The direction (from top to bottom) is controlled by the direction of
the normal on the shell elements (which is controlled by the order in which the
elements’ nodes are listed underneath the *ELEMENT card). In a composite
shell there are two integration points across each layer. Use of the S8R element
or S6 element is mandatory. In order to capture the location of the neutral axis
several layers were used to model the concrete part of the section (in total 10
layers for the concrete and 1 for the steel).

Concrete cannot sustain tension whereas it is largely linear elastic under pres-
sure. This can be modeled with the COMPRESSION ONLY material model. In
CalculiX this is an example of a user material. The name of user materials has
to start with a fixed character set, in this case ”COMPRESSION ONLY”. The
remaining 64 characters (a material name can be at most 80 characters long) can
be freely chosen. In the present input deck no extra characters were selected.
Choosing extra characters is needed if more than 1 compression-only material
is present (in order to distinguish them). The ”COMPRESSION ONLY” ma-
terial is characterized by 2 constants, the first is Young’s modulus, the second
is the maximum tensile stress the user is willing to allow, in our case 0.1 MPa
(SI-units are used).

Using simple beam theory ([60]) leads to a tensile stress of 152.3 MPa in
the steel and a maximum compressive stress of 7.77 MPa at the lower edge of
the concrete. The finite element calculation (Figure 55) predicts 152 MPa and
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Figure 55: Axial stress across the height of the beam at the fixed end

Figure 56: Axial stress across the height of the beam at the fixed end
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Figure 57: Maximum principal stress in the deformed sheet

7.38 MPa, respectively, which is quite close. In CalculiX, the graphical output
of composite structures is always expanded into three dimensions. In Figure 56
one notices the correct dimension of the composite and the high tensile stresses
in the thin steel layer.

5.19 Wrinkling of a thin sheet

The input decks for this problem can be found in the test suite as leifer1.inp
and leifer2.inp. It was first devised by J. Leifer in 2003. The structure is a
thin square sheet with an edge length of 229 mm and a thickness of 0.0762
mm. It is fixed on one side and moved parallel to this side on the opposite side
by 1 mm. Young’s modulus and Poisson’s coefficient are 3790 MPa and 0.38,
respectively. Experimental evidence points to the creation of wrinkles due to
this shear deformation.

Here, two approaches are described to simulate this experiment. In both
cases the sheet is simulated using quadratic shell elements. In the first simulation
(leifer1) the material is considered as a linear elastic isotropic material, and
wrinkling occurs due to natural buckling processes in the sheet. To enhance
this buckling, the coordinates in the direction perpendicular to the sheet (this
is the z-direction in our simulation) are slightly perturbed in a aleatoric way
(look at the coordinates in the input deck to verify this). Furthermore, the
simulation is performed in a dynamic procedure starting with very small time
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Figure 58: Shear stress in the isotropic simulation

Figure 59: Shear stress in the tension-only simulation

steps. Figure 57 shows the maximum principal stress in the deformed sheet
(the edge at x=0 was fixed, the edge at x=229 was moved 1 mm in negative
y-direction). One nicely notices the wrinkles. A look at the smallest principal
stress shows that there are virtually no pressure stresses in the sheet: they were
removed by buckling. A disadvantage of this kind of simulation is the very long
computational time (336 increments for a step time of 1!).

The absence of pressure stress points to a second way of obtaining the correct
stress distribution: instead of simulating the material as isotropic, one can use a
tension-only material model (leifer2). This has the advantage that convergence
is much faster (small computational times). Figures 58 and 59 compare the shear
stress of both simulations: they match quite nicely (the shear stress distribution
in an isotropic simulation without wrinkling is totally different). The same
applies to the other stress components. The use of a tension-only material,
however, does not lead to out-of-plane deformations. Here, wrinkling can only
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Figure 60: Minimum principal strain in the tension-only simulation

be derived indirectly by looking at the smallest principal strain (Figure 60).
The large negative values point to the existence of wrinkles.

5.20 Optimization of a simply supported beam

In this section the optimization of a simply supported beam w.r.t. stress and
subject to a non-increasing mass constraint is treated. This example shows how
an optimization might be performed, the procedure itself is manually and by no
way optimized. For industrial applications one would typically write generally
applicable scripts taking care of the manual steps explained here.

This example uses the files opt1.inp, opt1.f, opt2.inp, opt2.f and op3.inp, all
available in the CalculiX test suite. File opt1.inp contains the geometry and the
loading of the problem at stake: the structure is a beam simply supported at
its ends (hinge on one side, rolls on the other) and a point force in the middle.
The von Mises stresses are shown in Figure 61.

The target of the optimization if to reduce the stresses in the beam. The
highest stresses occur in the middle of the beam and at the supports (cf. Figure
61). Since the stresses at the supports will not decrease due to a geometrical
change of the beam (the peak stresses at the supports are cause by the point-like
nature of the support) the set of design variables (i.e. the nodes in which the
geometry of the beam is allowed to change during the optimization) is defined
as all nodes in the beam except for a set of nodes in the vicinity of the supports.
These latter nodes are shown in Figure 62.

In order to perform an optimization one has to determine the sensitivity of
the objective w.r.t. the design variables taking into account any constraints for
every intermediate design step (iteration) of the optimization.

The design variables were already discussed an constitute the set of nodes in
which the design is allowed to change. In the input deck for the present example
this is taken care of by the lines:
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Figure 61: von Mises stress in the starting geometry of the beam

Figure 62: Nodes excuded from the set of design variables
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*DESIGNVARIABLES,TYPE=COORDINATE

DESIGNNODES

“DESIGNNODES” is a nodal set containing the design nodes as previously
discussed. For optimization problems in which the geometry of the structure
is to be optimized the type is COORDINATE. Alternatively, one could opti-
mize the orientation of anisotropic materials in a structure, this is covered by
TYPE=ORIENTATION.

The objective is the function one would like to minimize. In the present
example the Kreisselmeier-Steinhauser function calculated from the von Mises
stress in all design nodes (cf. *OBJECTIVE for the definition of this function)
is to be minimized. Again, the support nodes are not taken into account because
of the local stress singularity. The objective is taken care of by the lines:

*OBJECTIVE

STRESS,DESIGNNODES,10.,100.

in the input deck. Notice that the node set used to define the Kreisselmeier-
Steinhauser function does not have to coincide with the set of design variables
(second entry underneath the *OBJECTIVE card). The third and fourth entry
underneath the *OBJECTIVE card constitute parameters in the Kreisselmeier-
Steinhauser function. Specifically, the fourth entry is a reference stress value
and should be of the order of magnitude of the actual maximum stress in the
model. The third parameter allows to smear the maximum stress value in a less
or more wide region of the model.

In addition to the objective function (only one objective function is allowed)
one or more constraints can be defined. In the actual example the mass of the
beam should not increase during the optimization. This is taken care of by

*CONSTRAINT

MASS,Eall,LE,1.,

For the meaning of the entries the reader is referred to *CONTRAINT. No-
tice that for this constraint to be active the user should have defined a density for
the material at stake. Within CalculiX the constraint is linearized. This means
that, depending on the increment size during an optimization, the constraint
will not be satisfied exacty.

In the CalculiX run the sensitivity of the objective and all constraints w.r.t.
the design variables is calculated. The sensitivity is nothing else but the first
derivative of the objective function w.r.t. the design variables (similarly for the
constraints), i.e. the sensitivity shows how the objective function changes if the
design variable is changed. For design variables of type COORDINATE the
change of the design variables (i.e. the design nodes) is in a direction locally
orthogonal to the geometry. So in our case the sensitivity of the stress tells
us how the stress changes if the geometry is changed in direction of the local
normal (similar with the mass CONSTRAINT). If the sensitivity is positiv the
stress increases while thickening the structure and vice versa. This sensitivity
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Figure 63: Stress sensitivity before filtering

Figure 64: Stress sensitivity after filtering

may be postprocessed by using a filter. In the present input deck (opt1.inp) the
following filter is applied:

*FILTER,TYPE=LINEAR,EDGE PRESERVATION=YES,DIRECTION WEIGHTING=YES

3.

The filter is linear with a radius of 3 (it can be visualized as a cone at each
design variable in which the sensitivity is integrated and subsequently smeared),
sharp corners should be kept (EDGE PRESERVATION=YES, cf. *FILTER)
and surfaces with a clearly different orientation (e.g. orthogonal) are not taken
into account while filtering (or taken into account to a lesser degree, DIREC-
TION WEIGHTING=YES). The filtering is applied to the objective function
and to each constraint separately. Figure 63 shows the stress sensitivity before
filtering, Figure 64 the stress sensitivity after filtering and Figure 65 the mass
sensitivity after filtering. All of this information is obtained by requesting SEN
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Figure 65: Mass sensitivity after filtering

Figure 66: Stress sensitivity taking the mass constraint into account

underneath the *NODE FILE card. Notice that the sensitivity is normalized
after filtering.

After calculating the filtered sensitivities of the objective function and the
constraints separately they are joined by projecting the sensitivity of the active
constraints on the sensitivity of the objective function. This results in Figure
66.

The sensitivities calculated in this way allow us to perform an optimization.
The simplest concept is the steepest gradient algorithm. This entails to change
the geometry in the direction of the steepest gradient. In the present calculations
only one gradient is calculated (the one in the direction of the local normal)
since a geometry change parallel to the surface of the structure generally does
not change the geometry at all. So the geometry is changed in the direction
of the local normal by an amount to be defined by the user. It is usually a
percentage of the local sensitivity. This is taken care of by the FORTRAN
program opt1.f. It reads the normal information and the sensitivities from file
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Figure 67: Deformed mesh after one iteration

opt1.frd and defines a geometry change of 10 % of the normalized sensitivity in
the form of *BOUNDARY cards. These cards are stored in file opt1.bou.

In order to run opt1.f it has to be compiled (e.g. by gfortran -oopt1.exe
opt1.f) and subsequently executed (e.g. by ./opt1.exe). The sensitivities, how-
ever, only take care of the change of the boundary nodes which are also design
variables. In order to maintain a good quality mesh the other boundary nodes
and the internal nodes should be appropriately moved as well. This is taken care
of by a subsequent linear elastic calculation with the sensitivity-based surface
geometry change as boundary conditions. This is taken care of by input deck
opt2.inp.

This input deck contains the original geometry of the beam. In addition,
the sensitivity-based surface geometry change stored in opt1.bou is included by
the statement:

*INCLUDE,INPUT=opt1.bou

Furthermore, preservation of sharp edges and corners in the original struc-
ture is taken care of by linear equations stored in file opt1.equ. They were
generated by CalculiX during the opt1.inp run. They are included by the state-
ment:

*INCLUDE,INPUT=opt1.equ

The resulting deformed mesh is shown in Figure 67 (a refinement of the
procedure could involve to use high E-moduli in opt2.inp at the free surface
and decrease their value as a function of the distance from the free surface; this
guarantees good quality elements at the free surface). The beam was thickened
in the middle, where the von Mises stresses were highest. This should lead to
a decrease of the highest stress value. In order to check this a new sensitivity
calculation was done on the deformed structure. To this end the coordinates
and the displacements are read from opt2.frd by the FORTRAN program opt2.f
(to be compiled and executed in a similar way as opt1.f), and the sum is stored
in file opt3.inc. This file is included in input deck opt3.inp, which is a copy of
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Figure 68: Mises stress after one iteration

opt1.inp with the coordinates replaced by the ones in opt3.inc. The resulting
von Mises stresses are shown in Figure 68. The von Mises stress in the middle
of the lower surface of the beam has indeed decreased from 114 to about 80
(MPa if the selected units were mm, N, s and K). Further improvements can be
obtained by running several iterations.

5.21 Mesh refinement of a curved cantilever beam

This example illustrates the use of the *REFINE MESH keyword card in order
to refine a tetrahedral mesh based on some solution variable. The structure is a
curved cantilever beam (Figure 69) meshed very coarsely using C3D10 elements.
The left side of the beam is completely fixed in z-direction, the lower left node
is furthermore fixed in x and y, the lower right node in y. A load of 9 force units
is applied to the nodes in the right face of the beam in +y direction. This leads
to the normal stresses in z shown in the Figure. The beam experiences bending
leading to tensile stresses at the bottom and compressive stresses at the top.
The input deck of the beam (circ10p.inp) is part of the CalculiX test suite.

Here, only the step information in the input deck is reproduced:

*STEP

*STATIC

*CLOAD

LOAD,2,1.
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Figure 69: Normal stress in z-direction for the coarse mesh

Figure 70: Error estimator for the coarse mesh
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*NODE PRINT,NSET=FIX,TOTALS=ONLY

RF

*SECTION PRINT,SURFACE=Sfix,NAME=SP1

SOF,SOM

*NODE FILE

U

*EL FILE

S

*REFINE MESH,LIMIT=50.

S

*END STEP

It illustrates several possibilities to obtain the reaction forces. One way is
to use the *NODE PRINT keyword card to request the storage of RF in the
.dat file. It acts on a node set, in this case all nodes on the left surface of
the beam. The parameter TOTALS=ONLY indicates that only the sum of the
forces should be printed, not the individual contributions. The *NODE PRINT
option works well if the adjacent elements of the nodal set are not subject to
distributed loads, neither surface distributed loads (pressure) nor volumetric
distribute loads (gravity, centrifugal forces). Else the value printed for RF will
include part of these latter forces.

A second possibility is to define a facial surface and use SOF and SOM
underneath the *SECTION PRINT card in order to request the forces and
moments on this surface. The surface Sfix consists of all faces in the left surface
of the beam. The forces and moments are obtained by integration across the
surface.

The output in the .dat-file looks like:

total force (fx,fy,fz) for set FIX and time 0.1000000E+01

-9.372063E-13 -9.000000E+00 3.127276E-12

statistics for surface set SFIX and time 0.1000000E+01

total surface force (fx,fy,fz) and moment about the origin(mx,my,mz)

2.454956E+00 -7.226251E+00 1.377949E+01 7.236961E+01 -5.740438E+00 -4.957194E+00

center of gravity and mean normal

5.000000E-01 5.000000E-01 0.000000E+00 0.000000E+00 0.000000E+00 -1.000000E+00

moment about the center of gravity(mx,my,mz)
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6.547987E+01 1.149306E+00 -1.165902E-01

area, normal force (+ = tension) and shear force (size)

6.000000E+00 -1.377949E+01 7.631875E+00

From this one observes that the reaction force obtained by the *NODE
PRINT statement is very accurate, however, the integration across the surface
of the stresses is rather inaccurate: instead of 9 force units one obtains 7.23
units. The moment about the center of gravity is 65.5 [force][length] instead of
the expected 72 [force][length] (the length of the beam is 8 length units).

The value of the error estimator is shown in Figure 70. Not surprisingly, the
error is quite high, up to 30 %.

In order to obtain better results, an automatic stress-based refinement is
triggered by the *REFINE MESH,LIMIT=50 card. The field on which the re-
finement is based is listed underneath this card. “S” means that the Mises stress
will be used. The Mises stress for this example reaches values of about 400 stress
units, so a refinement of up to a factor of 8 is locally possible (a refinement limit
of 50. was chosen). In the current version of CalculiX up to three iterations are
performed, each of which allows for a refinement by a factor of two. The refine-
ments are always applied to a version of the original mesh in which any quadratic
elements are replaced by linear ones (C3D10 by C3D4), i.e. the middle nodes
are not taken into account. The results of these refinement iterations are stored
as input decks (containing only the mesh) in files finemesh.inp0, finemesh.inp1
and finemesh.inp2. After generating the mesh stored in finemesh.inp2, the pro-
gram generates midnodes for all elements if the input deck contained at least
one quadratic element. All nodes are subsequently projected onto the faces of
the original mesh. This means that the geometry is basically described by the
outer surface of the mesh in the input deck. Elements in the input deck other
than tetrahedral elements remain untouched. The resulting projected mesh is
stored as input deck in jobname.fin. It contains only the refined mesh (nodes
and elements).

Running the circ10p input deck and reapplying the necessary boundary
and loading conditions (this has to be done by hand) leads to the input deck
cric10pfin.inp (also part of the CalculiX test examples). Running this deck leads
to the normal z-stresses in Figure 71 and the error in Figure 72.

The mesh has been refined near the left face of the beam, where the stresses
were highest. The resulting elements are quadatic elements and the curvature
of the original mesh has been nicely kept.

The compressive stresses are slightly increased, while the tensile stresses are
now much more localized about the nodes fixed in y-direction. The overall level,
however, is similar. The stress error is about the same as for the coarse mesh,
however, at those locations where the stress is high, the error is now low, about
5 % instead of 30 %. These are the locations of interest.

The output for the reaction forces in the .dat file looks like:
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Figure 71: Normal stress in z-direction for the fine mesh

Figure 72: Error estimator for the fine mesh
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total force (fx,fy,fz) for set FIX and time 0.1000000E+01

3.221013E-12 -9.000000E+00 7.356782E-12

statistics for surface set SFIX and time 0.1000000E+01

total surface force (fx,fy,fz) and moment about the origin(mx,my,mz)

1.512388E-01 -9.252627E+00 -7.227514E-01 7.175724E+01 1.563390E-01 -4.206416E+00

center of gravity and mean normal

5.000000E-01 5.000000E-01 4.014218E-19 -4.263022E-20 4.286885E-20 -1.000000E+00

moment about the center of gravity(mx,my,mz)

7.211862E+01 -2.050367E-01 4.955169E-01

area, normal force (+ = tension) and shear force (size)

6.000000E+00 7.227514E-01 9.253863E+00

The nodal output is again very accurate, while the section output has clearly
improved: the total reaction force is now -9.25 force units, the moment about
the center of gravity is 72.12 [force][length]. The finer mesh leads to more
accurate nodal stresses, which are the ones which have been used to determined
the section forces.

6 Theory

The finite element method is basically concerned with the determination of field
variables. The most important ones are the stress and strain fields. As basic
measure of strain in CalculiX the Lagrangian strain tensor E is used for elastic
media, the Eulerian strain tensor e is used for deformation plasticity and the
deviatoric elastic left Cauchy-Green tensor is used for incremental plasticity.
The Lagrangian strain satisfies ([21]):

EKL = (UK,L + UL,K + UM,KUM,L)/2, K, L,M = 1, 2, 3 (3)

where UK are the displacement components in the material frame of reference
and repeated indices imply summation over the appropriate range. In a linear
analysis, this reduces to the familiar form:
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ẼKL = (UK,L + UL,K)/2, K, L = 1, 2, 3. (4)

The Eulerian strain satisfies ([21]):

ekl = (uk,l + ul,k − um,kum,l)/2, k, l,m = 1, 2, 3 (5)

where uk are the displacements components in the spatial frame of reference.
Finally, the deviatoric elastic left Cauchy-Green tensor is defined by ([76]):

b̄ekl = Je−2/3xek,Kx
e
l,K (6)

where Je is the elastic Jacobian and xek,K is the elastic deformation gradient.
The above formulas apply for Cartesian coordinate systems.

The stress measure consistent with the Lagrangian strain is the second Piola-
Kirchhoff stress S. This stress, which is internally used in CalculiX for all appli-
cations (the so-called total Lagrangian approach, see [9]), can be transformed
into the first Piola-Kirchhoff stress P (the so-called engineering stress, a non-
symmetric tensor) and into the Cauchy stress t (true stress). All CalculiX input
(e.g. distributed loading) and output is in terms of true stress. In a tensile test
on a specimen with length L the three stress measures are related by:

t = P/(1− ǫ) = S/(1− ǫ)2 (7)

where ǫ is the engineering strain defined by

ǫ = dL/L. (8)

The treatment of the thermal strain depends on whether the analysis is ge-
ometrically linear or nonlinear. For isotropic material the thermal strain tensor
amounts to α∆TI, where α is the expansion coefficient, ∆T is the temperature
change since the initial state and I is the second order identity tensor. For
geometrically linear calculations the thermal strain is subtracted from the total
strain to obtain the mechanical strain:

Ẽmech
KL = ẼKL − α∆TδKL. (9)

In a nonlinear analysis the thermal strain is subtracted from the deforma-
tion gradient in order to obtain the mechanical deformation gradient. Indeed,
assuming a multiplicative decomposition of the deformation gradient one can
write:

dx = F · dX = Fmech · F th · dX, (10)

where the total deformation gradient F is written as the product of the
mechanical deformation gradient and the thermal deformation gradient. For
isotropic materials the thermal deformation gradient can be written as F th =
(1 + α∆T )I and consequently:

F−1
th ≈ (1− α∆T )I. (11)
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Therefore one obtains:

(Fmech)kK ≈ FkK(1− α∆T ) = (1 + uk,K)(1− α∆T )

≈ 1 + uk,K − α∆T. (12)

Based on the mechanical deformation gradient the mechanical Lagrange
strain is calculated and subsequently used in the material laws:

2Emech = F T
mech · Fmech − I. (13)

6.1 Node Types

There are three node types:

• 1D fluid nodes. These are nodes satisfying at least one of the following
conditions:

– nodes belonging to 1D network elements (element labels starting with
D)

– reference nodes in *FILM cards of type forced convection (label:
F*FC).

– reference nodes in *DLOAD cards of type nodal pressure (label:
P*NP).

• 3D fluid nodes. These are nodes belonging to 3D fluid elements (element
labels starting with F)

• structural nodes. Any nodes not being 1D fluid nodes nor 3D fluid nodes.

It is not allowed to create equations between nodes of different types.

6.2 Element Types

There are a lot of different elements implemented in CalculiX, therefore it is not
always easy to select the right one. In general, one can say that the quadratic
elements are the most stable and robust elements in CalculiX. If you are not
a finite element specialist the use of quadratic elements is strongly suggested.
This includes:

• hexahedral elements: C3D20R

• tetrahedral elements: C3D10

• axisymmetric elements: CAX8R

• plane stress elements: CPS8R
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Figure 73: 8-node brick element

• plane strain elements: CPE8R

• shell elements: S8R

• beam elements: B32R

Other elements frequently exhibit unsatisfactory behavior in certain instances,
e.g. the C3D8 element in bending states. Unless you are a specialist, do not
use such elements. Detailed information is given underneath.

6.2.1 Eight-node brick element (C3D8 and F3D8)

The C3D8 element is a general purpose linear brick element, fully integrated
(2x2x2 integration points). The shape functions can be found in [42]. The
node numbering follows the convention of Figure 73 and the integration points
are numbered according to Figure 74. This latter information is important
since element variables printed with the *EL PRINT keyword are given in the
integration points.

Although the structure of the element is straightforward, it should not be
used in the following situations:

• due to the full integration, the element will behave badly for isochoric
material behavior, i.e. for high values of Poisson’s coefficient or plastic
behavior.



104 6 THEORY

����

�
�
�
�

�
�
�
�

�
�
�
�

���� ����

��

�
�
�
�

���� ����1 2

3 4

5 6

7 8

1 2

3
4

5
6

78

Figure 74: 2x2x2 integration point scheme in hexahedral elements

• the element tends to be too stiff in bending, e.g. for slender beams or thin
plates under bending. [95].

The F3D8 element is the corresponding fluid element.

6.2.2 Eight-node brick element with reduced integration (C3D8R)

The C3D8R element is a general purpose linear brick element, with reduced inte-
gration (1 integration point). The shape functions are the same as for the C3D8
element and can be found in [42]. The node numbering follows the convention
of Figure 73 and the integration point is shown in Fig 75.

Due to the reduced integration, the locking phenomena observed in the C3D8
element do not show. However, the element exhibits other shortcomings:

• The element tends to be not stiff enough in bending.

• Stresses, strains.. are most accurate in the integration points. The integra-
tion point of the C3D8R element is located in the middle of the element.
Thus, small elements are required to capture a stress concentration at the
boundary of a structure.

• There are 12 spurious zero energy modes leading to massive hourglass-
ing: this means that the correct solution is superposed by arbitrarily large
displacements corresponding to the zero energy modes. Thus, the dis-
placements are completely wrong. Since the zero energy modes do no lead
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Figure 75: 1x1x1 integration point scheme in hexahedral elements

to any stresses, the stress field is still correct. In practice, the C3D8R el-
ement is not very useful without hourglass control. Starting with version
2.3 hourglass control is automatically activated for this element (using the
theory in [24]), thus alleviating this issue.

6.2.3 Incompatible mode eight-node brick element (C3D8I)

The incompatible mode eight-node brick element is an improved version of the
C3D8-element. In particular, shear locking is removed and volumetric locking
is much reduced. This is obtained by supplementing the standard shape func-
tions with so-called bubble functions, which have a zero value at all nodes and
nonzero values in between. In CalculiX, the version detailed in [86] has been
implemented. The C3D8I element should be used in all instances in which linear
elements are subject to bending. Although the quality of the C3D8I element
is far better than the C3D8 element, the best results are usually obtained with
quadratic elements (C3D20 and C3D20R). The C3D8I element is not very good
when subjected to torsion. Since the B31 element is expanded into a C3D8I
element this also applies to the B31 element.

6.2.4 Twenty-node brick element (C3D20)

The C3D20 element is a general purpose quadratic brick element (3x3x3 inte-
gration points). The shape functions can be found in [42]. The node numbering
follows the convention of Figure 76 and the integration scheme is given in Figure
77.
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Figure 76: 20-node brick element
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Figure 77: 3x3x3 integration point scheme in hexahedral elements

This is an excellent element for linear elastic calculations. Due to the location
of the integration points, stress concentrations at the surface of a structure are
well captured. However, for nonlinear calculations the elements exhibits the
same disadvantages as the C3D8 element, albeit to a much lesser extent:

• due to the full integration, the element will behave badly for isochoric
material behavior, i.e. for high values of Poisson’s coefficient or plastic
behavior.

• the element tends to be too stiff in bending, e.g. for slender beams or thin
plates under bending. [95].

6.2.5 Twenty-node brick element with reduced integration (C3D20R)

The C3D20R element is a general purpose quadratic brick element, with reduced
integration (2x2x2 integration points). The shape functions can be found in [42].
The node numbering follows the convention of Figure 76 and the integration
scheme is shown in Figure 74.

The element behaves very well and is an excellent general purpose element
(if you are setting off for a long journey and you are allowed to take only one
element type with you, that’s the one to take). It also performs well for isochoric
material behavior and in bending and rarely exhibits hourglassing despite the
reduced integration (hourglassing generally occurs when not enough integration
points are used for numerical integration and spurious modes pop up resulting



108 6 THEORY

in crazy displacement fields but correct stress fields). The reduced integration
points are so-called superconvergent points of the element [7]. Just two caveats:

• the integration points are about one quarter of the typical element size
away from the boundary of the element, and the extrapolation of integra-
tion point values to the nodes is trilinear. Thus, high stress concentrations
at the surface of a structure might not be captured if the mesh is too coarse.

• all quadratic elements cause problems in node-to-face contact calculations,
because the nodal forces in the vertex nodes equivalent to constant pres-
sure on an element side (section 6.11.2) are zero or have the opposite
sign of those in the midside nodes. This problem seems to be solved if
face-to-face penalty or mortar contact is used.

6.2.6 Four-node tetrahedral element (C3D4 and F3D4)

The C3D4 is a general purpose tetrahedral element (1 integration point). The
shape functions can be found in [95]. The node numbering follows the convention
of Figure 78.

This element is included for completeness, however, it is not suited for struc-
tural calculations unless a lot of them are used (the element is too stiff). Please
use the 10-node tetrahedral element instead.

The F3D4 element is the corresponding fluid element.

6.2.7 Ten-node tetrahedral element (C3D10)

The C3D10 element is a general purpose tetrahedral element (4 integration
points). The shape functions can be found in [95]. The node numbering follows
the convention of Figure 79.

The element behaves very well and is a good general purpose element, al-
though the C3D20R element yields still better results for the same number of
degrees of freedom. The C3D10 element is especially attractive because of the
existence of fully automatic tetrahedral meshers.

6.2.8 Modified ten-node tetrahedral element (C3D10T)

The C3D10T elements is identical to the C3D10 element except for the treat-
ment of thermal strains. In a regular C3D10 element both the initial tem-
peratures and the displacements are interpolated quadratically, which leads to
quadratic thermal strains and linear total strains (since the total strain is the
derivative of the displacements). The mechanical strain is the total strain mi-
nus the thermal strain, which is consequently neither purely linear nor purely
quadratic. This discrepancy may lead to a checkerboard pattern in the stresses,
which is observed especially in the presence of high initial temperature gradi-
ents. To alleviate this the initial temperatures are interpolated linearly within
the C3D10T element.
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Figure 79: 10-node tetrahedral element
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Figure 80: 6-node wedge element

Notice that the linear interpolation of the initial temperatures is standard
for the C3D20 and C3D20R element. For the C3D10 element it is not to keep
the compatibily with ABAQUS.

6.2.9 Six-node wedge element (C3D6 and F3D6)

The C3D6 element is a general purpose wedge element (2 integration points).
The shape functions can be found in [1]. The node numbering follows the
convention of Figure 80.

This element is included for completeness, however, it is probably not very
well suited for structural calculations unless a lot of them are used. Please use
the 15-node wedge element instead.

The F3D6 element is the corresponding fluid element.

6.2.10 Fifteen-node wedge element (C3D15)

The C3D15 element is a general purpose wedge element (9 integration points).
The shape functions can be found in [1]. The node numbering follows the
convention of Figure 81.
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Figure 81: 15-node wedge element
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The element behaves very well and is a good general purpose element, al-
though the C3D20R element yields still better results for the same number of
degrees of freedom. The wedge element is often used as fill element in “auto-
matic” hexahedral meshers.

6.2.11 Three-node shell element (S3)

This is a general purpose linear triangular shell element. For the node numbering
and the direction of the normal to the surface the reader is referred to the
quadratic six-node shell element (S6) in Figure 82 (just drop the middle nodes).

In CalculiX, three-node shell elements are expanded into three-dimensional
C3D6 wedge elements. The way this is done can be derived from the analogous
treatment of the S6-element in Figure 83 (again, drop the middle nodes). For
more information on shell elements the reader is referred to the eight-node shell
element S8.

6.2.12 Four-node shell element (S4 and S4R)

This is a general purpose linear 4-sided shell element. For the node number-
ing and the direction of the normal to the surface the reader is referred to
the quadratic eight-node shell element (S8) in Figure 84 (just drop the middle
nodes).

In CalculiX, S4 and S4R four-node shell elements are expanded into three-
dimensional C3D8I and C3D8R elements, respectively. The way this is done can
be derived from the analogous treatment of the S8-element in Figure 85 (again,
drop the middle nodes). For more information on shell elements the reader is
referred to the eight-node shell element S8.

6.2.13 Six-node shell element (S6)

This is a general purpose triangular shell element. The node numbering and
the direction of the normal to the surface is shown in Figure 82.

In CalculiX, six-node shell elements are expanded into three-dimensional
wedge elements. The way in which this is done is illustrated in Figure 83. For
more information on shell elements the reader is referred to the eight-node shell
element in the next section.

6.2.14 Eight-node shell element (S8 and S8R)

This element is a general purpose 4-sided shell element. The node numbering
and the direction of the normal to the surface is shown in Figure 84.

In CalculiX, quadratic shell elements are automatically expanded into 20-
node brick elements. The way this is done is illustrated in Figure 85. For each
shell node three new nodes are generated according to the scheme on the right
of Figure 85. With these nodes a new 20-node brick element is generated: for a
S8 element a C3D20 element, for a S8R element a C3D20R element.
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Figure 84: 8-node quadratic element
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Figure 85: Expansion of a 2D 8-node element into a 3D brick element
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Since a shell element can be curved, the normal to the shell surface is defined
in each node separately. For this purpose the *NORMAL keyword card can be
used. If no normal is defined by the user, it will be calculated automatically by
CalculiX based on the local geometry.

If a node belongs to more than one shell element, all, some or none of the
normals on these elements in the node at stake might have been defined by the
user (by means of *NORMAL). The failing normals are determined based on the
local geometry (notice, however, that for significantly distorted elements it may
not be possible to determine the normal; this particularly applies to elements in
which the middle nodes are way off the middle position). The number of normals
is subsequently reduced using the following procedure. First, the element with
the lowest element number with an explicitly defined normal in this set, if any,
is taken and used as reference. Its normal is defined as reference normal and
the element is stored in a new subset. All other elements of the same type in
the set for which the normal has an angle smaller than 0.5◦ with the reference
normal and which have the same local thickness and offset are also included
in this subset. The elements in the subset are considered to have the same
normal, which is defined as the normed mean of all normals in the subset. This
procedure is repeated for the elements in the set minus the subset until no
elements are left with an explicitly defined normal. Now, the element with the
lowest element number of all elements left in the set is used as reference. Its
normal is defined as reference normal and the element is stored in a new subset.
All other elements left in the set for which the normal has an angle smaller than
20◦ with the reference normal and which have the same local thickness and
offset are also included in this subset. The normed mean of all normals in the
subset is assigned as new normal to all elements in the subset. This procedure is
repeated for the elements left until a normal has been defined in each element.

This procedure leads to one or more normals in one and the same node. If
only one normal is defined, this node is expanded once into a set of three new
nodes and the resulting three-dimensional expansion is continuous in the node.
If more than one normal is defined, the node is expanded as many times as there
are normals in the node. To assure that the resulting 3D elements are connected,
the newly generated nodes are considered as a knot. A knot is a rigid body
which is allowed to expand uniformly. This implies that a knot is characterized
by seven degrees of freedom: three translations, three rotations and a uniform
expansion. Graphically, the shell elements partially overlap (Figure 86).

Consequently, a node leads to a knot if

• the direction of the local normals in the elements participating in the node
differ beyond a given amount. Notice that this also applies to neighbor-
ing elements having the inverse normal. Care should be taken that the
elements in plates and similar structures are oriented in a consistent way
to avoid the generation of knots and the induced nonlinearity.

• several types of elements participate (e.g. shells and beams).

• the thickness is not the same in all participating elements.
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Figure 86: Overlapping shell elements at a knot
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• the offset is not the same in all participating elements.

• a rotation or a moment is applied in the node (only for dynamic calcula-
tions)

In CalculiX versions prior to and including version 2.7 a knot was also in-
troduced as soon as the user applied a rotation or a moment to a node. Right
now, this is still the case for dynamic calculations (cf. listing above). However,
in static calculations, starting with version 2.8 this type of loading is handled
by using mean rotation MPC’s (cf. Section 9.7.1). The mean rotation MPC’s
are generated automatically, so the user does not have to take care of that. It
generally leads to slightly better results then by use of knots. However, the
use of mean rotation MPC’s prohibits the application of drilling moments, i.e.
moments about an axis perpendicular to a shell surface. Similarly, no drilling
rotation should be prescribed, unless all rotational degrees of freedom are set to
zero in the node. If the shell surface is not aligned along the global coordinate
directions, prescribing a moment or rotation aboun an axis perpendicular to the
drilling direction may require the definition of a local coordinate system. Also
note that the rotation in a mean rotation MPC should not exceed 90 degrees.
Starting with version 2.15 any nonzero drilling moment or rotation is automat-
ically removed and a warning is issued. In earlier versions, a drilling moment
or rotation led to an error, forcing the program to abort.

Beam and shell elements are always connected in a stiff way if they share
common nodes. This, however, does not apply to plane stress, plane strain
and axisymmetric elements. Although any mixture of 1D and 2D elements
generates a knot, the knot is modeled as a hinge for any plane stress, plane
strain or axisymmetric elements involved in the knot. This is necessary to
account for the special nature of these elements (the displacement normal to
the symmetry plane and normal to the radial planes is zero for plane elements
and axisymmetric elements, respectively).

The translational node of the knot (cfr REF NODE in the *RIGID BODY
keyword card) is the knot generating node, the rotational node is extra gener-
ated.

The thickness of the shell element can be defined on the *SHELL SECTION
keyword card. It applies to the complete element. Alternatively, a nodal thick-
ness in each node separately can be defined using *NODAL THICKNESS. In
that way, a shell with variable thickness can be modeled. Thicknesses defined
by a *NODAL THICKNESS card take precedence over thicknesses defined by a
*SHELL SECTION card. The thickness always applies in normal direction. The
*SHELL SECTION card is also used to assign a material to the shell elements
and is therefore indispensable.

The offset of a shell element can be set on the *SHELL SECTION card.
Default is zero. The unit of the offset is the local shell thickness. An offset of 0.5
means that the user-defined shell reference surface is in reality the top surface of
the expanded element. The offset can take any real value. Consequently, it can
be used to define composite materials. Defining three different shell elements
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using exactly the same nodes but with offsets -1, 0 and 1 (assuming the thickness
is the same) leads to a three-layer composite.

However, due to the introduction of a knot in every node of such a com-
posite, the deformation is usually too stiff. Therefore, a different method has
been coded to treat composites. Right now, it can only be used for 8-node
shells with reduced integration (S8R) and 6-node shell elements (S6). Instead
of defining as many shells as there are layers the user only defines one shell
element, and uses the option COMPOSITE on the *SHELL SECTION card.
Underneath the latter card the user can define as many layers as needed. In-
ternally, the shell element is expanded into only one 3-D brick element but the
number of integration points across the thickness amounts to twice the num-
ber of layers. During the calculation the integration points are assigned the
material properties appropriate for the layer they belong to. In the .dat file
the user will find the displacements of the global 3-D element and the stresses
in all integration points (provided the user has requested the corresponding
output using the *NODE PRINT and *EL PRINT card). In the .frd file, how-
ever, each layer is expanded independently and the displacements and stresses
are interpolated/extrapolated accordingly (no matter whether the parameter
OUTPUT=3D was used). The restrictions on this kind of composite element
are right now:

• can only be used for S8R and S6 elements

• reaction forces (RF) cannot be requested in the .frd file.

• the use of *NODAL THICKNESS is not allowed

• the error estimators cannot be used.

In composite materials it is frequently important to be able to define a
local element coordinate system. Indeed, composites usually consist of layers of
anisotropic materials (e.g. fiber reinforced) exhibiting a different orientation in
each layer. To this end the *ORIENTATION card can be used.

First of all, it is of uttermost importance to realize that a shell element
ALWAYS induces the creation of a local element coordinate system, no matter
whether an orientation card was defined or not. If no orientation applies to a
specific layer of a specific shell element then a local shell coordinate system is
generated consisting of:

• a local x’-axis defined by the projection of the global x-axis on the shell
(actually at the location of the shell which corresponds to local coordinates
ξ = 0, η = 0), or, if the angle between the global x-axis and the normal
to the shell is smaller than 0.1◦, by the projection of the global z-axis on
the shell.

• a local y’-axis such that y′ = z′ × x′.
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• a local z’-axis coinciding with the normal on the shell (defined such that
the nodes are defined clockwise in the element topology when looking in
the direction of the normal).

Notice that this also applies in shell which are not defined as composites
(can be considered as one-layer composites).

If an orientation is applied to a specific layer of a specific shell element then
a local shell coordinate system is generated consisting of:

• a local x’-axis defined by the projection of the local x-axis defined by
the orientation on the shell (actually at the location of the shell which
corresponds to local coordinates ξ = 0, η = 0), or, if the angle between
the local x-axis defined by the orientation and the normal to the shell is
smaller than 0.1◦, by the projection of the local z-axis as defined by the
orientation on the shell.

• a local y’-axis such that y′ = z′ × x′.

• a local z’-axis coinciding with the normal on the shell (defined such that
the nodes are defined clockwise in the element topology when looking in
the direction of the normal).

The treatment of the boundary conditions for shell elements is straightfor-
ward. The user can independently fix any translational degree of freedom (DOF
1 through 3) or any rotational DOF (DOF 4 through 6). Here, DOF 4 is the
rotation about the global or local x-axis, DOF 5 about the global or local y-axis
and DOF 6 about the global or local z-axis. Local axes apply if the transfor-
mation (*TRANSFORM) has been defined, else the global system applies. A
hinge is defined by fixing the translational degrees of freedom only. Recall that
it is not allowed to constrain a rotation about the drilling axis on a shell, unless
the rotations about all axes in the node are set to zero.

For an internal hinge between 1D or 2D elements the nodes must be doubled
and connected with MPC’s. The connection between 3D elements and all other
elements (1D or 2D) is always hinged.

Point forces defined in a shell node are not modified if a knot is generated
(the reference node of the rigid body is the shell node). If no knot is generated,
the point load is divided among the expanded nodes according to a 1/2-1/2 ratio
for a shell mid-node and a 1/6-2/3-1/6 ratio for a shell end-node. Concentrated
bending moments or torques are defined as point loads (*CLOAD) acting on
degree four to six in the node. Their use generates a knot in the node.

Distributed loading can be defined by the label P in the *DLOAD card. A
positive value corresponds to a pressure load in normal direction.

In addition to a temperature for the reference surface of the shell, a temper-
ature gradient in normal direction can be specified on the *TEMPERATURE
card. Default is zero.

Concerning the output, nodal quantities requested by the keyword *NODE PRINT
are stored in the shell nodes. They are obtained by averaging the nodal values of
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the expanded element. For instance, the value in local shell node 1 are obtained
by averaging the nodal value of expanded nodes 1 and 5. Similar relationships
apply to the other nodes, in 6-node shells:

• shell node 1 = average of expanded nodes 1 and 4

• shell node 2 = average of expanded nodes 2 and 5

• shell node 3 = average of expanded nodes 3 and 6

• shell node 4 = average of expanded nodes 7 and 10

• shell node 5 = average of expanded nodes 8 and 11

• shell node 6 = average of expanded nodes 9 and 12

In 8-node shells:

• shell node 1 = average of expanded nodes 1 and 5

• shell node 2 = average of expanded nodes 2 and 6

• shell node 3 = average of expanded nodes 3 and 7

• shell node 4 = average of expanded nodes 4 and 8

• shell node 5 = average of expanded nodes 9 and 13

• shell node 6 = average of expanded nodes 10 and 14

• shell node 7 = average of expanded nodes 11 and 15

• shell node 8 = average of expanded nodes 12 and 16

Element quantities, requested by *EL PRINT are stored in the integration
points of the expanded elements.

Default storage for quantities requested by the *NODE FILE and *EL FILE
is in the expanded nodes. This has the advantage that the true three-dimensional
results can be viewed in the expanded structure, however, the nodal numbering
is different from the shell nodes. By selecting OUTPUT=2D the results are
stored in the original shell nodes. The same averaging procedure applies as for
the *NODE PRINT command.

In thin structures two words of caution are due: the first is with respect to
reduced integration. If the aspect ratio of the beams is very large (slender beams,
aspect ratio of 40 or more) reduced integration will give you far better results
than full integration. However, due to the small thickness hourglassing can
readily occur, especially if point loads are applied. This results in displacements
which are widely wrong, however, the stresses and section forces are correct.
Usually also the mean displacements across the section are fine. If not, full
integration combined with smaller elements might be necessary. Secondly, thin
structures can easily exhibit large strains and/or rotations. Therefore, most
calculations require the use of the NLGEOM parameter on the *STEP card.
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6.2.15 Three-node membrane element (M3D3)

This element is similar to the S3 shell element except that it cannot sustain
bending. This is obtained by modelling hinges in each of the nodes of the
element. Apart from that, all what is said about the S3 element also ap-
plies here with one exception: instead of the *SHELL SECTION card the
*MEMBRANE SECTION card has to be used.

6.2.16 Four-node membrane element (M3D4 and M3D4R)

These elements are similar to the S4 and S4R shell elements, respectively, except
that they cannot sustain bending. This is obtained by modelling hinges in each
of the nodes of the elements. Apart from that, all what is said about the S4
and S4R elements also applies here with one exception: instead of the *SHELL
SECTION card the *MEMBRANE SECTION card has to be used.

6.2.17 Six-node membrane element (M3D6)

This element is similar to the S6 shell element except that it cannot sustain
bending. This is obtained by modelling hinges in each of the end nodes of
the element. Apart from that, all what is said about the S6 element also
applies here with one exception: instead of the *SHELL SECTION card the
*MEMBRANE SECTION card has to be used.

6.2.18 Eight-node membrane element (M3D8 and M3D8R)

These elements are similar to the S8 and S8R shell elements, respectively, except
that they cannot sustain bending. This is obtained by modelling hinges in each
of the end nodes of the elements. Apart from that, all what is said about the S8
and S8R elements also applies here with one exception: instead of the *SHELL
SECTION card the *MEMBRANE SECTION card has to be used.

6.2.19 Three-node plane stress element (CPS3)

This element is very similar to the three-node shell element. Figures 82 and
83 apply (just drop the middle nodes). For more information on plane stress
elements the reader is referred to the section on CPS8 elements.

6.2.20 Four-node plane stress element (CPS4 and CPS4R)

This element is very similar to the eight-node shell element. Figures 84 and
85 apply (just drop the middle nodes). The CPS4 and CPS4R elements are
expanded into C3D8 and C3D8R elements, respectively. For more information
on plane stress elements the reader is referred to the section on CPS8 elements.
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6.2.21 Six-node plane stress element (CPS6)

This element is very similar to the six-node shell element. Figures 82 and 83
apply. For more information on plane stress elements the reader is referred to
the next section.

6.2.22 Eight-node plane stress element (CPS8 and CPS8R)

The eight node plane stress element is a general purpose plane stress element.
It is actually a special case of shell element: the structure is assumed to have a
symmetry plane parallel to the x-y plane and the loading only acts in-plane. In
general, the z-coordinates are zero. Just like in the case of the shell element, the
plane stress element is expanded into a C3D20 or C3D20R element. Figures 84
and 85 apply. From the above premises the following conclusions can be drawn:

• The displacement in z-direction of the midplane is zero. This condition is
introduced in the form of SPC’s. MPC’s must not be defined in z-direction!

• The displacements perpendicular to the z-direction of nodes not in the
midplane is identical to the displacements of the corresponding nodes in
the midplane.

• The normal is by default (0,0,1)

• The thickness can vary. It can be defined in the same way as for the shell
element, except that the *SOLID SECTION card is used instead of the
*SHELL SECTION card.

• Different offsets do not make sense.

• Point loads are treated in a similar way as for shells.

The use of plane stress elements can also lead to knots, namely, if the thick-
ness varies in a discontinuous way, or if plane stress elements are combined with
other 1D or 2D elements such as axisymmetric elements. The connection with
the plane stress elements, however, is modeled as a hinge.

Distributed loading in plane stress elements is different from shell distributed
loading: for the plane stress element it is in-plane, for the shell element it is out-
of-plane. Distributed loading in plane stress elements is defined on the *DLOAD
card with the labels P1 up to P4. The number indicates the face as defined in
Figure 87.

If a plane stress element is connected to a structure consisting of 3D elements
the motion of this structure in the out-of-plane direction (z-direction) is not
restricted by its connection to the 2D elements. The user has to take care that
any rigid body motion of the structure involving the z-direction is taken care
of, if appropriate. This particularly applies to any springs connected to plane
stress elements, look at test example spring4 for an illustration.

Notice that structures containing plane stress elements should be defined in
the global x-y plane, i.e. z=0 for all nodes.
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Figure 87: Face numbering for quadrilateral elements
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6.2.23 Three-node plane strain element (CPE3)

This element is very similar to the three-node shell element. Figures 82 and
83 apply (just drop the middle nodes). For more information on plane strain
elements the reader is referred to the section on CPE8 elements.

6.2.24 Four-node plane strain element (CPE4 and CPE4R)

This element is very similar to the eight-node shell element. Figures 84 and
85 apply (just drop the middle nodes). The CPE4 and CPE4R elements are
expanded into C3D8 and C3D8R elements, respectively. For more information
on plane strain elements the reader is referred to the section on CPE8 elements.

6.2.25 Six-node plane strain element (CPE6)

This element is very similar to the six-node shell element. Figures 82 and 83
apply. For more information on plane strain elements the reader is referred to
the next section.

6.2.26 Eight-node plane strain element (CPE8 and CPE8R)

The eight node plane strain element is a general purpose plane strain element.
It is actually a special case of plane stress element: the treatise of Section 6.2.22
also applies here. In addition we have:

• The displacement in z-direction of all nodes (not only the mid-nodes) is
zero. This condition is introduced in the form of MPC’s, expressing that
the displacement in z-direction of nodes not in the midplane is identical
to the displacement of the corresponding nodes in the midplane.

• Different thicknesses do not make sense: one thickness applicable to all
plane strain elements suffices.

Plane strain elements are used to model a slice of a very long structure, e.g.
of a dam.

If a plane strain element is connected to a structure consisting of 3D elements
the motion of this structure in the out-of-plane direction (z-direction) is not
restricted by its connection to the 2D elements. The user has to take care that
any rigid body motion of the structure involving the z-direction is taken care
of, if appropriate. This particularly applies to any springs connected to plane
strain elements.

Notice that structures containing plane strain elements should be defined in
the global x-y plane, i.e. z=0 for all nodes.

6.2.27 Three-node axisymmetric element (CAX3)

This element is very similar to the three-node shell element. Figures 82 and
83 apply (just drop the middle nodes). For more information on axisymmetric
elements the reader is referred to the section on CAX8 elements.
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6.2.28 Four-node axisymmetric element (CAX4 and CAX4R)

This element is very similar to the eight-node shell element. Figures 84 and 85
apply (just drop the middle nodes). The CAX4 and CAX4R elements are ex-
panded into C3D8 and C3D8R elements, respectively. For more information on
axisymmetric elements the reader is referred to the section on CAX8 elements.

6.2.29 Six-node axisymmetric element (CAX6)

This element is very similar to the six-node shell element. Figures 82 and 83
apply. For more information on axisymmetric elements the reader is referred to
the next section.

6.2.30 Eight-node axisymmetric element (CAX8 and CAX8R)

This is a general purpose quadratic axisymmetric element. Just as the shell,
plane stress and plane strain element it is internally expanded into a C3D20 or
C3D20R element according to Figure 85 and the node numbering of Figure 84
applies.

For axisymmetric elements the coordinates of the nodes correspond to the ra-
dial direction (first coordinate) and the axial direction (second or y-coordinate).
The axisymmetric structure is expanded by rotation about the second coordi-
nate axis, half clockwise and half counterclockwise. The radial direction corre-
sponds to the x-axis in the 3D expansion, the axial direction with the y-axis.
The x-y plane cuts the expanded structure in half. The z-axis is perpendicular
to the x-y plane such that a right-hand-side axis system is obtained.

The same rules apply as for the plane strain elements, except that in-plane
conditions in a plane strain construction now correspond to radial plane condi-
tions in the axisymmetric structure. Expressed in another way, the z-direction
in plane strain now corresponds to the circumferential direction in a cylindrical
coordinate system with the y-axis as defining axis. Notice that nodes on the
x-axis are not automatically fixed in radial direction. The user has to take care
of this by using the *BOUNDARY card

Compared to plane strain elements, the following conditions apply:

• The expansion angle is fixed, its size is 2◦. The value on the line beneath
the *SOLID SECTION keyword, if any, has no effect.

• The displacements in cylindrical coordinates of all nodes not in the defin-
ing plane are identical to the displacements of the corresponding nodes in
the defining plane. This is formulated using MPC’s.

• Forces act in radial planes. They have to be defined for the complete
circumference, i.e. if you apply a force in a node, you first have to sum all
forces at that location along the circumference and then apply this sum
to the node.
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r

Figure 88: Disk with holes

• Concentrated heat fluxes act in radial planes. They have to be defined for
the complete circumference.

• Mass flow rates act in radial planes. They have to be defined for the
complete circumference.

• For distributed loading Figure 87 applies.

A special application is the combination of axisymmetric elements with plane
stress elements to model quasi-axisymmetric structures. Consider a circular disk
with holes along the circumference, Figure 88. Assume that the holes take up
k% of the circumferential width, i.e. if the center of the holes is located at
a radius r, the holes occupy 2πrk/100. Then, the structure is reduced to a
two-dimensional model by simulating the holes by plane stress elements with
width 2πr(100 − k)/100 and everything else by axisymmetric elements. More
sophisticated models can be devised (e.g. taking the volume of the holes into
account instead of the width at their center, or adjusting the material properties
as well [38]). The point here is that due to the expansion into three-dimensional
elements a couple of extra guidelines have to be followed:

• expanded plane stress and axisymmetric elements must have a small thick-
ness to yield good results: in the case of plane stress elements this is be-
cause a large thickness does not agree with the plane stress assumption,
in the case of axisymmetric elements because large angles yield bad re-
sults since the expansion creates only one layer of elements. CalculiX uses
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an expansion angle of 2◦, which amounts to π/90 radians. Consequently,
only 100/180% of the disk is modeled and the thickness of the plane stress
elements is (100−k)πr/9000. This is done automatically within CalculiX.
On the *SOLID SECTION card the user must specify the thickness of the
plane stress elements for 360◦, i.e. 2πr(100− k)/100.

• the point forces on the axisymmetric elements are to be given for the
complete circumference, as usual for axisymmetric elements.

• the point forces on the plane stress elements act on the complete circum-
ference.

• distributed loads are not affected, since they act on areas and/or volumes.

If an axisymmetric element is connected to a structure consisting of 3D
elements the motion of this structure in the circumferential direction is not
restricted by its connection to the 2D elements. The user has to take care that
any rigid body motion of the structure involving the circumferential direction is
taken care of, if appropriate. This particularly applies to any springs connected
to axisymmetric elements.

Notice that structures containing axisymmetric elements should be defined
in the global x-y plane, i.e. z=0 for all nodes.

6.2.31 Two-node 2D beam element (B21)

This element is internally replaced by a B31 element and is treated as such.

6.2.32 Two-node 3D beam element (B31 and B31R)

This element is very similar to the three-node beam element. Figures 89 and 90
apply (just drop the middle nodes). The B31 and B31R elements are expanded
into C3D8I and C3D8R elements, respectively. Since the C3D8R element has
only one integration point in the middle of the element, bending effect cannot
be taken into account. Therefore,the B31R element should not be used for
bending. For more information on beam elements the reader is referred to the
next section.

6.2.33 Three-node 3D beam element (B32 and B32R)

In CalculiX this is the general purpose beam element. The node numbering is
shown in Figure 89.

In each node a local Cartesian system t − n1 − n2 is defined. t is the
normalized local tangential vector, n1 is a normalized vector in the local 1-
direction and n2 is a normalized vector in the local 2-direction, also called the
normal. The local directions 1 and 2 are used to expand the beam element into
a C3D20 or C3D20R element according to Figure 90.

For each node of the beam element 8 new nodes are generated according to
the scheme on the right of Figure 90. These new nodes are used in the definition
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of the brick element, and their position is defined by the local directions together
with the thickness and offset in these directions.

The tangential direction follows from the geometry of the beam element.
The normal direction (2-direction) can be defined in two ways:

• either by defining the normal explicitly by using the *NORMAL keyword
card.

• if the normal is not defined by the *NORMAL card, it is defined implicitly
by n2 = t× n1

In the latter case, n1 can be defined either

• explicitly on the *BEAM SECTION card.

• implicitly through the default of (0,0,-1).

If a node belongs to more than one beam element, the tangent and the normal
is first calculated for all elements to which the node belongs. Then, the element
with the lowest element number in this set for which the normal was defined
explicitly using a *NORMAL card is used as reference. Its normal and tangent
are defined as reference normal and reference tangent and the element is stored
in a new subset. All other elements of the same type in the set for which the
normal and tangent have an angle smaller than 0.5◦ with the reference normal
and tangent and which have the same local thicknesses, offsets and sections are
also included in this subset. All elements in the subset are considered to have
the same normal and tangent. The normal is defined as the normed mean of all
normals in the subset, the same applies to the tangent. Finally, the normal is
slightly modified within the tangent-normal plane such that it is normal to the
tangent. This procedure is repeated until no elements are left with an explicitly
defined normal. Then, the element with the lowest element number left in the
set is used as reference. Its normal and tangent are defined as reference normal
and reference tangent and the element is stored in a new subset. All other
elements of the same type in the set for which the normal and tangent have an
angle smaller than 20◦ with the reference normal and tangent and which have
the same local thicknesses, offsets and sections are also included in this subset.
All elements in the subset are considered to have the same normal and tangent.
This normal is defined as the normed mean of all normals in the subset, the
same applies to the tangent. Finally, the normal is slightly modified within the
tangent-normal plane such that it is normal to the tangent. This procedure is
repeated until a normal and tangent have been defined in each element. Finally,
the 1-direction is defined by n1 = n2 × t.

If this procedure leads to more than one local coordinate system in one and
the same node, all expanded nodes are considered to behave as a knot with the
generating node as reference node. Graphically, the beam elements partially
overlap (Figure 91).

Consequently, a node leads to a knot if
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Figure 91: Overlapping beam elements at a knot
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• the direction of the local normals in the elements participating in the node
differ beyond a given amount. Notice that this also applies to neighboring
elements having the inverse normal. Care should be taken that the ele-
ments in beams are oriented in a consistent way to avoid the generation
of knots.

• several types of elements participate (e.g. shells and beams).

• the thickness is not the same in all participating elements.

• the offset is not the same in all participating elements.

• the section is not the same in all participating elements.

• a rotation or a moment is applied in the node (only for dynamic calcula-
tions)

Similarly to shells applied rotations or moments (bending moments, torques)
in static calculations are taken care of by the automatic generation of mean
rotation MPC’s.

Beam and shell elements are always connected in a stiff way if they share
common nodes. This, however, does not apply to plane stress, plane strain
and axisymmetric elements. Although any mixture of 1D and 2D elements
generates a knot, the knot is modeled as a hinge for any plane stress, plane
strain or axisymmetric elements involved in the knot. This is necessary to
account for the special nature of these elements (the displacement normal to
the symmetry plane and normal to the radial planes is zero for plane elements
and axisymmetric elements, respectively).

The section of the beam must be specified on the *BEAM SECTION key-
word card. It can be rectangular (SECTION=RECT), elliptical (SECTION=CIRC),
pipe-like (SECTION=PIPE) or box-like (SECTION=BOX). A circular cross
section is a special case of elliptical section, pipe and box sections are special
cases of a rectangular cross section obtained through appropriate integration
point schemes. For a rectangular cross section the local axes must be defined
parallel to the sides of the section, for an elliptical section they are parallel
to the minor and major axes of the section. The thickness of a section is the
distance between the free surfaces, i.e. for a circular section it is the diameter.

The thicknesses of the beam element (in 1- and 2-direction) can be defined
on the *BEAM SECTION keyword card. It applies to the complete element.
Alternatively, the nodal thicknesses can be defined in each node separately using
*NODAL THICKNESS. That way, a beam with variable thickness can be mod-
eled. Thicknesses defined by a *NODAL THICKNESS card take precedence
over thicknesses defined by a *BEAM SECTION card.

The offsets of a beam element (in 1- and 2-direction) can be set on the
*BEAM SECTION card. Default is zero. The unit of the offset is the beam
thickness in the appropriate direction. An offset of 0.5 means that the user-
defined beam reference line lies in reality on the positive surface of the expanded
beam (i.e. the surface with an external normal in direction of the local axis).
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The offset can take any real value. Consequently, it can be used to define
composite structures, such as a plate supported by a beam, or a I cross section
built up of rectangular cross sections.

The treatment of the boundary conditions for beam elements is straightfor-
ward. The user can independently fix any translational degree of freedom (DOF
1 through 3) or any rotational DOF (DOF 4 through 6). Here, DOF 4 is the
rotation about the global x-axis, DOF 5 about the global y-axis and DOF 6
about the global z-axis. No local coordinate system should be defined in nodes
with constrained rotational degrees of freedom. A hinge is defined by fixing the
translational degrees of freedom only.

For an internal hinge between 1D or 2D elements the nodes must be doubled
and connected with MPC’s. The connection between 3D elements and all other
elements (1D or 2D) is always hinged.

Point forces defined in a beam node are not modified if a knot is generated
(the reference node is the beam node). If no knot is generated, the point load
is divided among the expanded nodes according to a 1/4-1/4-1/4-1/4 ratio for
a beam mid-node and a (-1/12)-(1/3)-(-1/12)-(1/3)-(-1/12)-(1/3)-(-1/12)-(1/3)
ratio for a beam end-node. Concentrated bending moments or torques are
defined as point loads (*CLOAD) acting on degree four to six in the node.
Their use generates a knot in the node.

Distributed loading can be defined by the labels P1 and P2 in the *DLOAD
card. A positive value corresponds to a pressure load in direction 1 and 2,
respectively.

In addition to a temperature for the reference surface of the beam, a tem-
perature gradient in 1-direction and in 2-direction can be specified on the
*TEMPERATURE. Default is zero.

Concerning the output, nodal quantities requested by the keyword *NODE PRINT
are stored in the beam nodes. They are obtained by averaging the nodal values
of the expanded element. For instance, the value in local beam node 1 are ob-
tained by averaging the nodal value of expanded nodes 1, 4, 5 and 8. Similar
relationships apply to the other nodes:

• beam node 1 = average of expanded nodes 1,4,5 and 8

• beam node 2 = average of expanded nodes 9,11,13 and 15

• beam node 3 = average of expanded nodes 2,3,6 and 7

Element quantities, requested by *EL PRINT are stored in the integration
points of the expanded elements.

Default storage for quantities requested by the *NODE FILE and *EL FILE
is in the expanded nodes. This has the advantage that the true three-dimensional
results can be viewed in the expanded structure, however, the nodal numbering
is different from the beam nodes. By using the OUTPUT=2D parameter in the
first step one can trigger the storage in the original beam nodes. The same av-
eraging procedure applies as for the *NODE PRINT command. Section forces
can be requested by means of the parameter SECTION FORCES. If selected,
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the stresses in the beam nodes are replaced by the section forces. They are
calculated in a local coordinate system consisting of the 1-direction n1, the 2-
direction n2 and 3-direction or tangential direction t (Figure 90). Accordingly,
the stress components now have the following meaning:

• xx: Shear force in 1-direction

• yy: Shear force in 2-direction

• zz: Normal force

• xy: Torque

• xz: Bending moment about the 2-direction

• yz: Bending moment about the 1-direction

The section forces are calculated by a numerical integration of the stresses
over the cross section. To this end the stress tensor is needed at the integration
points of the cross section. It is determined from the stress tensors at the nodes
belonging to the cross section by use of the shape functions. Therefore, if the
section forces look wrong, look at the stresses in the expanded beams (omitting
the SECTION FORCES and OUTPUT=2D parameter).

For all elements different from beam elements the parameter SECTION
FORCES has no effect.

In thin structures two words of caution are due: the first is with respect to
reduced integration. If the aspect ratio of the shells is very large (slender shells)
reduced integration will give you far better results than full integration. In
order to avoid hourglassing a 2x5x5 Gauss-Kronrod integration scheme is used
for B32R-elements with a rectangular cross section. This scheme contains the
classical Gauss scheme with reduced integration as a subset. The integration
point numbering is shown in Figure 92. For circular cross sections the regular
reduced Gauss scheme is used. In the rare cases that hourglassing occurs the
user might want to use full integration with smaller elements. Secondly, thin
structures can easily exhibit large strains and/or rotations. Therefore, most
calculations require the use of the NLGEOM parameter on the *STEP card.

6.2.34 Two-node 2D truss element (T2D2)

This element is internally replaced by a T3D2 element and is treated as such.

6.2.35 Two-node 3D truss element (T3D2)

This element is similar to the B31 beam element except that it cannot sustain
bending. This is obtained by inserting hinges in each node of the element.
Apart from this all what is said about the B31 element also applies to the
T3D2 element with one exception: instead of the *BEAM SECTION card the
*SOLID SECTION card has to be used.
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Figure 92: Gauss-Kronrod integration scheme for B32R elements with rectan-
gular cross section
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6.2.36 Three-node 3D truss element (T3D3)

This element is similar to the B32 beam element except that it cannot sustain
bending. This is obtained by inserting hinges in each end node of the element.
Apart from this all what is said about the B32 element also applies to the
T3D3 element with one exception: instead of the *BEAM SECTION card the
*SOLID SECTION card has to be used.

6.2.37 Three-node network element (D)

This is a general purpose network element used in forced convection applications.
It consists of three nodes: two corner nodes and one midside node. The node
numbering is shown in Figure 89. In the corner nodes the only active degrees of
freedom are the temperature degree of freedom (degree of freedom 11) and the
pressure degree of freedom (degree of freedom 2). These nodes can be used in
forced convection *FILM conditions. In the middle node the only active degree
of freedom is degree of freedom 1, and stands for the mass flow rate through
the element. A positive mass flow rate flows from local node 1 to local node
3, a negative mass flow rate in the reverse direction. It can be defined using
a *BOUNDARY card for the first degree of freedom of the midside node of
the element. Fluid material properties can be defined using the *MATERIAL,
*FLUID CONSTANTS and *SPECIFIC GAS CONSTANT cards and assigned
by the *FLUID SECTION card.

network elements form fluid dynamic networks and should not share any
node with any other type of element. Basically, analyses involving fluid dynamic
networks belong to one of the following two types of calculations:

• Pure thermomechanical calculations. In that case the mass flow in all ele-
ments of the network is known and the only unknowns are the temperature
(in the network and the structure) and displacements (in the structure).
This mode is automatically activated if all mass flows are specified using
boundary cards. In that case, pressures in the network are NOT calcu-
lated. Furthermore, the type of network element is not relevant and should
not be specified.

• Fully coupled calculations involving fluid thermodynamical calculations
with structural thermomechanical calculations. This mode is triggered if
the mass flow in at least one of the network elements is not known. It
requires for each network element the specification of its fluid section type.

The available types of fluid sections are listed in subsection 6.4 and 6.5.
Notice that three-node network elements are one-dimensional and can ac-

count for two- or three-dimensional effects in the fluid flow only to a limited
degree.

A special kind of network element is one in which one of the corner nodes
is zero (also called a dummy network element). This type is element is used
at those locations where mass flow enters or leaves the network. In this case
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Figure 93: Definition of a GAPUNI element

the corner node which is not connected to any other network element gets the
label zero. This node has no degrees of freedom. The degree of freedom 1 of
the midside node corresponds to the entering or leaving mass flow.

6.2.38 Two-node unidirectional gap element (GAPUNI)

This is a standard gap element defined between two nodes. The clearance d
of the gap and its direction n are defined by using the *GAP card. Let the
displacement vector of the first node of the GAPUNI element be u1 and the
displacement vector of the second node u2. Then, the gap condition is defined
by (Figure 93):

d+ n · (u2 − u1) ≥ 0. (14)

6.2.39 Two-node 3-dimensional dashpot (DASHPOTA)

The dashpot element is defined between two nodes (Figure 94). The force in
node 2 amounts to:

F2 = −c
[
(v2 − v1) ·

(x2 − x1)

L

]
(x2 − x1)

L
(15)

where c is the dashpot coefficient, v is the velocity vector, x is the actual
location of the nodes and L is the actual distance between them. Notice that
F1 = −F2. Right now, only linear dashpots are allowed, i.e. the dashpot
coefficient is constant (i.e. it does not depend on the relative velocity. However,
it can depend on the temperature). It is defined using the *DASHPOT keyword
card.

The two-node three-dimensional dashpot element is considered as a genuine
three-dimensional element. Consequently, if it is connected to a 2D element
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Figure 94: Definition of a DASHPOTA element

with special restraints on the third direction (plane stress, plane strain or ax-
isymmetric elements) the user has to take care that the third dimension does
not induce rigid body motions in the dashpot nodes.

The dashpot element can only be used in linear dynamic calculations char-
acterized by the *MODAL DYNAMIC keyword card.

6.2.40 One-node 3-dimensional spring (SPRING1)

This is a spring element which is attached to only one node. The direction n in
which the spring acts has to be defined by the user underneath the *SPRING
keyword card by specifying the appropriate degree of freedom. This degree of
freedom can be local if the ORIENTATION parameter is used on the *SPRING
card. If u is the displacement in the spring node and K is the spring constant,
the force is obtained by:

F = K(u · n)n. (16)

A nonlinear spring can be defined by specifying a piecewise linear force versus
elongation relationship (underneath the *SPRING card).

6.2.41 Two-node 3-dimensional spring (SPRING2)

This is a spring element which is attached to two nodes (Figure 95). The
directions n1 and n2 determining the action of the spring have to be defined by
the user underneath the *SPRING keyword card by specifying the appropriate
degrees of freedom. These degrees of freedom can be local if the ORIENTATION
parameter is used on the *SPRING card. Usually, it does not make sense to
take a different degree of freedom in node 1 and node2. If u1 is the displacement
in node 1 (and similar for node 2) and K is the spring constant, the force in
node 1 is obtained by:

F1 = K[(u1 · n1)n1 − (u2 · n2)n1], (17)

and the force in node 2 by:

F2 = −K[(u1 · n1)n2 − (u2 · n2)n2]. (18)

A nonlinear spring can be defined by specifying a piecewise linear force versus
elongation relationship (underneath the *SPRING card).
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Figure 95: Definition of a SPRINGA element

6.2.42 Two-node 3-dimensional spring (SPRINGA)

This is a spring element defined between two nodes (Figure 95). The force
needed in node 2 to extend the spring with original length L0 to a final length
L is given by:

F = k(L− L0)n, (19)

where k is the spring stiffness and n is a unit vector pointing from node 1 to
node 2. The force in node 1 is −F . This formula applies if the spring stiffness
is constant. It is defined using the *SPRING keyword card. Alternatively, a
nonlinear spring can be defined by providing a graph of the force versus the
elongation. In calculations in which NLGEOM is active (nonlinear geometric
calculations) the motion of nodes 1 and 2 induces a change of n.

The two-node three-dimensional spring element is considered as a genuine
three-dimensional element. Consequently, if it is connected to a 2D element
with special restraints on the third direction (plane stress, plane strain or ax-
isymmetric elements) the user has to take care that the third dimension does not
induce rigid body motions in the spring nodes. An example of how to restrain
the spring is given in test example spring4.

Note that a spring under compression, if not properly restrained, may change
its direction by 180◦, leading to unexpected results. Furthermore, for nonlinear
springs, it does not make sense to extend the force-elongation curve to negative
elongation values ≤ L0.

6.2.43 One-node coupling element (DCOUP3D)

This type is element is used to define the reference node of a distributing cou-
pling constraint (cf. *DISTRIBUTING COUPLING). The node should not
belong to any other element. The coordinates of this node are immaterial.

6.2.44 One-node mass element (MASS)

This element is used to define nodal masses. The topology description consists
of the one node in which the mass is applied. The size of the mass is defined
using the *MASS card.

6.2.45 User Element (Uxxxx)

The user can define his/her own elements. In order to do so he/she has to:
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• Give a name to the element. The name has to start with “U” followed by
maximal 4 characters. Any character from the ASCII character set can
be taken, but please note that lower case characters are converted into
upper case by CalculiX. Consequently, “Ubeam” and “UBEam” are the
same name. This reduces the character set from 256 to 230 characters.

• specify the number of integration points within the element (maximum
256), the number of nodes belonging to the element (maximum 256) and
the number of degrees of freedom in each node (maximum 256) by using
the *USER ELEMENT keyword card.

• write a FORTRAN subroutine resultsmech uxxxx.f calculating the sec-
ondary variables (usually strains, stresses, internal forces) from the pri-
mary variables (= the solution of the equation system, usually displace-
ments, rotations....). Add a call to this routine in resultsmech u.f

• write a FORTRAN subroutine e c3d uxxxx.f calculating the element stiff-
ness matrix and the element external force vector (and possibly the ele-
ment mass matrix). Add a call to this routine in e c3d u.f

• write a FORTRAN subroutine extrapolate uxxxx.f calculating the value
of the secondary variables (usually strains, stresses..) at the nodes based
on their values at the integration points within the element. Add a call
to this routine in extrapolate u.f

An example for a 3D Timoshenko beam element (for static linear elastic
calculations and small deformations) according to [92] is implemented as element
“U1” in CalculiX. It is used in example userbeam.inp in the test suite. The
reader is referred to files resultsmech u1.f, e c3d u1.f and extrapolate u1.f for
details on how a user elements is coded.

6.3 Beam Section Types

A beam element is characterized by its cross section. This cross section is
defined by a *BEAM SECTION card. All beam sections which are not rect-
angular (including square) or elliptical (including circular) are considered as
“beam general sections” and are internally expanded into a rectangular cross
section (C3D20R-type element) and the actual section of the beam is simulated
by an appropriate integration point scheme. A section type is characterized by
a finite number of parameters, which must be entered immediately underneath
the *BEAM SECTION card. A new section type can be added by changing the
following routines:

• allocation.f (define the new section underneath the *BEAMSECTION if-
statement)

• calinput.f (define the new section underneath the *BEAMSECTION if-
statement)
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Figure 96: Geometry of the box

• beamgeneralsections.f (here, the one-letter abbreviation for the section has
to be added. For instance, the pipe section is characterized by ’P’. Fur-
thermore, the programmer must define the number of parameters needed
to characterize the section).

• beamintscheme.f (here, the integration point scheme has to be defined)

• beamextscheme.f (here, the extrapolation of the integration point variables
such as stresses or strains to the nodes of the expanded C3D20R element).

Right now, the following section types are available:

6.3.1 Pipe

The pipe section is circular and is characterized by its outer radius and its
thickness (in that order). There are 8 integration points equally distributed
along the circumference. In local coordinates, the radius at which the integration
points are located is

√
(ξ2 + 1)/2, where ξ = r/R, r being the inner radius and

R the outer radius. The weight for each integration point is given by π∗(1−ξ2)/8
[12].

6.3.2 Box

The Box section (contributed by O. Bernhardi) is simulated using a ’parent’
beam element of type B32R.

The outer cross sections are defined by a and b, the wall thicknesses are t1,
t2, t3 and t4 and are to be given by the user (Figure 96).

The cross-section integration is done using Simpson’s method with 5 inte-
gration points for each of the four wall segments. Line integration is performed;
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therefore, the stress gradient through an individual wall is neglected. Each wall
segment can be assigned its own wall thickness.

The integration in the beam’s longitudinal direction ξ is done using the usual
Gauss integration method with two stations; therefore, the element has a total
of 32 integration points.

From the figure, we define, for example, the local coordinates of the first
integration point

ξ1 = − 1√
3
; η1 = 1− t4

b
; ζ1 = 1− t1

a
(20)

The other three corner points are defined correspondingly. The remaining
points are evenly distributed along the center lines of the wall segments. The
length p and q of the line segments, as given w.r.t. the element intrinsic coor-
dinates η and ζ, can now be calculated as

p = 2− t1
a

− t3
a
; q = 2− t2

b
− t4

b
; (21)

An integral of a function f(η, ζ), over the area Ω of the hollow cross section
and evaluated w.r.t the natural coordinates η, ζ, can be approximated by four
line integrals, as long as the line segments Γ1, Γ2, Γ3 and Γ4 are narrow enough:

∫

Ω

f(η, ζ)dΩ ≈

2t1
a

∫
f (η(Γ1), ζ) dΓ1 +

2t2
b

∫
f (η, ζ(Γ2)) dΓ2 +

2t3
a

∫
f (η(Γ3), ζ) dΓ3 +

2t4
b

∫
f (η), ζ(Γ4)) dΓ4 (22)

According to Simpson’s rule, the integration points are spaced evenly along
each segment. For the integration weights we get, for example, in case of the
first wall segment

wk = {1, 4, 2, 4, 1} q
12

(23)

Therefore, we get, for example, for corner Point 1

w1 =
1

6

t1
a
q +

1

6

t4
b
p (24)

and for Point 2

w2 =
4

6

t1
a
q (25)

The resulting element data (stresses and strains) are extrapolated from the
eight corner integration points (points 1,5,9 and 13) from the two Gauss integra-
tion stations using the shape functions of the linear 8-node hexahedral element.
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Remarks

• The wall thickness are assumed to be small compared to the outer cross
section dimensions.

• The bending stiffnesses of the individual wall segments about their own
neutral axes are completely neglected due to the line integral approach.

• Torsion stiffness is governed to a large extent by warping of the cross
section which in turn can only be modelled to a limited extent by this
type of element.

• Modelling of U or C profiles is also possible by setting one of the wall
thicknesses to zero. Modelling L sections however, by setting the wall
thickness of two segments to zero, will probably cause spurious modes.

6.3.3 General

The general section can only be used for user element type U1 and is defined
by the following properties (to be given by the user in that order):

• cross section area A

• moment of inertia I11

• moment of inertia I12

• moment of inertia I22

• Timoshenko shear coefficient k

Furthermore, the specification of the 1-direction (cf. third line in the *BEAM SECTION
definition) is REQUIRED for this type of section. Internally, the properties are
stored in the prop-array in the following order:

• cross section area A

• moment of inertia I11

• moment of inertia I12

• moment of inertia I22

• Timoshenko shear coefficient k

• global x-coordinate of a unit vector in 1-direction

• global y-coordinate of a unit vector in 1-direction

• global z-coordinate of a unit vector in 1-direction

• offset1

• offset2

In the present implementation of the U1-type element I12, offset1 and offset2
have to be zero.
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6.4 Fluid Section Types: Gases

Before introducing the fluid section types for gases, a couple of fundamental
aerodynamic equations are introduced. For details, the reader is referred to
[59]. The thermodynamic state of a gas is usually determined by the static
pressure p, the static temperature T and the density ρ. For an ideal gas (the
case considered here), they are related by p = ρrT (the ideal gas equation),
where r is the specific gas constant. r only depends on the material, it does not
depend on the temperature.

The energy conservation law runs like [19]:

ρ
Dε

Dt
= vk,ltkl − pvk,k − qk,k + ρhθ, (26)

where D denotes the total derivative. By use of the mass conservation:

∂ρ

∂t
+ (ρvk),k = 0 (27)

and the conservation of momentum

ρ

(
∂vk
∂t

+ vk,lvl

)
= tkl,l − p,k + ρfk (28)

this equation can also be written as

ρ
D[ε+ vkvk/2]

Dt
= (vktkl),l − (pvk),k + ρvkfk − qk,k + ρhθ, (29)

or

ρ
D[h+ vkvk/2]

Dt
= (vktkl),l +

∂p

∂t
+ ρvkfk − qk,k + ρhθ, (30)

where h = ε+ p/ρ is the entalpy. For an ideal gas one can write h = cpT , cp is
the heat capacity at constant pressure.

The total temperature Tt is now defined as the temperature which is obtained
by slowing down the fluid to zero velocity in an adiabatic way. Using the energy
equation (30), dropping the first term on the right hand side because of ideal
gas conditions (no viscosity), the second term because of stationarity, the third
term because of the absence of volumetric forces and the last two terms because
of adiabatic conditions one obtains the relationship:

ρ
D[cpT + vkvk/2]

Dt
= 0, (31)

along a stream line (recall that the meaning of the total derivative DX/Dt is
the change of X following a particle), from which

Tt = T +
v2

2cp
, (32)

where v is the magnitude of the velocity. The Mach number is defined by
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M =
v√
κrT

, (33)

where κ is the specific heat ratio and the denominator is the speed of sound.
Therefore, the total temperature satisfies:

Tt = T (1 +
κ− 1

2
M2). (34)

The total pressure is defined as the pressure which is attained by slowing
down the fluid flow in an isentropic way, i.e. a reversible adiabatic way. An
ideal gas is isentropic if p1−κT κ is constant, which leads to the relationship

pt
p

=

(
Tt
T

) κ
κ−1

, (35)

and consequently to

pt = p(1 +
κ− 1

2
M2)

κ
κ−1 . (36)

Substituting the definition of mass flow ṁ = ρAv, where A is the cross
section of the fluid channel, in the definition of the Mach number (and using
the ideal gas equation to substitute ρ) leads to

M =
ṁ
√
rT

Ap
√
κ
. (37)

Expressing the pressure and temperature as a function of the total pressure
and total temperature, respectively, finally leads to

ṁ
√
rTt

Apt
√
κ

=M

(
1 +

κ− 1

2
M2

)− (κ+1)
2(κ−1)

. (38)

This is the general gas equation, which applies to all types of flow for ideal gases.
The left hand side is called the corrected flow. The right hand side exhibits a
maximum for M = 1, i.e. sonic conditions.

It is further possible to derive general statements for isentropic flow through
network elements. Isentropic flow is reversible adiabatic by definition. Due to
the adiabatic conditions the total enthalpy ht = cpTt is constant or

dh+ vdv = 0. (39)

The first law of thermodynamics (conservation of energy) specifies that

dε = δq + δw, (40)

or, because of the adiabatic and reversible conditions

dε = −pd
(
1

ρ

)
. (41)
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Since the enthalpy h = ε+ p/ρ, one further obtains

dh = dp/ρ. (42)

Substituting this in the equation we started from leads to:

dp = −ρvdv. (43)

The continuity equation through a network element with cross section A,
ρvA = constant can be written in the following differential form:

dρ

ρ
+
dv

v
+
dA

A
= 0, (44)

or, with the equation above

dρ

ρ
− dp

ρv2
+
dA

A
= 0, (45)

which leads to

dA

A
=

dp

ρv2
− dρ

ρ
=

dp

ρv2


1− v2(

dp
dρ

)


 . (46)

Since
√

dp
dρ is the speed of sound (use the isentropic relation p ∝ ρκ and the

ideal gas equation p = ρrT to arrive at dp/dρ = κrT = c2), one arives at:

dA

A
=

dp

ρv2
(1−M2) = −dv

v
(1−M2). (47)

Therefore, for subsonic network flow an increasing cross section leads to
a decreasing velocity and an increasing pressure, whereas a decreasing cross
section leads to an increasing velocity and a decreasing pressure. This is similar
to what happens for incompressible flow in a tube.

For supersonic flow an increasing cross section leads to an increasing ve-
locity and a decreasing pressure whereas a decreasing cross section leads to a
decreasing velocity and an increasing pressure.

Sonic conditions can only occur if dA = 0, in reality this corresponds to
a minimum of the cross section. Therefore, if we assume that the network
elements are characterized by a uniformly increasing or decreasing cross section
sonic conditions can only occur at the end nodes. This is important information
for the derivation of the specific network element equations.

Using the definition of entropy per unit mass s satisfying Tds = δq and the
definition of enthalpy the first law of thermodynamics for reversible processes
runs like

dh = Tds+
dp

ρ
. (48)
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Therefore

ds =
dh

T
− dp

ρT
. (49)

.

For an ideal gas dh = cp(T )dT and p = ρrT and consequently

ds = cp(T )
dT

T
− r

dp

p
(50)

or

s2 − s1 =

∫ T2

T1

cp(T )
dT

T
− r ln

p2
p1
. (51)

Since all variables in the above equation are state variables, it also applies
to irreversible processes. If the specific heat is temperature independent one
obtains

s2 − s1 = cp ln
T2
T1

− r ln
p2
p1
, (52)

linking the entropy difference between two states to the temperature and
pressure difference.

Typical material properties needed for a gas network are the specific gas
constant r (*SPECIFIC GAS CONSTANT card), the heat capacity at constant
pressure cp and the dynamic viscosity µ (both temperature dependent and to
be specified with the FLUID CONSTANTS card).

A special case is the purely thermal gas network. This applies if:

• no TYPE is specified on any *FLUID SECTION card or

• the parameter THERMAL NETWORK is used on the *STEP card or

• all mass flow is given and either all pressures or given or none.

In that case only cp is needed.

A network element is characterized by a type of fluid section. It has to be
specified on the *FLUID SECTION card unless the analysis is a pure thermo-
mechanical calculation. For gases, several types are available. At the start of the
description of each type the main properties are summarized: “adiabatic” means
that no heat is exchanged within the element; “isentropic” refers to constant
entropy, i.e. flow without losses; “symmetric” means that the same relations
apply for reversed flow; “directional” means that the flow is not allowed to be
reversed.
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Figure 97: Geometry of the orifice fluid section

6.4.1 Orifice

Properties: adiabatic, not isentropic, symmetric only if physically symmetric
(i.e. same corner radius, corner angle etc.), else directional.

The geometry of the orifice fluid section is shown in Figure 97. The axis
of the orifice goes through the center of gravity of the cross section A and is
parallel to the side walls. The orifice is allowed to rotate about an axis parallel
to the orifice axis and can be preceded by a swirl generating device such as
another orifice, a bleed tapping or a preswirl nozzle.

The orifice element is characterized by an end node well upstream of the
smallest section A (let’s call this position 1) and an end node 2 well downstream
of the smallest section (position 2). The smallest section of the gas stream is
called position m. This may be smaller than A due to a contraction of the gas
and will be written as CdA,Cd ≤ 1.

In between position 1 and m the flow is assumed to be isentropic, conse-
quently

• the mass flow (ṁ) is constant

• the total temperature ( κ
κ−1

p
ρ + v2

2 ) is constant

• p/ρκ is constant

where p is the static pressure. Furthermore v1 ≪ vm is assumed, since the cross
section at position 1 is assumed to be large and consequently pt1 = p1, Tt1 = T1.

In between position m and 2 the flow is assumed to be adiabatic, however, all
kinetic energy from position m is assumed to be lost due to turbulence. Hence:

• the mass flow (ṁ) is constant
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• the total temperature is constant

• pt at position 2 is equal to p at position m.

Combining this leads to the following equation:

ṁ
√
rTt1

CdApt1
√
κ
=

√√√√ 2

κ− 1

(
pt2
pt1

) 2
κ

(
1−

(
pt2
pt1

)κ−1
κ

)
. (53)

Let us assume that
pt2
pt1

is being slowly decreased starting from 1. Then

the above equation will result in a steadily increasing mass flow rate up to a
maximum at (Figure 98)

pt2
pt1

=

(
2

κ+ 1

) κ
κ−1

, (54)

after which the mass flow rate starts to decrease again [62]. In reality, the de-
crease does not happen and the mass flow rate remains constant. Indeed, at
maximum corrected flow sonic conditions are reached (so-called critical condi-
tions). For lower values of

pt2
pt1

the flow is supersonic, which means that waves

cannot travel upstream. Therefore, the information that the pressure ratio has
decreased below the critical ratio cannot travel opstream and the critical cor-
rected flow persists throughout. Consequently, for

pt2
pt1

≤
(

2

κ+ 1

) κ
κ−1

, (55)

Equation (53) is replaced by

ṁ
√
rTt1

CdApt1
√
κ
=

√(
κ+ 1

2

)− κ+1
κ−1

. (56)

The orifice element is characterized by the following constants (to be speci-
fied in that order on the line beneath the *FLUID SECTION card):

• the cross section A.

• the orifice diameter d (not needed for Cd = 1).

• the length L (not needed for Cd = 1).

• the inlet corner radius r (mutually exclusive with α; not needed for Cd =
1).

• the inlet corner angle α in ◦ (mutually exclusive with r; not needed for
Cd = 1).

• the orifice-to-upstream pipe diameter ratio β = d/D (only for TYPE=ORIFICE PK MS).
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Figure 98: Theoretical and choking behavior of the orifice

• the rotational velocity v, if the orifice is part of a rotating structure (not
needed for Cd = 1).

• a reference network element (not needed for Cd = 1).

Depending on the orifice geometry, an inlet corner radius or an inlet corner
angle (chamfered inlet) should be selected. They are mutually exclusive. The
corrections for a chamfered inlet are taken from [30].

The last constant, i.e. the number of a reference network element, is neces-
sary in case a rotating structure is preceded by a network element which diverts
the upstream air velocity from the axial (i.e. in the direction of the axis of
the orifice) direction (such as a preswirl nozzle). In that case, the rotational
velocity of the orifice has to be corrected by the circumferential component of
the velocity at the exit of the preceding element.

Notice that the only effect of all constants following the cross section is to
change the discharge coefficient Cd. Its calculation can be performed according
to different formulas. This is selected by the TYPE parameter:

• TYPE=ORIFICE CD1 or just TYPE=ORIFICE: Cd = 1.

• TYPE=ORIFICE MS MS: Basis formula by McGreehan and Schotsch,
rotational correction by McGreehan and Schotsch [49].

• TYPE=ORIFICE PK MS: Basis formula by Parker and Kercher [65], ro-
tational correction by McGreehan and Schotsch [49].
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Figure 99: Geometry of the bleed tapping fluid section

Example files: linearnet, vortex1.

6.4.2 Bleed Tapping

A bleed tapping device is a special kind of static orifice (Figure 99), used to
divert part of the main stream flow. The geometry can be quite complicated
and the discharge coefficient should be ideally determined by experiments on
the actual device. The basic equations are the same as for the orifice, only the
discharge coefficient is different.

The discharge coefficients provided by CalculiX are merely a rough estimate
and are based on [41]. For this purpose the bleed tapping device must be
described by the following constants (to be specified in that order on the line
beneath the *FLUID SECTION, TYPE=BLEED TAPPING card):

• the cross section A.

• the ratio of the upstream static pressure to the upstream total pressure
ps1/pt1 .

• the number of a curve.

Right now, two curves are coded: curve number 1 corresponds to a tapping
device with lip, curve number 2 to a tapping device without lip. More specific
curves can be implemented by the user, the appropriate routine to do so is
cd bleedtapping.f. Alternatively, the user can enter an own curve in the input
deck listing Y = Cd versus X = (1 − ps2/pt1)/(1 − ps1/pt1). In that case the
input reads

• the cross section A.

• the ratio of the upstream static pressure to the upstream total pressure
ps1/pt1 .
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Figure 100: Geometry of the preswirl nozzle fluid section and the orifice it serves

• not used

• not used (internally: number of pairs)

• X1.

• Y1.

• X2.

• Y2.

• .. (maximum 16 entries per line; maximum of 18 pairs in total)

6.4.3 Preswirl Nozzle

A preswirl nozzle is a special kind of static orifice (Figure 100), used to impart
a tangential velocity to gas before it enters a rotating device. That way, the
loss due to the difference in circumferential velocity between the air entering the
rotating device and the rotating device itself can be decreased. In the Figure
vrot is the rotational velocity of the orifice the preswirl nozzle is serving, vabs is
the absolute velocity of the air leaving the preswirl nozzle and vrel is its velocity
as seen by an observer rotating with the orifice (the so-called relative velocity).
The velocity entering the calculation of the discharge coefficient of the rotating
orifice is the tangential component v of the velocity of the rotating device as
seen by the air leaving the preswirl nozzle (which is −vrel). This velocity can
be modified by a multiplicative factor kφ.

The geometry of a preswirl nozzle can be quite complicated and the discharge
coefficient should be ideally determined by experiments on the actual device.
The basic equations are the same as for the orifice.

The discharge coefficients provided by CalculiX are merely a rough estimate
and are based on [41]. For this purpose the preswirl nozzle must be described
by the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=PRESWIRL NOZZLE card):

• the cross section A.
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• θ (Figure 100) in o.

• kφ.

• the number of a curve (0 for the predefined curve).

• not used (internally: circumferential velocity at the outlet)

The angle at the exit of the nozzle is used to determine the circumferential
velocity of the gas leaving the nozzle. This is stored for use in the (rotating)
device following the nozzle. The curve number can be used to distinguish be-
tween several measured curves. Right now, only one curve is coded (number =
0 to select this curve). More specific curves can be implemented by the user,
the appropriate routine to do so is cd preswirlnozzle.f. Alternatively, the user
can enter an own curve in the input deck listing Y = Cd versus X = ps2/pt1 .
In that case the input reads

• the cross section A.

• θ (Figure 100) in o.

• kφ.

• not used.

• not used (internally: circumferential velocity at the outlet).

• not used (internally: number of pairs).

• X1.

• Y1.

• X2.

• Y2.

• .. (maximum 16 entries per line; maximum 17 pairs in total)

Example files: moehring, vortex1, vortex2, vortex3.

6.4.4 Straight and Stepped Labyrinth

A labyrinth is used to prevent the gas from leaking through the space between a
rotating and a static device and thus reducing the efficiency. The leaking air is
trapped in the successive stages of a labyrinth. It can be straight (Figure 101)
or stepped (Figure 102). A stepped labyrinth is used if the gas is compressed or
expanded, leading to a decreasing and increasing diameter of the rotating device,
respectively. In a stepped labyrinth the static device (hatched in Figures 101
and 102) is usually covered by a honeycomb structure.
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Figure 101: Geometry of straight labyrinth

A LABYRINTH can be single (only one spike) or multiple (more than one
spike). Only in the latter case the distinction between a straight and stepped
labyrinth makes sense. Therefore, there are three kinds of labyrinths: single,
straight or stepped.

The geometry of a labyrinth can be fixed or flexible during a calculation.
For a fixed geometry the gap distance s is constant. For a flexible geometry
this gap is defined as the radial distance between two nodes (this feature only
works if the structure is defined as in the presence of axisymmetric elements, i.e.
the global x-axis is the radial direction, the global y-axis is the axial direction).
These nodes have to be genuine structural nodes and should not belong to the
fluid network. In a thermomechanical calculation this distance can vary during
the computation. Whether the geometry is fixed or flexible is defined by the
TYPE parameter.

The formula governing the flow through a labyrinth has been derived in [20]
and for the discharge coefficients use was made of [49], [45], [14] and [99]. It
runs like

ṁ
√
rTt1

Apt1
= λ

√√√√√√
1−

(
pt2
pt1

)2

n− ln
(
pt2
pt1

) , (57)

where λ = 1 for n = 1 and

λ =

√√√√√

(
n
n−1

)

1−
(
n−1
n

) ( s/t
s/t+0.02

) (58)

for n > 1 is called the carry-over factor. The meaning of the paramters n, s
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Figure 102: Geometry of stepped labyrinth

and t is explained underneath. Equation (57) has a similar form as the orifice
equation, i.e. for small downstream pressures the flow becomes supersonic and
choking occurs. To determine the pressure ration x =

pt2
pt1

at which choking

occurs the following implicit equation has to be solved:

x
√

1 + 2n− lnx2 = 1. (59)

The equations used in the code are slightly more complicated, making use
of the other parameters (r, X , Hst...) as well.

A fixed labyrinth is described by the following parameters (to be specified
in that order on the line beneath the *FLUID SECTION, TYPE=LABYRINTH
SINGLE, TYPE=LABYRINTH STRAIGHT or TYPE=LABYRINTH STEPPED
card):

• t: distance between two spikes (only for more than 1 spike)

• s: gap between the top of the spike and the stator

• not used

• D: Diameter of the top of the spike (for the stepped labyrinth a mean
value should be used; the diameter is needed to calculate the fluid cross
section as πDs).

• n: number of spikes

• b: width of the top of the spike

• h: height of the spike measured from the bottom of the chamber

• L: width of a honeycomb cell
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• r: edge radius of a spike

• X: distance between the spike and the next step (only for more than 1
spike)

• Hst: height of the step (only for a stepped labyrinth)

A flexible labyrinth is described by the following parameters (to be specified
in that order on the line beneath the *FLUID SECTION, TYPE=LABYRINTH
FLEXIBLE SINGLE, TYPE=LABYRINTH FLEXIBLE STRAIGHT or TYPE=LABYRINTH
FLEXIBLE STEPPED card):

• number of the first node defining the labyrinth gap

• number of the second node defining the labyrinth gap

• not used

• t: distance between two spikes (only for more than 1 spike)

• D: Diameter of the top of the spike (for the stepped labyrinth a mean
value should be used; the diameter is needed to calculate the fluid cross
section as πDs).

• n: number of spikes

• b: width of the top of the spike

• h: height of the spike measured from the bottom of the chamber

• L: width of a honeycomb cell

• r: edge radius of a spike

• X: distance between the spike and the next step (only for more than 1
spike)

• Hst: height of the step (only for a stepped labyrinth)

Please look at the figures for the meaning of these parameters. Depending
on the kind of labyrinth, not all parameters may be necessary.

Example files: labyrinthstepped, labyrinthstraight.
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Figure 103: Characteristic Curve

6.4.5 Characteristic

Properties: adiabatic, not isentropic, symmetric

Sometimes a network element is described by its characteristic curve, ex-
pressing the reduced mass flow as a function of the pressure ratio (Figure 103).
This allows the user to define new elements not already available.

The reduced flow is defined by

Y =
ṁ
√
Tt1

pt1
, (60)

where ṁ is the mass flow, Tt1 is the upstream total temperature and pt1 is the
upstream total pressure. Here “upstream” refers to the actual flow direction,
the same applies to “downstream”. The abscissa of the curve is defined by

X =
pt1 − pt2
pt1

, (61)

where pt2 is the downstream total pressure. Notice that 0 ≤ X ≤ 1. It is
advisable to define Y for the complete X-range. If not, constant extrapolation
applies. Notice that zero and small slopes of the curve can lead to convergence
problems. This is quite natural, since the reduced flow corresponds to the
left hand side of Equation(38), apart from a constant. Zero slope implies a
maximum, which corresponds to sonic flow (cf. the discussion of Equation(38)).
In general, some sort of saturation will occur for values of X close to 1.
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The characteristic curve is defined by the following parameters (to be speci-
fied in that order on the line beneath the *FLUID SECTION, TYPE=CHARACTERISTIC
card):

• scaling factor (default: 1)

• not used (internally: number of pairs)

• not used (internally: set to zero)

• not used (internally: set to zero)

• X1

• Y1

• X2

• Y2

Use more cards if more than two pairs are needed (maximum 16 entries per
line, i.e. 8 pairs). No more than 10 pairs in total are allowed. In between the
data points CalculiX performs an interpolation (solid line in Figure 103). In
addition, the default point (0,0) is added as first point of the curve.

The scaling factor (first entry) is used to scale the ordinate values Y.

Example files: characteristic.

6.4.6 Carbon Seal

A carbon seal is used to prevent the gas from leaking through the space between
a rotating and a static device and thus reducing the efficiency (Figure 104).

The formula governing the flow through a carbon seal has been derived in
[71]. A carbon seal is described by the following parameters (to be specified in
that order on the line beneath the *FLUID SECTION,TYPE=CARBON SEAL
card):

• D: largest diameter of the gap

• s: size of the gap between rotor and carbon ring

• L: length of the carbon seal

Please look at the figure for the meaning of these parameters.

Example files: carbonseal.
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Figure 104: Geometry of a carbon seal
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Figure 105: Geometry of the Gas Pipe element
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6.4.7 Gas Pipe (Fanno)

The gas pipe element of type Fanno is a pipe element with constant cross section
(Figure 105), for which the Fanno formulae are applied [85].

The friction parameter is determined as

f =
64

Re
(62)

for laminar flow (Re < 2000) and

1√
f
= −2.03 log

(
2.51

Re
√
f
+

ks
3.7D

)
. (63)

for turbulent flow. Here, ks is the diameter of the material grains at the
surface of the pipe and Re is the Reynolds number defined by

Re =
UD

ν
, (64)

where U is the fluid velocity and ν is the kinematic viscosity.
It is described by the following parameters (to be specified in that order

on the line beneath the *FLUID SECTION,TYPE=GAS PIPE FANNO ADI-
ABATIC or *FLUID SECTION,TYPE=GAS PIPE FANNO ISOTHERMAL
card):

• A: cross section of the pipe element

• D: diameter of the pipe element

• L: length of the pipe element

• ks: grain diameter at the pipe surface

• form factor ϕ

• oil mass flow in the pipe (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

The default gas pipe is adiabatic, i.e. there is no heat exchange with the
pipe. Alternatively, the user may specify that the pipe element is isothermal.
This means that the static temperature does not change within the pipe. In
that case the energy equation in one of the two end nodes of the element is
replaced by an isothermal condition.

The form factor ϕ is only used to modify the friction expression for non-
circular cross sections in the laminar regime as follows:

f = ϕ
64

Re
. (65)
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Values for ϕ for several cross sections can be found in [13]. For a square
cross section its value is 0.88, for a rectangle with a height to width ratio of 2
its value is 0.97.

Instead of specifying a fixed diameter and length, these measures may also
be calculated from the actual position of given nodes. The version in which
the radius is calculated from the actual distance between two nodes a and b
is described by the following parameters (to be specified in that order on the
line beneath the *FLUID SECTION,TYPE=GAS PIPE FANNO ADIABATIC
FLEXIBLE RADIUS or *FLUID SECTION,TYPE=GAS PIPE FANNO ISOTHER-
MAL FLEXIBLE RADIUS card):

• node number a

• node number b

• L: length of the pipe

• ks: grain diameter at the pipe surface

• form factor ϕ

• oil mass flow in the pipe (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

The version in which the radius is calculated from the actual distance be-
tween two nodes a and b and the length from the actual distance between nodes
a and c is described by the following parameters (to be specified in that order
on the line beneath the *FLUID SECTION,TYPE=GAS PIPE FANNO ADIA-
BATIC FLEXIBLE RADIUS AND LENGTH or *FLUID SECTION,TYPE=GAS
PIPE FANNO ISOTHERMAL FLEXIBLE RADIUS AND LENGTH card):

• node number a

• node number b

• node number c

• ks: grain diameter at the pipe surface

• form factor ϕ

• oil mass flow in the pipe (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

Although a gas pipe looks simple, the equations for compressible flow in
a pipe are quite complicated. Here, the derivation is first presented for the
adiabatic case. Starting from the energy equation (39) and using the relation
dh = cpdT for an ideal gas one arrives at:
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p
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dx

p+dp

v+dv

vdt

τ

Figure 106: Differential pipe element

cpdT + vdv = 0. (66)

By means of the definition of the Mach number (33) one gets

dT

T
= −(κ− 1)M2 dv

v
. (67)

Because of the ideal gas equation p = ρrT this can also be written as:

dp

p
= −[1 + (κ− 1)M2]

dv

v
. (68)

Looking at Figure (106) the momentum equation can be derived by applying
Newton’s second law, which states that the sum of the forces is the change of
momentum (D is the diameter of the pipe, A its cross section):

Ap−A(p+ dp)− τπDdx =
ρAvdt(v + dv)− ρAvdt(v)

dt
, (69)

or, using Darcy’s law (λ is the Darcy friction factor)

τ =
λ

4

ρ

2
v2, (70)

ρ
dv2

2
+ dp+

λ

D

ρ

2
v2dx = 0. (71)

One can remove the density by means of the gas equation arriving at:

v2
dv

v
+ rT

dp

p
+
λ

2
v2
dx

D
= 0. (72)

Combining this with what was obtained through the energy equation (68)
leads to (removing p in this process):
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dv

v
− κλ

2

(
M2

1−M2

)
dx

D
= 0. (73)

This equation contains both M and v. We would like to get an equation
with only one of these parameters. To this end the equation defining the Mach
number (33) is differentiated and the energy equation in the form (66) is used
to remove T, leading to:

dM

M
=
dv

v

(
1 +

1

2
(κ− 1)M2

)
. (74)

In that way, the previous equation can be modified its final form:

dM

M
=

κM2

2(1−M2)

(
1 +

κ− 1

2
M2

)
λ
dx

D
, (75)

expressing the Mach number as a function of the distance along the pipe. This
equation tells us that for subcritical flow (M < 1) the Mach number increases
along the pipe whereas for supercritical flow (M > 1) the Mach number de-
creases. Consequently, the flows tends to M = 1 along the pipe. Notice that by
assigning the sign of v to λ the above equation also applies to negative velocities.
Substituting Z =M2 and integrating both sides yields:

∫ Z2

Z1

1− Z

κZ2

1

(1 + κ−1
2 Z)

dZ =

∫ L

0

λ
dx

D
. (76)

Since (partial fractions)

1− Z

Z2(1 + κ−1
2 Z)

= −κ+ 1

2

1

Z
+

1

Z2
+

(
κ− 1

2

)(
κ+ 1

2

)
1

(1 + κ−1
2 Z)

, (77)

one obtains finally

1

κ

(
1

M2
1

− 1

M2
2

)
+
κ+ 1

2κ
ln

[(
1 + κ−1

2 M2
2

1 + κ−1
2 M2

1

)(
M2

1

M2
2

)]
= λ

L

D
, (78)

linking the Mach number M1 at the start of the pipe with the Mach number
M2 at the end of the pipe, the pipe length L and the Darcy friction coefficient
λ.

Notice that Equation (72) can be used to calculate an estimate of the mass
flow due to a given pressure gradient by assuming incompressibility. For an
incompressibile medium in a pipe with constant cross section the velocity is
constant too (mass conservation) and Equation (72) reduces to:

dp

ρ
+
λ

2
v2
dx

D
= 0. (79)

Integrating yields:
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v =

√
2D

λL

(p1 − p2)

ρ
, (80)

or

ṁ = A

√
2D

λL
ρ(p1 − p2), (81)

which can finally also be written as:

ṁ = A

√
2D

λL

p1
rT1

(p1 − p2). (82)

For an estimate of the mass flow in the gas pipe the above static variables p and
T are replaced by the total variables pt and Tt, respectively. Equation (78) is
the governing equation for an adiabatic gas pipe. In order to apply the Newton-
Raphson procedure (linearization of the equation) with respect to the variables
Tt1, pt1, ṁ, Tt2 and pt2, this equation is first derived w.r.tM1 andM2 (denoting
the equation by f ; the derivation is slightly tedious but straightforward):

∂f

∂M1
=

2

κM1

[
M2

1 − 1

M2
1 (1 + bM2

1 )

]
, (83)

and

∂f

∂M2
=

2

κM2

[
1−M2

2

M2
2 (1 + bM2

2 )

]
, (84)

where b = (κ− 1)/2. Now, M at position 1 and 2 is linked to Tt, pt and ṁ at
the same location through the general gas equation:

ṁ =
apt√
Tt
M(1 + bM2)c, (85)

where a = A
√
κ/

√
r and c = −(κ+1)/(2(κ− 1)). Careful differentiation of this

equation leads to the surprisingly simple expression:

dM = e
dṁ

ṁ
− e

dpt
pt

+ e
dTt
2Tt

, (86)

where

e =

[
M(1 + bM2)

1 + bM2(1 + 2c)

]
. (87)

Finally, the chain rule leads to the expressions looked for:

∂f

∂Tt1
=

∂f

∂M1
· ∂M1

∂Tt1
, (88)

etc.
For the isothermal pipe the ideal gas equation leads to:
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dp

p
=
dρ

ρ
(89)

and from the mass conservation, Equation (44) one gets:

dp

p
= −dv

v
. (90)

Furthermore, the definition of the Mach number yields:

dv

v
=
dM

M
, (91)

finally leading to:

dv

v
=
dM

M
= −dp

p
= −dρ

ρ
. (92)

By substituting these relationships and the definition of the Mach number one
can reduce all variables in Equation (72) by the Mach number, leading to:

(1− κM2)
dM

M3
=
κλ

2

dx

D
. (93)

This equation shows that for an isothermal gas pipe the flow tends toM = 1/
√
κ

and not to 1 as for the adiabatic pipe. Substituting Z = M2 and integrating
finally yields:

1

κ

(
1

M2
1

− 1

M2
2

)
+ ln

(
M2

1

M2
2

)
= λ

L

D
. (94)

The above equation constitutes the element equation of the isothermal gaspipe.
Applying the Newton-Raphson procedure requires the knowledge of the deriva-
tives w.r.t. the basis variables. The procedure is similar as for the adiabatic
gas pipe. The derivative of the element equaton w.r.t. M1 and M2 is easily
obtained (denoting the left side of the above equation by f):

∂f

∂M1
=

2

κM3
1

(κM2
1 − 1) (95)

and

∂f

∂M2
=

2

κM3
2

(1− κM2
2 ). (96)

The use of an isothermal gas pipe element, however, also requires the change
of the energy equation. Indeed, in order for the gas pipe to be isothermal heat
has to be added or subtracted in one of the end nodes of the element. The
calculation of this heat contribution is avoided by replacing the energy equa-
tion in the topologically downstream node (or, if this node has a temperature
boundary condition, the topologically upstream node) by the requirement that
the static temperature in both end nodes of the element has to be the same.
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This is again a nonlinear equation in the basic unknowns (total temperature
and total pressure in the end nodes, mass flow in the middle node) and has to
be linearized. In order to find the derivatives one starts from the relationship
between static and total temperature:

Tt = T (1 + bM2), (97)

where b = (κ− 1)/2. Differentiation yields:

dTt = dT (1 + bM2) + 2bTMdM. (98)

Replacing dM by Equation (86) finally yields an expression in which dT is
expressed as a function of dTt, dpt and dṁ.

Example files: gaspipe10, gaspipe8-cfd-massflow, gaspipe8-oil.

6.4.8 Rotating Gas Pipe (subsonic applications)

In the present section a rotating gas pipe with a varying cross section and friction
is considered. Although the gas pipe Fanno is a special case of the rotating
gas pipe, its governing equations constitute a singular limit to the equations
presented here. Therefore, for a gas pipe without rotation and with constant
cross section the equations here do not apply. The equivalent of Equation (75)
now reads ([26], Table 10.2 on page 515):

dM2

M2
=

[
1 + κ−1

2 M2

1−M2

] [
−2

dA

A
− rω2

cpTt

(
κ+ 1

κ− 1

)
dx +

λdx

D
κM2

]
, (99)

where r is the shortest distance from the rotational axis, ω is the rotational
speed and A is the local cross section of the pipe. Assuming that the radius R
of the pipe varies linearly along its length 0 <= x <= L:

R(x) =
(L− x)R1 + xR2

L
, (100)

one obtains for dA/A:

dA

A
=

2(R2 −R1)dx

(L− x)R1 + xR2
. (101)

Taking for r, R, D and Tt the mean of their values at the end of the pipe
one obtains for the second term in Equation (99) [α+ βM2]dx where

α =
−8(D2 −D1)

L(D1 +D2)
− (r1 + r2)

ω2

cp(Tt1 + Tt2)

(
κ+ 1

κ− 1

)
(102)

and

β =
2λκ

D1 +D2
. (103)
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Therefore, Equation (99) can now be written as:

dZ

Z
=

[
1 + κ−1

2 Z

1− Z

]
(α + βZ)dx, (104)

or (using partial fractions):

a

Z
+

b

α+ βZ
+

c

1 + κ−1
2 Z

= dx, (105)

where

a =
1

α
, (106)

b =
2(α+ β)β

α[α(κ− 1)− 2β]
(107)

and

c =
−(1 + κ)(1− κ)

2[α(1− κ) + 2β]
. (108)

From the above equations one notices that for a non-rotating pipe with
constant cross section α = 0 and a and b become undeterminate. Therefore,
although the gas pipe Fanno is a special case, the present formulas cannot be
used for this element type. Integrating Equation (105) leads to:

f := a ln
Z2

Z1
+
b

β
ln
α+ βZ2

α+ βZ1
+

2c

κ− 1
ln

(
1 + κ−1

2 Z2

1 + κ−1
2 Z1

)
= L. (109)

Its derivatives are:

∂f

∂M1
= −

[
a

Z1
+

b

(α+ βZ1)
+

c(
1 + κ−1

2 Z1

)
]
2M1 (110)

and

∂f

∂M2
=

[
a

Z2
+

b

(α + βZ2)
+

c(
1 + κ−1

2 Z2

)
]
2M2. (111)

Focussing on the subsonic range, one has 0 ≤ Z1, Z2 ≤ 1. Therefore, the only
term in Equation (109) which may cause problems is the second term. This is
because α and β do not necessarily have the same sign, therefore the logarithm
may be undefined, i.e. the function α+βZ may have a zero in between the ends
of the pipe. This boils down to the condition (cf. Equation (99)) that in part
of the element the Mach number is increasing and in part decreasing.
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In general, convergence of a pipe and friction leads to increasing Mach num-
bers, divergence and centrifugal forces to decreasing Mach numbers. Sonic con-
ditions should be avoided during the calculation. Especially if sonic conditions
are observed at the end of a converged calculation, the result may not be correct.

Although the rotating pipe is adiabatic, i.e. no heat is transported to the
envoronment, the total temperature changes due to conversion of rotational
energy into heat or vice versa. Centrifugal motion leads to a total temperature
increase, centripetal motion to a decrease. The change in total temperature
amounts to [26]:

dTt =
rω2

cp
dx. (112)

For a linear varying radius integration leads to:

Tt − Tt1 =
ω2

cp

[
r1 +

(
r2 − r1

2

)
x

L

]
x. (113)

Evaluating this expression for x = L yields the total temperature increase
across the pipe. In order to estimate the total pressure increase (e.g. to arrive
at sensible initial conditions) one can again use the formulas in [26] (discarding
the friction effect):

dpt
pt

=
κ

κ− 1

rω2

cpTt
dx. (114)

Substituting a linear relationship for r and the result just derived for Tt leads
to:

dpt
pt

=

(
κ

κ− 1

)
ω2

cp

[r1 + (r2 − r1)x/L] dx{
Tt1 +

ω2

cp

[
r1 +

(
r2−r1

2

)
x
L

]
x
} (115)

=

(
κ

κ− 1

) 2
[
x+ Lr1

r2−r1

]
dx

[
x2 + 2Lr1

r2−r1
x+

2LcpTt1

ω2(r2−r1)

] (116)

=

(
κ

κ− 1

)
d ln

[
x2 +

2Lr1
r2 − r1

x+
2LcpTt1

ω2(r2 − r1)

]
. (117)

Integrating finally leads to:

pt2
pt1

=

[
1 +

Lω2

cpTt1

(
r1 + r2

2

)]( κ
κ−1 )

. (118)

It is important to notice that the rotating gas pipe is to be used in the rela-
tive (rotational) system (since the centrifugal force only exists in the rotational
system). If used in the absolute system it has to be preceded by an absolute to
relative element and followed by a relative to absolute element.
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The rotating gas pipe is described by the following parameters (to be speci-
fied in that order on the line beneath the *FLUID SECTION, TYPE=ROTATING
GAS PIPE card):

• A1: cross sectional area at node 1 (first node of element description)

• A2: cross sectional area at node 2 (third node of element description)

• L: length of the element

• ks: grain diameter at the pipe surface

• form factor φ

• D1: diameter at node 1; if the form factor is 1 the diameter is calculated
form the area using the formula for a circle.

• D2: diameter at node 2; if the form factor is 1 the diameter is calculated
form the area using the formula for a circle.

• r1: distance from the rotational axis of node 1.

• r2: distance from the rotational axis of node 2.

• ω: rotational speed (in rad/s).

Example files: rotpipe1 up to rotpipe7.

6.4.9 Restrictor, Long Orifice

Properties: adiabatic, not isentropic, symmetric, A1 inlet based restrictor
Restrictors are discontinuous geometry changes in gas pipes. The loss factor

ζ can be defined based on the inlet conditions or the outlet conditions. Focusing
on the h-s-diagram (entalpy vs. entropy) Figure (107), the inlet conditions are
denoted by the subscript 1, the outlet conditions by the subscript 2. The entropy
loss from state 1 to state 2 is s2−s1. The process is assumed to be adiabatic, i.e.
Tt1 = Tt2 , and the same relationship applies to the total entalpy ht, denoted by
a dashed line in the Figure. E1 denotes the kinetic energy part of the entalpy
v21/2, the same applies to E2. Now, the loss coefficient ζ based on the inlet
conditions is defined by

ζ1 =
s2 − s1
sinlet − s1

(119)

and based on the outlet conditions by

ζ2 =
s2 − s1

soutlet − s2
. (120)

sinlet is the entropy for zero velocity and isobaric conditions at the inlet, a similar
definition applies to outlet. So, for ζ1 the increase in entropy is compared with
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Figure 107: h-s diagram showing the restrictor process
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the maximum entropy increase from state 1 at isobaric conditions. Now we have
s1 = sA and s2 = sB4 consequently,

ζ1 =
sB − sA
sinlet − sA

(121)

and based on the outlet conditions by

ζ2 =
sB − sA

soutlet − sB
. (122)

Using Equation (52) one obtains:

s2 − s1 = r ln
pt1
pt2

, (123)

sinlet − s1 = r ln
pt1
p1
, (124)

soutlet − s2 = r ln
pt2
p2
, (125)

from which [73]

pt1
pt2

=

(
pt1
p1

)ζ1
=

(
1 +

κ− 1

2
M2

1

)ζ1 κ
κ−1

(126)

if ζ is defined with reference to the first section (e.g. for an enlargement, a bend
or an exit) and

pt1
pt2

=

(
pt2
p2

)ζ2
=

(
1 +

κ− 1

2
M2

2

)ζ2 κ
κ−1

, (127)

if ζ is defined with reference to the second section (e.g. for a contraction).
Using the general gas equation (38) finally leads to (for ζ1):

ṁ
√
rTt1

Apt1
√
κ

=

√√√√ 2

κ− 1

((
pt1
pt2

)κ−1
ζ1κ

− 1

)(
pt1
pt2

)− (κ+1)
2ζ1κ

. (128)

This equation reaches critical conditions (choking, M1 = 1) for

pt1
pt2

=

(
κ+ 1

2

)ζ1 κ
κ−1

. (129)

Similar considerations apply to ζ2.
Restrictors can be applied to incompressible fluids as well by specifying the

parameter LIQUID on the *FLUID SECTION card. In that case the pressure
losses amount to

∆2
1F = ζ

ṁ2

2gρ2A2
1

(130)
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Figure 108: Geometry of a long orifice restrictor

and

∆2
1F = ζ

ṁ2

2gρ2A2
2

, (131)

respectively.
A long orifice is a substantial reduction of the cross section of the pipe over

a significant distance (Figure 108).
There are two types: TYPE=RESTRICTOR LONG ORIFICE IDELCHIK

with loss coefficients according to [34] and TYPE=RESTRICTOR LONG ORI-
FICE LICHTAROWICZ with coefficients taken from [45]. In both cases the long
orifice is described by the following constants (to be specified in that order on
the line beneath the *FLUID SECTION, TYPE=RESTRICTOR LONG ORI-
FICE IDELCHIK or TYPE=RESTRICTOR LONG ORIFICE LICHTAROW-
ICZ card):

• reduced cross section A1.

• full cross section A2.

• hydraulic diameter Dh defined by Dh = 4A/P where P is the perimeter
of the cross section.

• Length L of the orifice.

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

A restrictor of type long orifice MUST be preceded by a restrictor of type
user with ζ = 0. This accounts for the reduction of cross section from A2 to A1.
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Figure 109: Geometry of an enlargement

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: restrictor, restrictor-oil.

6.4.10 Restrictor, Enlargement

Properties: adiabatic, not isentropic, directional, inlet based restrictor
The geometry of an enlargement is shown in Figure 109. It is described by

the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=RESTRICTOR ENLARGEMENT card):

• reduced cross section A1.

• full cross section A2.

• hydraulic diameter Dh of the reduced cross section defined by Dh = 4A/P
where P is the perimeter of the cross section.

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

The loss coefficient for an enlargement is taken from [34].
By specifying the parameter LIQUID on the *FLUID SECTION card the

loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.
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Figure 110: Geometry of a contraction

Example files: piperestrictor, restrictor, restrictor-oil.

6.4.11 Restrictor, Contraction

Properties: adiabatic, not isentropic, directional, outlet based restrictor
The geometry of a contraction is shown in Figure 110. It is described by

the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=RESTRICTOR CONTRACTION card):

• full cross section A1.

• reduced cross section A2.

• hydraulic diameter Dh of the reduced cross section defined by Dh = 4A/P
where P is the perimeter of the cross section.

• chamfer length L.

• chamfer angle α (◦).

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

The loss coefficient for a contraction is taken from [34].
By specifying the parameter LIQUID on the *FLUID SECTION card the

loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: piperestrictor, restrictor, restrictor-oil.
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Figure 111: Geometry of a bend

6.4.12 Restrictor, Bend

Properties: adiabatic, not isentropic, symmetric, inlet based restrictor
The geometry of a bend is shown in Figure 111. There are three types:

TYPE = RESTRICTOR BEND IDEL CIRC, TYPE = RESTRICTOR BEND
IDEL RECT, both with loss coefficients according to [34] and TYPE = RE-
STRICTOR BEND MILLER with coefficients taken from [55]. In the first and
last type the bend is described by the following constants (to be specified in
that order on the line beneath the *FLUID SECTION, TYPE = RESTRIC-
TOR BEND IDEL CIRC or TYPE = RESTRICTOR BEND MILLER card):

• cross section before the bend A.

• cross section after the bend A.

• hydraulic diameter Dh = 4A/P , where P is the perimeter of the cross
section.

• radius of the bend R.

• bend angle α (◦).

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

They apply to circular cross sections. For rectangular cross sections the
constants are as follows (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=RESTRICTOR BEND IDEL RECT card):

• cross section before the bend A.
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• cross section after the bend A.

• hydraulic diameter Dh = 4A/P , where P is the perimeter of the cross
section.

• radius of the bend R.

• bend angle α.

• height a0.

• width b0.

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

The loss coefficients are those published by Idelchik [34] and Miller [55].
By specifying the parameter LIQUID on the *FLUID SECTION card the

loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: restrictor, restrictor-oil.

6.4.13 Restrictor, Wall Orifice

Properties: adiabatic, not isentropic, directional, A-outlet based restrictor
The geometry of an wall orifice is shown in Figure 112. It is described by

the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=RESTRICTOR WALL ORIFICE card):

• not used (internally: set to 100,000 A as upstream section)

• reduced cross section A.

• hydraulic diameter Dh defined by Dh = 4A/P where P is the perimeter
of the cross section.

• length L

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

The loss coefficient for a wall orifice is taken from [34].
By specifying the parameter LIQUID on the *FLUID SECTION card the

loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.
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Figure 112: Geometry of a wall orifice
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6.4.14 Restrictor, Entrance

Properties: adiabatic, not isentropic, directional, A-outlet based restrictor
An entrance element is used to model the entry from a large chamber

into a gas pipe. For an entrance the value of ζ is 0.5. It is described by
the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=RESTRICTOR ENTRANCE card):

• not used (internally: set to 100,000 A as upstream section)

• cross section of the entrance A.

• hydraulic diameter Dh defined by Dh = 4A/P where P is the perimeter
of the cross section.

• not used (internally: set of 0.5 as pressure loss coefficient)

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

6.4.15 Restrictor, Exit

Properties: adiabatic, not isentropic,directional, A-inlet based restrictor
An exit element is used to model the exit from a gas pipe into a large

chamber. For an exit the value of ζ is 1. It is described by the following con-
stants (to be specified in that order on the line beneath the *FLUID SECTION,
TYPE=RESTRICTOR EXIT card):

• cross section of the exit A.

• not used (internally: set to 100,000 A as downstream section)

• hydraulic diameter Dh defined by Dh = 4A/P where P is the perimeter
of the cross section.

• number of the upstream element; this element must be of type GAS PIPE
FANNO

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.
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6.4.16 Restrictor, User

Properties: adiabatic, not isentropic, directional, inlet based restrictor if A1 <
A2 and outlet based restrictor if A2 < A1.

A user-defined restrictor is described by the following constants (to be speci-
fied in that order on the line beneath the *FLUID SECTION, TYPE=RESTRICTOR
USER card):

• upstream cross section A1.

• downstream cross section A2.

• hydraulic diameter Dh defined by Dh = 4A/P where A is the area of the
smallest cross section and P is the perimeter of the smallest cross section.

• loss coefficient ζ.

• oil mass flow in the restrictor (only if the OIL parameter is used to define
the kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: restrictor, restrictor-oil.

6.4.17 Branch, Joint

Properties: adiabatic, not isentropic, directional, inlet based restrictor
In a joint the flow from two gas pipes is united and redirected through a third

pipe. So in principal three network elements of type GAS PIPE have one node
in common in a joint. The fluid elements of type BRANCH JOINT represent
the extra energy loss due to the merging of the flows and have to be inserted on
the incoming branches of the joint. This is represented schematically in Figure
113. The filled circles represent end nodes of the fluid elements, the others are
the midside nodes. For a joint to work properly the flow direction must be as
indicated in Figure 113. If the solution of the equation system indicates that
this is not the case appropriate measures must be taken. For instance, if the
solution reveals that there is one inward flow and two outward flows, branch
split elements must be selected.

Several types of geometry are available.
A branch joint of type GE [88], Figure 114, is quite general and allows

arbitrary cross sections and angles (within reasonable limits). It is characterized
by the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=BRANCH JOINT GE card):

• label of the gas pipe element defined as branch 0.
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Figure 113: Element selection for a joint

• label of the gas pipe element defined as branch 1.

• label of the gas pipe element defined as branch 2.

• cross section A0 of branch 0.

• cross section A1 of branch 1.

• cross section A2 of branch 2.

• angle α1 (◦).

• angle α2 (◦).

• oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

A branch joint of type Idelchik1, Figure 115, can be used if one of the
incoming branches is continued in a straight way and does not change its cross
section [34]. It is characterized by the following constants (to be specified in that
order on the line beneath the *FLUID SECTION, TYPE=BRANCH JOINT
IDELCHIK1 card):

• label of the gas pipe element defined as branch 0.
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Figure 114: Geometry of a joint fluid section type GE

• label of the gas pipe element defined as branch 1.

• label of the gas pipe element defined as branch 2.

• cross section A0 of branch 0.

• cross section A1 = A0 of branch 0.

• cross section A2 of branch 2.

• angle α1 = 0◦.

• angle α2 (◦).

• oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

A branch joint of type Idelchik2, Figure 116, can be used if one of the
incoming branches is continued in a straight way but may change its cross
section [34]. It is characterized by the following constants (to be specified in that
order on the line beneath the *FLUID SECTION, TYPE=BRANCH JOINT
IDELCHIK2 card):

• label of the gas pipe element defined as branch 0.

• label of the gas pipe element defined as branch 1.
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Figure 116: Geometry of a joint fluid section type Idelchik 2

• label of the gas pipe element defined as branch 2.

• cross section A0 of branch 0.

• cross section A1 of branch 1.

• cross section A2 of branch 2.

• angle α1 = 0◦.

• angle α2 (◦).

• oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)
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Figure 117: Element selection for a split

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: branchjoint1, branchjoint2, branchjoint3, branchjoint4.

6.4.18 Branch, Split

Properties: adiabatic, not isentropic, directional, inlet based restrictor
In a split the flow from a gas pipe is split and redirected through two other

pipes. So in principal three network elements of type GAS PIPE have one node
in common in a split. The fluid elements of type BRANCH SPLIT represent
the extra energy loss due to the splitting of the flow and have to be inserted in
the outward branches of the split. This is represented schematically in Figure
117. The filled circles represent end nodes of the fluid elements, the others are
the midside nodes. For a split to work properly the flow direction must be as
indicated in Figure 117. If the solution of the equation system indicates that
this is not the case appropriate measures must be taken. For instance, if the
solution reveals that there are two inward flows and one outward flow, branch
joint elements must be selected.

Several types of geometry are available.
A branch split of type GE [88], Figure 118, is quite general and allows

arbitrary cross sections and angles (within reasonable limits). It is characterized
by the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=BRANCH SPLIT GE card):

• label of the gas pipe element defined as branch 0.
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Figure 118: Geometry of a split fluid section type GE

• label of the gas pipe element defined as branch 1.

• label of the gas pipe element defined as branch 2.

• cross section A0 of branch 0.

• cross section A1 of branch 1.

• cross section A2 of branch 2.

• angle α1 (◦).

• angle α2 (◦).

• oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• not used (internally: oil material number)

A branch split of type Idelchik1, Figure 119, can be used if the incoming
branch is continued in a straight way and does not change its cross section [34].
It is characterized by the following constants (to be specified in that order on the
line beneath the *FLUID SECTION, TYPE=BRANCH SPLIT IDELCHIK1
card):

• label of the gas pipe element defined as branch 0.

• label of the gas pipe element defined as branch 1.

• label of the gas pipe element defined as branch 2.
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Figure 119: Geometry of a split fluid section type Idelchik 1

• cross section A0 of branch 0.

• cross section A1 = A0 of branch 0.

• cross section A2 of branch 2.

• angle α1 = 0◦.

• angle α2 (◦).

• hydraulic diameter Dh0 of A0.

• hydraulic diameter Dh2 of A2.

• oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• ζ-correction factor k1 for branch 1 (ζeff = k1ζ). This allows to tune the
ζ value with experimental evidence (default is 1).

• ζ-correction factor k2 for branch 2 (ζeff = k2ζ). This allows to tune the
ζ value with experimental evidence (default is 1).

• not used (internally: oil material number)

A branch split of type Idelchik2, Figure 120, is used if the outward branches
make an angle of 90◦ with the incoming branch [34]. It is characterized by
the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=BRANCH SPLIT IDELCHIK2 card):

• label of the gas pipe element defined as branch 0.

• label of the gas pipe element defined as branch 1.
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Figure 120: Geometry of a split fluid section type Idelchik 2

• label of the gas pipe element defined as branch 2.

• cross section A0 of branch 0.

• cross section A1 of branch 1.

• cross section A2 of branch 2.

• angle α1 = 90◦.

• angle α2 = 90◦.

• oil mass flow in branch 1 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• oil mass flow in branch 2 (only if the OIL parameter is used to define the
kind of oil in the *FLUID SECTION card)

• ζ-correction factor k1 for branch 1 (ζeff = k1ζ). This allows to tune the
ζ value with experimental evidence (default is 1).

• ζ-correction factor k2 for branch 2 (ζeff = k2ζ). This allows to tune the
ζ value with experimental evidence (default is 1).

• not used (internally: oil material number)

By specifying the parameter LIQUID on the *FLUID SECTION card the
loss is calculated for liquids. In the absence of this parameter, compressible
losses are calculated.

Example files: branchsplit1, branchsplit2, branchsplit3.
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Figure 121: Geometry of a flow splitting cross

6.4.19 Cross, Split

Properties: adiabatic, not isentropic, directional, inlet based restrictor

This is an element, in which a gas mass flow is split into three separate
branches.(See Fig.121) It is characterized by the following constants (to be spec-
ified in that order on the line beneath the *FLUID SECTION, TYPE=CROSS
SPLIT card):

• label of the element defined as branch 0.

• label of the element defined as branch 1.

• label of the element defined as branch 2.

• label of the element defined as branch 3.

• cross section A0 of branch 0, whereas A1 = A0

• cross section A2 of branch 2, whereas A3 = A2

• angle α1 = 90◦.

• angle α2 = 90◦.

• hydraulic diameter dh0 = dh1

• hydraulic diameter dh2 = dh3

• ζ-correction factor k1 for the main passage (ζeff = k1ζ)

• ζ-correction factor k2 for the branches (ζeff = k2ζ)
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Figure 122: Forced vortex versus free vortex

6.4.20 Vortex

Properties: adiabatic, isentropic, asymmetric
A vortex arises, when a gas flows along a rotating device. If the inertia of

the gas is small and the device rotates at a high speed, the device will transfer
part of its rotational energy to the gas. This is called a forced vortex. It is
characterized by an increasing circumferential velocity for increasing values of
the radius, Figure 122.

Another case is represented by a gas exhibiting substantial swirl at a given
radius and losing this swirl while flowing away from the axis. This is called a
free vortex and is characterized by a hyperbolic decrease of the circumferential
velocity, Figure 122. The initial swirl usually comes from a preceding rotational
device.

The equations for the forced and free vortex are derived from:

• The radial equilibrium of an infinitesimal volumetric element of size rdϕ×
dr subject to a pressure on all sides of the form p(r) and centrifugal loading
for which ω = Ct/r, where Ct is the local circumferential velocity. This
leads to the equation

1

ρ

∂p

∂r
=
C2
t

r
. (132)

vr ≪ Ct is assumed, i.e. the radial velocity is negligible w.r.t. the tangen-
tial velocity.

• the assumption that the flow is isentropic, i.e.

p

ρκ
= constant, (133)

e.g. equal to the value at the inner or outer position.
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Figure 123: Geometry of a forced vortex

• the assumption that the flow is adiabatic (Tt is constant).

• the assumption that the upstream and downstream nodes correspond to
big reservoirs, consequently the total and static pressure as well as the
total and static temperature coincide.

Integrating the differential equation (132) from ri to ro (after substitution of
the isentropic assumption and separation of the variables p and r; the index “i”
stands for inner (smallest radius), “o” stands for outer (largest radius)) leads to

pto
pti

=

[
1 +

1

cpTti

∫ ro

ri

C2
t

r
dr

] κ
κ−1

. (134)

The forced vortex, Figure 123, is geometrically characterized by its upstream
and downstream radius. The direction of the flow can be centripetal or centrifu-
gal, the element formulation works for both. The core swirl ratioKr, which takes
values between 0 and 1, denotes the degree the gas rotates with the rotational
device. If Kr = 0 there is no transfer of rotational energy, if Kr = 1 the gas
rotates with the device. The theoretical pressure ratio across a forced vertex
satisfies (substitute Ct = KrCtir/ri in Equation (134))

(
pto
pti

)

theoretical

=

[
1 +

(KrCti)
2

2cpTti

((
ro
ri

)2

− 1

)] κ
κ−1

, (135)

where pt is the total pressure, Tt the total temperature and Cti the circum-
ferential velocity of the rotating device. It can be derived from the observation
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that the circumferential velocity of the gas varies linear with the radius (Figure
122). Notice that the pressure at the outer radius always exceeds the pressure
at the inner radius, no matter in which direction the flow occurs.

The pressure correction factor η allows for a correction to the theoretical
pressure drop across the vortex and is defined by

η =
∆preal

∆ptheoretical
,∆p =

pto − pti
pti

. (136)

Finally, the parameter Tflag controls the temperature increase due to the
vortex. In principal, the rotational energy transferred to the gas also leads to
a temperature increase. If the user does not want to take that into account
Tflag = 0 should be selected, else Tflag = 1 or Tflag = −1 should be spec-
ified, depending on whether the vortex is defined in the absolute coordinate
system or in a relative system fixed to the rotating device, respectively. A
relative coordinate system is active if the vortex element is at some point in
the network preceded by an absolute-to-relative gas element and followed by a
relative-to-absolute gas element. The calculated temperature increase is only
correct for Kr = 1. Summarizing, a forced vortex element is characterized by
the following constants (to be specified in that order on the line beneath the
*FLUID SECTION, TYPE=VORTEX FORCED card):

• r2: radius corresponding to the third node in the topology of the vortex
element

• r1: radius corresponding to the first node in the topology of the vortex
element

• η: pressure correction factor

• Kr: core swirl ratio

• N : speed of the rotating device (rad/unit of time)

• Tflag

• not used (internally: circumferential exit velocity in unit of length/unit of
time (for the downstream element))

For the free vortex the value of the circumferential velocity Ct of the gas at
entrance is the most important parameter. It can be defined by specifying the
number n of the preceding element, usually a preswirl nozzle or another vortex,
imparting the circumferential velocity. In that case the value N is not used. For
centrifugal flow the value of the imparted circumferential velocity Ct,theorical,i
can be further modified by the swirl loss factor K1 defined by

K1 =
Ct,real,i − Ui

Ct,theoretical,i − Ui
. (137)
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Alternatively, if the user specifies n = 0, the circumferential velocity at en-
trance is taken from the rotational speed N of a device imparting the swirl to
the gas. In that case K1 and Ui are not used and Ct,real,i = Nri. The theoret-
ical pressure ratio across a free vertex satisfies (substitute Ct = Ct,real,iri/r in
Equation (134))

(
pto
pti

)

theoretical

=

[
1 +

C2
t,real,i

2cpTti

(
1−

(
ri
ro

)2
)] κ

κ−1

, (138)

where pt is the total pressure, Tt the total temperature and Ct the circum-
ferential velocity of the gas. It can be derived from the observation that the
circumferential velocity of the gas varies inversely proportional to the radius
(Figure 122). Notice that the pressure at the outer radius always exceeds the
pressure at the inner radius, no matter in which direction the flow occurs.

Here too, the pressure can be corrected by a pressure correction factor η
and a parameter Tflag is introduced to control the way the temperature change
is taken into account. However, it should be noted that for a free vortex the
temperature does not change in the absolute system. Summarizing, a free vortex
element is characterized by the following constants (to be specified in that order
on the line beneath the *FLUID SECTION, TYPE=VORTEX FREE card):

• r2: radius corresponding to the third node in the topology of the vortex
element

• r1: radius corresponding to the first node in the topology of the vortex
element

• η: pressure correction factor

• K1: swirl loss factor (only if n 6= 0 and N = 0)

• Ui: circumferential velocity of the rotating device at the upstream radius
(only if n 6= 0 and N = 0)

• n: number of the gas element responsible for the swirl (mutually exclusive
with N)

• N : speed of the rotating device (rad/unit of time, mutually exclusive with
n; if both n and N are nonzero, N takes precedence)

• Tflag

• not used (internally: circumferential exit velocity in unit of length/unit of
time (for the downstream element))

Example files: vortex1, vortex2, vortex3.
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Figure 124: Geometry of the Möhring element

6.4.21 Möhring

A Möhring element is a vortex element for which the characteristics are de-
termined by the integration of a nonlinear differential equation describing the
physics of the problem [58]. It basically describes the flow in narrow gaps be-
tween a rotating and a static device and is more precise than the formulation of
the forced and free vortex element. The geometry is shown in Figure 124 and
consists of a minimum radius, a maximum radius, a value for the gap between
stator and rotor and the shroud radius. It is complemented by the label of the
upstream and downstream node, the rotating speed of the rotor and the value
of the swirl at entrance. The user must choose the centrifugal or centripetal
version of the Moehring element before start of the calculation, i.e. the user
must decide beforehand in which direction the flow will move. If the calculation
detects that the flow is reversed, an error message is issued.

The following constants must be entered (to be specified in that order on the
line beneath the *FLUID SECTION, TYPE=MOEHRING CENTRIFUGAL
card or *FLUID SECTION, TYPE=MOEHRING CENTRIPETAL card):

• Rmin: minimum radius

• Rmax: maximum radius

• d: disk/stator gap
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Figure 125: Vector plot of the absolute/relative velocity

• Rshroud: shroud radius

• upstream node label

• downstream node label

• N : speed of the rotor (rad/unit of time)

• circumferential speed of the gas at entrance

• alternatively to the previous line, the upstream element number

• not used (internally: circumferential exit velocity in unit of length/unit of
time (for the downstream element))

Example files: moehring.

6.4.22 Change absolute/relative system

Sometimes it is more convenient to work in a relative system fixed to some
rotating device, e.g. to model the flow through holes in a rotating disk. In
order to facilitate this, two conversion elements were created: a relative-to-
absolute element and an absolute-to-relative element. The transformation takes
place at a given radius and the element has a physical length of zero. Input
for this element is the circumferential velocity of the rotating device and the
tangential gas velocity , both at the radius at which the transformation is to
take place. The gas velocity can be specified explicitly, or by referring to an
element immediately preceding the transformation location and imparting a
specific swirl to the gas.

Let U be the circumferential velocity of the rotating device at the selected
radius, C the velocity of the gas at the same location and Ct its circumferential
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Figure 126: Total temperature dependence on the circumferential component of
the incoming flow

component (Figure 125). The velocity of the gas W in the rotating system
satisfies:

W = C −U . (139)

The total temperature in the absolute system is

Tt = T +
C2

2cp
, (140)

whereas in the relative system it amounts to

Ttr = T +
W 2

2cp
. (141)

Combining these equations and using the relationship between the length of the
sides of an irregular triangle (cosine rule) one arrives at:

Ttr = Tt

(
1 +

U2 − 2UCt
2cpTt

)
. (142)

Assuming adiabatic conditions this leads for the pressure to:

ptr = pt

(
1 +

U2 − 2UCt
2cpTt

) κ
κ−1

. (143)

Depending on the size of 2Ct compared to the size of U the relative total
temperature will exceed the absolute total temperature or vice versa. This is
illustrated in Figure 126.
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Inversely, the relationships for the relative-to-absolute transformation amount
to:

Tt = Ttr

(
1− U2 − 2UCt

2cpTtr

)
. (144)

and:

pt = ptr

(
1− U2 − 2UCt

2cpTtr

) κ
κ−1

. (145)

These relationships are taken into account in the following way: the change
in total temperature is taken care of by creating a heat inflow at the downstream
node. For an absolute-to-relative change this heat flow amounts to:

cp(Ttr − Tt)ṁ =
U2 − 2UCt

2
ṁ. (146)

The total pressure change is taken as element equation. For an absolute-to-
relative change it runs:

ptout
ptin

−
(
1 +

U2 − 2UCt
2cpTtin

) κ
κ−1

= 0, (147)

and for a relative-to-absolute change:

ptout
ptin

−
(
1− U2 − 2UCt

2cpTtin

) κ
κ−1

= 0. (148)

For an absolute-to-relative element the input is as follows (to be specified
in that order on the line beneath the *FLUID SECTION, TYPE=ABSOLUTE
TO RELATIVE card):

• U : circumferential velocity of the rotating device at the selected radius

• Ct: tangential gas velocity at the selected radius

• n: element immediately preceding the location of the transformation

Ct is taken if and only if n = 0. In all other cases the exit velocity of the
element with label n is taken.

For an relative-to-absolute element the input is identical except that the
type of the element is now RELATIVE TO ABSOLUTE.

Example files: moehring, vortex1, vortex2, vortex3.

6.4.23 In/Out

At locations where mass flow can enter or leave the network an element with
node label 0 at the entry and exit, respectively, has to be specified. Its fluid sec-
tion type for gas networks must be INOUT, to be specified on the *FLUID SECTION
card. For this type there are no extra parameters.
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6.4.24 Mass Flow Percent

This is a loss-less element specifying that the mass flow through the element
should be a certain percentage of the sum of the mass flow through up to 10
other elements. This element may be handy if measurement data are available
which have to be matched.

The following constants must be entered (to be specified in that order on the
line beneath the *FLUID SECTION, TYPE=MASSFLOW PERCENT card):

• value in per cent

• first element

• second element (if appropriate)

• third element (if appropriate)

• fourth element (if appropriate)

• fifth element (if appropriate)

• sixth element (if appropriate)

• seventh element (if appropriate)

• eighth element (if appropriate)

• ninth element (if appropriate)

• tenth element (if appropriate)

Example files: .

6.4.25 Network User Element

The user can define and code his/her own gas network element. The process of
doing so requires the following steps:

• decide whether the element should be pipe-like (i.e. the total temperature
and static temperature at the end nodes differ) or chamber-connecting-
like (i.e. the element connects large chambers and the total and static
temperatures at the end nodes are equal).

• choose a type name. For a pipe-like element the name has to start with
“UP” followed by 5 characters to be choosen freely by the user (UPxxxxx).
For a chamber-connecting-like element it has to start with “U”, followed
by a character unequal to “P” and followed by 5 characters to be choosen
freely by the user (Uyxxxxx, y unequal to “P”).
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• decide on the number of constants to describe the element. This number
has to be specified on the *FLUID SECTION card with the CONSTANTS
parameter.

• add an entry in the if-construct in subroutine user network element.f. No-
tice that the type labels in the input deck (just as everything else, except
file names) are converted into upper case when being read by CalculiX.

• write an appropriate user network element subroutine, e.g. user network element pxxxxx.f
or user network element yxxxxx.f. Details can be found in Section 9.8.
This routine describes how the total pressure at the end nodes,the total
temperature at the end nodes and the mass flow through the element are
linked.

• add an entry in the if-construct in subroutine calcgeomelemnet.f (marked
by START insert and END insert). This routine is used to determine the
cross section area of the element (is used to calculate the static tempera-
ture from the total temperature).

• add an entry in the if-construct in subroutine calcheatnet.f (marked by
START insert and END insert). This routine is used to calculate the heat
generation e.g. due to centrifugal forces.

6.5 Fluid Section Types: Liquids

A network element is characterized by a type of fluid section. It has to be
specified on the *FLUID SECTION card unless the analysis is a pure thermo-
mechanical calculation.

Typical material properties needed for a liquid network are the density ρ
(temperature dependent, cf. the *DENSITY card), the heat capacity c = cp =
cv and the dynamic viscosity µ (both temperature dependent and to be specified
with the FLUID CONSTANTS card).

A special case is the purely thermal liquid network. This applies if:

• no TYPE is specified on any *FLUID SECTION card or

• the parameter THERMAL NETWORK is used on the *STEP card or

• all mass flow is given and either all pressures or given or none.

In that case only cp is needed.

For liquids the orifice (only for Cd = 1), restrictor, branch, and vortex fluid
section types of gases can be used by specifying the parameter LIQUID on
the *FLUID SECTION card. In addition, the following types are available as
well (the coefficients for the head losses are taken from [10], unless specified
otherwise):
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6.5.1 Pipe, Manning

This is a straight pipe with constant section and head losses ∆2
1F defined by

the Manning formula:

∆2
1F =

n2ṁ2L

ρ2A2R4/3
, (149)

where n is the Manning coefficient (unit: time/length1/3), ṁ is the mass
flux, L is the length of the pipe, ρ is the liquid density, A is the cross section of
the pipe and R is the hydraulic radius defined by the area of the cross section
divided by its circumference (for a circle the hydraulic radius is one fourth of
the diameter). The following constants have to be specified on the line beneath
the *FLUID SECTION, TYPE=PIPE MANNING card:

• area of the cross section

• hydraulic radius of the cross section (area/perimeter)

• Manning coefficient n

The length of the pipe is determined from the coordinates of its end nodes.
Typical values for n are n = 0.013s/m1/3 for steel pipes and n = 0.015s/m1/3

for smooth concrete pipes (these values are for water. Notice that, since the
dynamic viscosity does not show up explicitly in the Manning formula, n may
be a function of the viscosity).

By specifying the addition FLEXIBLE in the type label the user can cre-
ate a flexible pipe. In that case the user specifies two nodes, the distance
between them being the radius of the pipe. These nodes have to be genuine
structural nodes and should not belong to the fluid network. The distance is
calculated from the location of the nodes at the start of the calculation mod-
ified by any displacements affecting the nodes. Consequently, the use of the
*COUPLED TEMPERATURE-DISPLACEMENT keyword allows for a cou-
pling of the deformation of the pipe wall with the flow in the pipe. The follow-
ing constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE MANNING FLEXIBLE card:

• node number 1

• node number 2

• Manning coefficient n

Example files: artery1, artery2, centheat1, centheat2, pipe, piperestrictor.
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6.5.2 Pipe, White-Colebrook

This is a straight pipe with constant section and head losses ∆2
1F defined by

the formula:

∆2
1F =

fṁ2L

2gρ2A2D
, (150)

where f is the White-Colebrook coefficient (dimensionless), ṁ is the mass
flux, L is the length of the pipe, g is the gravity acceleration (9.81m/s2), A
is the cross section of the pipe and D is the diameter. The White-Colebrook
coefficient satisfies the following implicit equation:

1√
f
= −2.03 log

(
2.51

Re
√
f
+

ks
3.7D

)
. (151)

Here, ks is the diameter of the material grains at the surface of the pipe and
Re is the Reynolds number defined by

Re =
UD

ν
, (152)

where U is the liquid velocity and ν is the kinematic viscosity. It satisfies
ν = µ/ρ where µ is the dynamic viscosity.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE WHITE-COLEBROOK card:

• area of the cross section

• hydraulic diameter of the cross section (4 times the area divided by the
perimeter)

• length of the pipe element; if this number is nonpositive the length is
calculated from the coordinates of the pipe’s end nodes.

• the grain diameter ks

• form factor ϕ of the cross section

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristics ρ and µ can be
defined by a *DENSITY and *FLUID CONSTANTS card. Typical values for
ks are 0.25 mm for cast iron, 0.1 mm for welded steel, 1.2 mm for concrete,
0.006 mm for copper and 0.003 mm for glass.

The form factor ϕ is only used to modify the friction expression for non-
circular cross sections in the laminar regime as follows:

f = ϕ
64

Re
. (153)
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Values for ϕ for several cross sections can be found in [13]. For a square
cross section its value is 0.88, for a rectangle with a height to width ratio of 2
its value is 0.97.

By specifying the addition FLEXIBLE in the type label the user can cre-
ate a flexible pipe. In that case the user specifies two nodes, the distance
between them being the radius of the pipe. These nodes have to be genuine
structural nodes and should not belong to the fluid network. The distance is
calculated from the location of the nodes at the start of the calculation mod-
ified by any displacements affecting the nodes. Consequently, the use of the
*COUPLED TEMPERATURE-DISPLACEMENT keyword allows for a cou-
pling of the deformation of the pipe wall with the flow in the pipe. The follow-
ing constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE WHITE-COLEBROOK FLEXIBLE card:

• node number 1

• node number 2

• length of the pipe element; if this number is nonpositive the length is
calculated from the coordinates of the pipe’s end nodes.

• the grain diameter ks

• form factor ϕ of the cross section

Example files: pipe2.

6.5.3 Pipe, Sudden Enlargement

A sudden enlargement (Figure 127) is characterized by head losses ∆2
1F of the

form:

∆2
1F = ζ

ṁ2

2gρ2A2
1

, (154)

where ζ is a head loss coefficient depending on the ratio A1/A2, ṁ is the
mass flow, g is the gravity acceleration and ρ is the liquid density. A1 and A2

are the smaller and larger cross section, respectively. Notice that this formula is
only valid for ṁ ≥ 0. For a reverse mass flow, the formulas for a pipe contraction
have to be taken. Values for ζ can be found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE ENLARGEMENT card:

• A1

• A2(≥ A1)
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Figure 127: Sudden Enlargement

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristic ρ can be defined
by a *DENSITY card.

Example files: centheat1, pipe.

6.5.4 Pipe, Sudden Contraction

A sudden contraction (Figure 128) is characterized by head losses ∆2
1F of the

form:

∆2
1F = ζ

ṁ2

2gρ2A2
2

, (155)

where ζ is a head loss coefficient depending on the ratio A2/A1, ṁ is the mass
flow, g is the gravity acceleration and ρ is the liquid density. A1 and A2 are the
larger and smaller cross section, respectively. Notice that this formula is only
valid for ṁ ≥ 0. For a reverse mass flow, the formulas for a pipe enlargement
have to be taken. Values for ζ can be found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE CONTRACTION card:

• A1

• A2 (≤ A1)

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristic ρ can be defined
by a *DENSITY card.
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Figure 128: Sudden Contraction

Example files: centheat1, pipe.

6.5.5 Pipe, Entrance

A entrance (Figure 129) is characterized by head losses ∆2
1F of the form:

∆2
1F = ζ

ṁ2

2gρ2A2
, (156)

where ζ is a head loss coefficient depending on the ratio A0/A, ṁ is the mass
flow, g is the gravity acceleration and ρ is the liquid density. A0 and A are the
cross section of the entrance and of the pipe, respectively. Values for ζ can be
found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE ENTRANCE card:

• A

• A0 (≤ A)

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristic ρ can be defined
by a *DENSITY card.

Example files: pipe, piperestrictor.

6.5.6 Pipe, Diaphragm

A diaphragm (Figure 130) is characterized by head losses ∆2
1F of the form:

∆2
1F = ζ

ṁ2

2gρ2A2
, (157)
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Figure 131: Bend

where ζ is a head loss coefficient depending on the ratio A0/A, ṁ is the mass
flow, g is the gravity acceleration and ρ is the liquid density. A0 and A are the
cross section of the diaphragm and of the pipe, respectively. Values for ζ can
be found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE DIAPHRAGM card:

• A

• A0 (≤ A)

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristic ρ can be defined
by a *DENSITY card.

6.5.7 Pipe, Bend

A bend (Figure 131) is characterized by head losses ∆2
1F of the form:

∆2
1F = ζ

ṁ2

2gρ2A2
, (158)

where ζ is a head loss coefficient depending on the bend angle α and the
ratio of the bend radius to the pipe diameter R/D, ṁ is the mass flow, g is the
gravity acceleration and ρ is the liquid density. A is the cross section of the
pipe. Values for ζ can be found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE BEND card:
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Figure 132: Gatevalve

• A

• R/D (≥ 1)

• α (in ◦)

• ξ (0 ≤ ξ ≤ 1)

ξ denotes the roughness of the pipe: ξ = 0 applies to an extremely smooth
pipe surface, ξ = 1 to a very rough surface. The gravity acceleration must be
specified by a gravity type *DLOAD card defined for the elements at stake. The
material characteristic ρ can be defined by a *DENSITY card.

Example files: centheat1, pipe.

6.5.8 Pipe, Gate Valve

A gate valve (Figure 132) is characterized by head losses ∆2
1F of the form:

∆2
1F = ζ

ṁ2

2gρ2A2
, (159)

where ζ is a head loss coefficient depending on the ratio α = x/D, ṁ is the
mass flow, g is the gravity acceleration and ρ is the liquid density. A is the cross
section of the pipe, x is a size for the remaining opening (Figure 132) and D is
the diameter of the pipe. Values for ζ can be found in file “liquidpipe.f”.

The following constants have to be specified on the line beneath the *FLUID SECTION,
TYPE=PIPE GATE VALVE card:

• A
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Figure 133: Pump Characteristic

• α (0.125 ≤ α ≤ 1)

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristic ρ can be defined
by a *DENSITY card.

For the gate valve the inverse problem can be solved too. If the user defines a
value for α ≤ 0, α is being solved for. In that case the mass flow must be defined
as boundary condition. Thus, the user can calculate the extent to which the
valve must be closed to obtain a predefined mass flow. Test example pipe2.inp
illustrates this feature.

Example files: pipe2, pipe, piperestrictor.

6.5.9 Pump

A pump is characterized by a total head increase versus total flow curve (Figure
133). The total head h is defined by:

h = z +
p

ρg
, (160)

where z is the vertical elevation, p is the pressure, ρ is the liquid density and
g is the value of the earth acceleration. The total flow Q satisfies:

Q = ṁ/ρ, (161)
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where ṁ is the mass flow. The pump characteristic can be defined under-
neath a *FLUID SECTION,TYPE=LIQUID PUMP by discrete data points on
the curve. The data points should be given in increasing total flow order and
the corresponding total head values must be decreasing. No more than 10 pairs
are allowed. In between the data points CalculiX performs an interpolation
(solid line in Figure 133). For flow values outside the defined range an extrap-
olation is performed, the form of which depends on the precise location of the
flow (dashed lines in Figure 133). For positive flow values inferior to the lowest
flow data point, the total head corresponding to this lowest flow data point is
taken (horizontal dashed line). For negative flow values the total head sharply
increases (α = 0.0001) to simulate the zero-flow conditions of the pump in that
region. For flow values exceeding the largest flow data point the total head
decreases sharply with the same tangent α.

The gravity acceleration must be specified by a gravity type *DLOAD card
defined for the elements at stake. The material characteristic ρ can be defined
by a *DENSITY card.

The liquid is defined by the following parameters (to be specified in that or-
der on the line beneath the *FLUID SECTION, TYPE=LIQUID PUMP card):

• not used

• X1

• Y1

• X2

• Y2

• ... (maximum 16 entries per line, use more lines if you want to define more
than 7 pairs, maximum 9 pairs in total)

Example files: centheat1.

6.5.10 In/Out

At locations where mass flow can enter or leave the network an element with
node label 0 at the entry and exit, respectively, has to be specified. Its fluid
section type for liquid pipe networks must be PIPE INOUT, to be specified on
the *FLUID SECTION card. For this type there are no extra parameters.

6.6 Fluid Section Types: Open Channels

A network element is characterized by a type of fluid section. It has to be
specified on the *FLUID SECTION card unless the analysis is a pure thermo-
mechanical calculation (no calculation of pressure, mass flow or fluid depth). For
an open channel network the boundary conditions for each branch are located
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Figure 134: Channel geometry

upstream (frontwater flow) or downstream (backwater flow). These boundary
conditions are made up of special elements, such as a sluice gate or a weir.
Nearly all of these elements actually consist of pairs of elements, which ref-
erence each other. For instance, adjacent and downstream of the sluice gate
element a sluice opening element has to be defined. The upstream element of
such a pair has an additional degree of freedom attached to its middle node
to accommodate the location of any hydraulic jump which might occur in the
downstream channel branch. Therefore, all elements downstream of a pair of
such boundary elements have to reference the upstream element of the pair. In
our example, this is the sluice gate element. The friction in all elements is mod-
eled by the White-Colebrook law, unless the parameter MANNING is specified
on the *FLUID SECTION card. For details on these laws the reader is referred
to Section 6.9.18.

6.6.1 Straight Channel

The straight channel is characterized by a trapezoid cross section, the bottom
width of which can be defined to vary linearly. This is illustrated in Figure 134.
The following constants have to be specified on the line beneath the *FLUID
SECTION,TYPE=CHANNEL STRAIGHT card:

• the width b

• the slope S0 = sinφ (if S0 < −1 the slope is calculated from the coordi-
nates of the end nodes belonging to the element)

• the length L

• the trapezoid angle θ
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Figure 135: Sluice gate geometry

• the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

• the number of the upstream reference element

Example files: channel1, chanson1.

6.6.2 Sluice Gate

The sluice gate is the upstream element of a pair of boundary elements simulat-
ing a sluice. The downstream element is the sluice opening. Both are illustrated
in Figure 135. The interesting point is that the gate height hg may be part of
the backwater curve, but it does not have to. If the lower point of the gate is
higher than the fluid surface, it will not be part of the backwater curve.

If the gate door touches the water and the water curve is a frontwater curve
(curve A in Figure 135) the volumetric flow Q is given by

Q = bhg

√
2g(h− hg

√
1− S2

0), (162)

if the gate door does not touch the water and the water curve is a frontwater
curve the volumetric flow Q is given by
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Q = bhc

√
2g(h− hc

√
1− S2

0), (163)

where hc is the critical depth. If the gate door touches the water and the
water curve is a backwater curve (governed by downstream boundary conditions,
curve B in Figure 135)) the volumetric flow is given by

Q = bhg

√
2g(h− hd

√
1− S2

0). (164)

Finally, if the gate door does not touch the water and the water curve is a
backwater curve the volumetric flow is given by

Q = bhd

√
2g(h− hd

√
1− S2

0). (165)

The following constants have to be specified on the line beneath the *FLUID
SECTION,TYPE=CHANNEL SLUICE GATE card:

• the width b

• the slope S0 = sinφ (if S0 < −1 the slope is calculated from the coordi-
nates of the end nodes belonging to the element)

• the height of the gate door hg

• not used

• the number of the downstream sluice opening element

• the number of the upstream reference element, if any

The slope S0 is used in case the gate door does not touch the water surface.
The cross section of a sluice gate is supposed to be rectangular. Therefore, θ
is lacking in its definition. Notice that a sluice gate can have upstream channel
elements attached to it. In that case it is mandatory to specify an upstream
reference element.

Example files: channel1, chanson1.

6.6.3 Sluice Opening

The sluice opening element is always adjacent to a sluice gate element on its
downstream side. Both are illustrated in Figure 135. The sluice opening element
has the gate door located at its upstream end node. Since the water depth
in the downstream end node of this element should represent the depth just
downstream of the gate door, the length of this element should be chosen to
be particularly small. The following constants have to be specified on the line
beneath the *FLUID SECTION,TYPE=CHANNEL SLUICE OPENING card:
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• the width b

• the slope S0 = sinφ (if S0 < −1 the slope is calculated from the coordi-
nates of the end nodes belonging to the element)

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the trapezoid angle θ

• the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

• the number of the upstream sluice gate element

The meaning of b, S0, L and θ can be derived from Figure 134.

Example files: channel1, chanson1.

6.6.4 Weir Crest

The weir crest is the upstream element of a pair of boundary elements simulating
a weir. The corresponding downstream element is the weir slope. Both are
illustrated in Figure 136. The weir can occur in different forms such as broad-
crested weirs (left picture in the Figure) and sharp-crested weirs (right picture
in the Figure). The volumetric flow Q can be characterized by a law of the form

Q = Cb(h− p)3/2, (166)

where C is a constant. For instance, in the formula by Poleni C = 2Cd
√
2g/3,

where Cd is coefficient smaller than 1 to be measured experimentally [11]. The
following constants have to be specified on the line beneath the *FLUID SEC-
TION,TYPE=CHANNEL WEIR CREST card:
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• the width b

• the height p

• the constant C

• not used

• the number of the downstream weir slope element

• the number of the upstream reference element, if any

The cross section of the weir is supposed to be rectangular. This is impor-
tant, since a different form leads to a different exponent in Equation 166. Notice
that a weir can have upstream channel elements attached to it. In that case it
is mandatory to specify an upstream reference element.

Example files: channel7.

6.6.5 Weir slope

The weir slope is the downstream element of the boundary element pair defining
a weir. The following constants have to be specified on the line beneath the
*FLUID SECTION,TYPE=CHANNEL WEIR SLOPE card:

• the width b

• the slope S0 = sinφ (if S0 < −1 the slope is calculated from the coordi-
nates of the end nodes belonging to the element)

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the trapezoid angle θ

• the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

• the number of the upstream weir crest element

The meaning of b and θ can be derived from Figure 134. The value of S0

is used to determine the critical depth on the crest. Moreover, it is used in the
Bresse equation in case the flow is determined by the downstream conditions
(inundated crest). It should simulate the mean slope in the absence of the weir.
The length L of the weir is shown in Figure 136.

Example files: channel7.
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Figure 137: Geometry of a discontinuous slope

6.6.6 Discontinuous Slope

The discontinuous slope is the upstream element of a pair of boundary ele-
ments simulating a change in slope. The corresponding downstream element
is the discontinuous opening. Both are illustrated in Figure 137. The fol-
lowing constants have to be specified on the line beneath the *FLUID SEC-
TION,TYPE=CHANNEL DISCONTINUOUS SLOPE card:

• the width b

• S0 = sin(φ1) (Figure 137; if S0 < −1 the slope is calculated from the
coordinates of the end nodes belonging to the element)

• the length L1 (Figure 137; if L1 ≤ 0 the length is calculated from the
coordinates of the end nodes belonging to the element)

• the trapezoid angle θ

• the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

• the number of the upstream reference element

• not used

• the number of the downstream discontinuous opening element

• not used
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The length L1 is typically small compared to the length of the adjacent
channel branches.

Notice that a discontinuous slope element generally has upstream channel el-
ements attached to it. Therefore, it is always mandatory to specify an upstream
reference element.

Example files: channel6.

6.6.7 Discontinuous Opening

The discontinuous opening is the downstream element of the boundary element
pair defining a change in channel slope. The following constants have to be
specified on the line beneath the *FLUID SECTION,TYPE=CHANNEL DIS-
CONTINUOUS OPENING card:

• the width b

• S0 = sin(φ2) (Figure 137; if S0 < −1 the slope is calculated from the
coordinates of the end nodes belonging to the element)

• the length L2 (Figure 137; if L2 ≤ 0 the length is calculated from the
coordinates of the end nodes belonging to the element)

• the trapezoid angle θ

• the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

• the number of the upstream discontinuous slope element.

The length L2 is typically small compared to the length of the adjacent
channel branches.

Example files: channel6.

6.6.8 Reservoir

A reservoir is a downstream boundary condition. The reservoir element rep-
resents the part of the channel immediately upstream of the (usually vast)
reservoir. Since the backwater curve may change substantially in the neigh-
borhood of the reservoir it is advisable to choose the length of the reservoir
element to be small compared to the length of the channel branch it is part of.
The following constants have to be specified on the line beneath the *FLUID
SECTION,TYPE=CHANNEL RESERVOIR card:

• the width b

• the slope S0 = sinφ (if S0 < −1 the slope is calculated from the coordi-
nates of the end nodes belonging to the element)
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Figure 138: Geometry of a contraction

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the trapezoid angle θ

• the grain diameter ks for the White-Colebrook law or the Manning con-
stant n for the Manning law (in the latter case the user has to specify the
parameter MANNING on the *FLUID SECTION card)

• the number of the upstream reference element, i.e. the first element of the
boundary pair upstream of the channel branch connected to the reservoir.

The water depth in the downstream node of a reservoir element must be
defined by the user by means of a *BOUNDARY card (degree of freedom 2).

Example files: channel1, chanson1.

6.6.9 Contraction

The geometry of a contraction is shown in Figure 138 (view from above). Al-
though a contraction is really a discontinuity, a small fictitious length an a slope
have to be assigned. For the slope one can take the mean values of the slopes of
the adjacent channels. The following constants have to be specified on the line
beneath the *FLUID SECTION,TYPE=CHANNEL CONTRACTION card:

• the upstream width b1

• the slope S0 (if S0 < −1 zero is taken)
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Figure 139: Geometry of an enlargement

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the downstream width b2 ≤ b1

Example files: channel9, channel11.

6.6.10 Enlargement

The geometry of an enlargement is shown in Figure 139 (view from above).
Although an enlargement is really a discontinuity, a small fictitious length an a
slope have to be assigned. For the slope one can take the mean values of the
slopes of the adjacent channels. The following constants have to be specified on
the line beneath the *FLUID SECTION,TYPE=CHANNEL ENLARGEMENT
card:

• the upstream width b1

• the slope S0 (if S0 < −1 zero is taken)

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the downstream width b2 ≥ b1

Example files: channel9, channel11.
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6.6.11 Drop

The geometry of a drop is shown in Figure 140. Although a drop is really
a discontinuity, a small fictitious length an a slope have to be assigned. For
the slope one can take the mean values of the slopes of the adjacent channels.
The following constants have to be specified on the line beneath the *FLUID
SECTION,TYPE=CHANNEL DROP card:

• the width b

• the slope S0 (if S0 < −1 zero is taken)

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the drop size d

Example files: channel10, channel12.

6.6.12 Step

The geometry of a step is the inverse of the drop geometry. Although a step is
really a discontinuity, a small fictitious length an a slope have to be assigned.
For the slope one can take the mean values of the slopes of the adjacent channels.
The following constants have to be specified on the line beneath the *FLUID
SECTION,TYPE=CHANNEL STEP card:

• the width b

• the slope S0 (if S0 < −1 zero is taken)



218 6 THEORY

• the length L (if L ≤ 0 the length is calculated from the coordinates of the
end nodes belonging to the element)

• the step size d

Example files: channel10, channel12.

6.6.13 In/Out

At locations where mass flow can enter or leave the network an element with
node label 0 at the entry and exit, respectively, has to be specified. Its fluid
section type for liquid channel networks must be CHANNEL INOUT, to be
specified on the *FLUID SECTION card. For this type there are no extra
parameters.

6.7 Boundary conditions

6.7.1 Single point constraints (SPC)

In a single point constraint one or more degrees of freedom are fixed for a given
node. The prescribed value can be zero or nonzero. Nonzero SPC’s cannot
be defined outside a step. Zero SPC’s can be defined inside or outside a step.
SPC’s are defined with the keyword *BOUNDARY. The mechanical degrees of
freedom are labeld 1 through 6 (1 = translation in x, 2 = translation in y, 3 =
translation in z, 4 = rotation about x, 5 = rotation about y, 6 = rotation about
z), the thermal degree of freedom is labeled 11. Rotational degrees of freedom
can be applied to beam and shell elements only.

6.7.2 Multiple point constraints (MPC)

Multiple point constraints establish a relationship between degrees of freedom in
one or more nodes. In this section, only linear relationships are considered (for
nonlinear relations look at the keyword *MPC and section 9.7).They must be
defined with the keyword *EQUATION before the first step. An inhomogeneous
linear relationship can be defined by assigning the inhomogeneous term to one
of the degrees of freedom (DOF) of a dummy node (using a SPC) and including
this DOF in the MPC, thus homogenizing it. The numbering of the DOF’s is
the same as for SPC’s (cf previous section). It is not allowed to mix thermal
and mechanical degrees of freedom within one and the same MPC.

6.7.3 Kinematic and Distributing Coupling

In this section the theoretical background of the keyword *COUPLING fol-
lowed by *KINEMATIC or *DISTRIBUTING is covered, and not the keyword
DISTRIBUTING COUPLING.

Coupling constraints generally lead to nonlinear equations. In linear calcu-
lations (without the parameter NLGEOM on the *STEP card) these equations
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are linearized once and solved. In nonlinear calculations, iterations are per-
formed in each of which the equations are linearized at the momentary solution
point until convergence.

Coupling constraints apply to all nodes of a surface given by the user. In
a kinematic coupling constraint by the user specified degrees of freedom in
these nodes follow the rigid body motion about a reference point (also given
by the user). In CalculiX the rigid body equations elaborated in section 3.5 of
[19] are implemented. Since CalculiX does not have internal rotational degrees
of freedom, the translational degrees of freedom of an extra node (rotational
node) are used for that purpose, cf. *RIGID BODY. Therefore, in the case of
kinematic coupling the following equations are set up:

• 3 equations connecting the rotational degrees of freedom of the reference
node to the translational degrees of freedom of an extra rotational node.

• per node belonging to the surface at stake, for each degree of freedom
specified by the user (maximum 3) a rigid body equation.

This applies if no ORIENTATION was used on the *COUPLING card, i.e.
the specified degrees of freedom apply to the global coordinate system. If an
ORIENTATION parameter is used, the degrees of freedom apply in a local
system. Then, the nodes belonging to the surface at stake (let us give them
the numbers 1,2,3...) are duplicated (let us call these d1,d2,d3.....) and the
following equations are set up:

• 3 equations connecting the rotational degrees of freedom of the reference
node to the translational degrees of freedom of an extra rotational node.

• per duplicated node belonging to the surface at stake, a rigid body equa-
tion for each translational degree of freedom (i.e. 3 per duplicated node).

• per node an equation equating the by the user specified degrees of freedom
in the local system (maximum 3) to the same ones in the duplicated nodes.

For distributing coupling the area weighted mean translations (all three of
them) and the rotations specified by the user are connected to the corresponding
translations/rotations of a reference node. In order to take the weighting into
account, all nodes belonging to the surface (let us give them the numbers 1,2,3...)
are duplicated (let us call these d1,d2,d3....). Now, the following equations are
generated:

• 3 equations connecting the rotational degrees of freedom of the reference
node to the translational degrees of freedom of an extra rotational node.

• for each node and for each translational degree of freedom in this node an
equation connecting this degree of freedom with the area-weighted corre-
sponding degree of freedom in the duplicated node. If there are n nodes in
the surface and the area corresponding to node i is Ai then the equation
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for the first node and the displacement u in the global direction x would
run like:

u1 =

∑
iAi
nA1

ud1 . (167)

• 3 equations connecting the mean translation of the duplicated nodes to
the translation of the refererence node, e.g. for u:

∑

i

udi = nureference node. (168)

• as many equations as rotational degrees of freedom specified by the user
linking the mean rotation of the duplicated nodes to the rotation of the
reference node. For these equations the user is referred to section 3.6 in
[19].

If an ORIENTATION is applied to a distributing coupling definition the
mean rotation equations are reformulated for the local rotation axis.

6.7.4 Mathematical description of a knot

Knots are used in the expansion of 1d and 2d elements into three dimensions,
see Sections 6.2.14 and 6.2.33.

The mathematical description of a knot was inspired by the polar decom-
position theorem stating that the deformed state dx of an infinitesimal vector
dX in a continuum can be decomposed into a stretch followed by a rotation
[19],[21]:

dx = F · dX = R ·U · dX, (169)

where F is the deformation gradient, R is the rotation tensor and U is the
right stretch tensor. Applying this to a finite vector extending from the center
of gravity of a knot q to any expanded node pi yields

(pi + ui)− (q +w) = R ·U · (pi − q), (170)

where ui and w are the deformation of the node and the deformation of the
center of gravity, respectively. This can be rewritten as

ui = w + (R ·U − I) · (pi − q), (171)

showing that the deformation of a node belonging to a knot can be decomposed
in a translation of the knot’s center of gravity followed by a stretch and a rotation
of the connecting vector. Although this vector has finite dimensions, its size is
usually small compared to the overall element length since it corresponds to
the thickness of the shells or beams. In three dimensions U corresponds to a
symmetric 3 x 3 matrix (6 degrees of freedom) and R to an orthogonal 3 x 3
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matrix (3 degrees of freedom) yielding a total of 9 degrees of freedom. Notice
that the stretch tensor can be written as a function of its principal values λi
and principal directions N i as follows:

U =
∑

i

λiN
i ⊗N i. (172)

Beam knot The expansion of a single beam node leads to a planar set of
nodes. Therefore, the stretch of a knot based on this expansion is reduced to
the stretch along the two principal directions in that plane. The stretch in the
direction of the beam axis is not relevant. Let us assume that T1 is a unit vector
tangent to the local beam axis and E1,E2 are two unit vectors in the expansion
plane such that E1 ·E2 = 0 and E1 ×E2 = T1. Then, the stretch in the plane
can be characterized by vectors T2 and T3 along its principal directions:

T2 = ξ(E1 cosϕ+E2 sinϕ) (173)

T3 = η(−E1 sinϕ+E2 cosϕ) (174)

leading to three stretch degrees of freedom ϕ, ξ and η. ϕ is the angle T2 makes
with E1, ξ is the stretch along T2 and η is the stretch along T3. The right
stretch tensor U can now be written as:

U = T1 ⊗ T1 + T2 ⊗ T2 + T3 ⊗ T3

= T1 ⊗ T1 + (ξ2 cos2 ϕ+ η2 sin2 ϕ)E1 ⊗E1 + (ξ2 sin2 ϕ+ η2 cos2 ϕ)E2 ⊗E2

+ (ξ2 − η2) cosϕ sinϕ(E1 ⊗E2 +E2 ⊗E1). (175)

The rotation vector reads in component notation

Rij = δij cos θ + sin θeikjnk + (1− cos θ)ninj. (176)

Here, θ is a vector along the rotation axis satisfying θ = θn, ‖n‖ = 1. As-
suming that at some point in the calculation the knot is characterized by
(w0, θ0, ϕ0, ξ0, η0), a change (∆w,∆θ,∆ϕ,∆ξ,∆η) leads to (cf. Equation
(171)):

u0 + ∆u = w0 + ∆w+[R(θ0 + ∆θ)·U(ϕ0+∆ϕ, ξ0+∆ξ, η0+∆η)−I]·(p−q).
(177)

Taylor expansion of R:

R(θ0 + ∆θ) = R(θ0) +
∂R

∂θ

∣∣∣∣
θ0

·∆θ + ..., (178)

and similar for U and keeping linear terms only leads to the following equation:
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∆u =∆w +

[
∂R

∂θ

∣∣∣∣
θ0

·∆θ

]
·U(ϕ0, ξ0, η0) · (p− q)

+R(θ0) ·
[
∂U

∂ϕ

∣∣∣∣
ϕ0

∆ϕ+
∂U

∂ξ

∣∣∣∣
ξ0

∆ξ +
∂U

∂η

∣∣∣∣
η0

∆η

]
· (p− q)

+w0 + [R(θ0) ·U(ϕ0, ξ0, η0)− I] · (p− q)− u0. (179)

The latter equation is a inhomogeneous linear equation linking the change in
displacements of an arbitrary node belonging to a knot to the change in the
knot parameters (translation, rotation and stretch). This equation is taken into
account at the construction phase of the governing equations. In that way the
expanded degrees of freedom, being dependent, never show up in the equations
to solve.

Shell knot The expansion of a shell node leads to a set of nodes lying on a
straight line. Therefore, the stretch tensor U is reduced to the stretch along
this line. Let T1 be a unit vector parallel to the expansion and T2 and T3 unit
vectors such that T2 · T3 = 0 and T1 × T2 = T3. Then U can be written as:

U = αT1 ⊗ T1 + T2 ⊗ T2 + T3 ⊗ T3 (180)

leading to one stretch parameter α. Since the stretch along T2 and T3 is imma-
terial, Equation (180) can also be replaced by

U = αT1 ⊗ T1 + αT2 ⊗ T2 + αT3 ⊗ T3 = αI (181)

representing an isotropic expansion. Equation (179) can now be replaced by

∆u =∆w + α0

[
∂R

∂θ

∣∣∣∣
θ0

·∆θ

]
· (p− q) + ∆αR(θ0) · (p− q)

+w0 + [α0R(θ0)− I] · (p− q)− u0. (182)

Consequently, a knot resulting from a shell expansion is characterized by 3
translational degrees of freedom, 3 rotational degrees of freedom and 1 stretch
degree of freedom.

Arbitrary knot A knot generally consists of one or more expansions of one
and the same node, leading to a cloud of nodes pi. In the previous two sections
knots were considered consisting of the expanded nodes of just one beam element
or just one shell element. Generally, a knot will be the result of several beam and
shell elements leading to a cloud of nodes in three-dimensional space. In order to
determine the dimensionality of this cloud the first and second order moments
of inertia are calculated leading to the location of the center of gravity and the
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second order moments about the center of gravity. The principal values of the
second order moment matrix can be used to catalogue the dimensionality of the
nodal cloud: if the lowest two principal values are zero the dimensionality is one
(i.e. the nodes lie on a line as for the shell knot), if only the lowest one is zero the
dimensionality is two (i.e. the nodes lie in a plane as for a beam knot). Else,
the dimensionality is three. If the dimensionality corresponds to the highest
dimensionality of the single elements involved, the formulation corresponding
to that dimensionality is used.

If the dimensionality of the nodal cloud exceeds the highest dimensionality
of the single elements, the shell knot formulation (isotropic expansion) is used.
The reason for this is that the knot is supposed to be physically rigid, i.e. the
relative angular position of the constituing elements should not change during
deformation. Using the beam knot formulation leads to anisotropic stretching,
which changes this relative angular position.

6.7.5 Node-to-Face Penalty Contact

General considerations Contact is a strongly nonlinear kind of boundary
condition, preventing bodies to penetrate each other. The contact definitions
implemented in CalculiX are a node-to-face penalty method, a face-to-face
penalty method and a mortar method, all of which are based on a pairwise
interaction of surfaces. They cannot be mixed in one and the same input deck.
In the present section the node-to-face penalty method is explained. For details
on the penalty method the reader is referred to [91] and [43].

Each pair of interacting surfaces consists of a dependent surface and an
independent surface. The dependent surface (= slave) may be defined based
on nodes or element faces, the independent surface (= master) must consist of
element faces (Figure 141). The element faces within one independent surface
must be such, that any edge of any face has at most one neighboring face.
Usually, the mesh on the dependent side should be at least as fine as on the
independent side. As many pairs can be defined as needed. A contact pair is
defined by the keyword card *CONTACT PAIR.

If the elements adjacent to the slave surface are quadratic elements (e.g.
C3D20, C3D10 or C3D15), convergence may be slower. This especially applies
to elements having quadrilateral faces in the slave surface. A uniform pressure
on a quadratic (8-node) quadrilateral face leads to compressive forces in the
midnodes and tensile forces in the vertex nodes [19] (with weights of 1/3 and
-1/12, respectively). The tensile forces in the corner nodes usually lead to di-
vergence if this node belongs to a node-to-face contact element. Therefore, in
CalculiX the weights are modified into 24/100 and 1/100, respectively. In gen-
eral, node-to-face contact is not recommended for quadratic elements. Instead,
face-to-face penalty contact or mortar contact should be used.

In CalculiX, penalty contact is modeled by the generation of (non)linear
spring elements. To this end, for each node on the dependent surface, a face
on the independent surface is localized such that it contains the orthogonal
projection of the node. If such is face is found a nonlinear spring element is
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dependent nodes

independent faces

Figure 141: Definition of the dependent nodal surface and the independent
element face surface

Figure 142: Creation of a node-to-face penalty contact element
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generated consisting of the dependent node and all vertex nodes belonging to the
independent face (Figure 142). Depending of the kind of face the contact spring
element contains 4, 5, 7 or 9 nodes. The properties of the spring are defined
by a *SURFACE INTERACTION definition, whose name must be specified on
the *CONTACT PAIR card.

The user can determine how often during the calculation the pairing of the
dependent nodes with the independent faces takes place. If the user specifies
the parameter SMALL SLIDING on the *CONTACT PAIR card, the pairing is
done once per increment. If this parameter is not selected, the pairing is checked
every iteration for all iterations below 9, for iterations 9 and higher the contact
elements are frozen to improve convergence. Deactivating SMALL SLIDING is
useful if the sliding is particularly large.

The *SURFACE INTERACTION keyword card is very similar to the *MATERIAL
card: it starts the definition of interaction properties in the same way a *MATE-
RIAL card starts the definition of material properties. Whereas material prop-
erties are characterized by cards such as *DENSITY or *ELASTIC, interaction
properties are denoted by the *SURFACE BEHAVIOR and the *FRICTION
card. All cards beneath a *SURFACE INTERACTION card are interpreted
as belonging to the surface interaction definition until a keyword card is en-
countered which is not a surface interaction description card. At that point, the
surface interaction description is considered to be finished. Consequently, an in-
teraction description is a closed block in the same way as a material description,
Figure 3.

The *SURFACE BEHAVIOR card defines the linear (actually quasi bilinear
as illustrated by Figure 144), exponential, or piecewice linear normal (i.e. locally
perpendicular onto the master surface) behavior of the spring element. The
pressure p exerted on the independent face of a contact spring element with
exponential behavior is given by

p = p0 exp(βd), (183)

where p0 is the pressure at zero clearance, β is a coefficient and d is the
overclosure (penetration of the slave node into the master side; a negative pene-
tration is a clearance). Instead of having to specify β, which lacks an immediate
physical significance, the user is expected to specify c0 which is the clearance at
which the pressure is 1 % of p0. From this β can be calculated:

β =
ln 100

c0
. (184)

The pressure curve for p0 = 1 and c0 = 0.5 looks like in Figure 143. A large
value of c0 leads to soft contact, i.e. large penetrations can occur, hard contact
is modeled by a small value of c0. Hard contact leads to slower convergence than
soft contact. If the distance of the slave node to the master surface exceeds c0
no contact spring element is generated. For exponential behavior the user has
to specify c0 and p0 underneath the *SURFACE BEHAVIOR card.
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Figure 143: Exponential pressure-overclosure relationship
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Figure 144: Linear pressure-overclosure relationship
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In case of a linear contact spring the pressure-overclosure relationship is
given by

p = Kd

[
1

2
+

1

π
tan−1

(
d

ǫ

)]
, (185)

were ǫ is a small number. The term in square brackets makes sure that the
value of p is very small for d ≤ 0. In general, a linear contact spring formulation
will converge more easily than an exponential behavior. The pressure curve for
K = 103 and ǫ = 10−2 looks like in Figure 144. A large value of K leads to
hard contact. To obtain good results K should typically be 5 to 50 times the
E-modulus of the adjacent materials. If one knows the roughness of the contact
surfaces in the form of a peak-to-valley distance dpv and the maximum pressure
pmax to expect, one might estimate the spring constant by K = pmax/dpv. The
units of K are [Force]/[Length]3.

Notice that for a large negative overclosure a tension σ∞ results (for d→ −∞
), equal to Kǫ/π. The value of σ∞ has to be specified by the user. A good
value is about 0.25 % of the maximum expected stress in the model. CalculiX
calculates ǫ from σ∞ and K.

For a linear contact spring the distance beyond which no contact spring
element is generated is defined by c0

√
spring area if the spring area exceeds

zero, and 10−10 otherwise. The default for c0 is 10−3 (dimensionless) but may
be changed by the user. For a linear pressure-overclosure relationship the user
has to specify K and σ∞ underneath the *SURFACE BEHAVIOR card. c0 is
optional, and may be entered as the third value on the same line.

The pressure-overclosure behavior can also be defined as a piecewise linear
function (PRESSURE-OVERCLOSURE=TABULAR). In this way the user can
use experimental data to define the curve. For a tabular spring the distance be-
yond which no contact spring element is generated is defined by 10−3

√
spring area

if the spring area exceeds zero, and 10−10 otherwise. For tabular behavior the
user has to enter pressure-overclosure pairs, one on a line.

The normal spring force is defined as the pressure multiplied by the spring
area. The spring area is assigned to the slave nodes and defined by 1/4 (linear
quadrilateral faces) or 1/3 (linear triangular faces) of the slave faces the slave
node belongs to. For quadratic quadrilateral faces the weights are 24/100 for
middle nodes and 1/100 for corner nodes. For quadratic triangular faces these
weight are 1/3 and 0, respectively.

The tangential spring force is defined as the shear stress multiplied by the
spring area. The shear stress is a function of the relative displacement ‖t‖
between the slave node and the master face. This function is shown in Figure
145. It consists of a stick range, in which the shear stress is a linear function
of the relative tangential displacement, and a slip range, for which the shear
stress is a function of the local pressure only. User input consists of the friction
coefficient µ which is dimensionless and usually takes values between 0.1 and
0.5 and the stick slope λ which has the dimension of force per unit of volume
and should be chosen about 100 times smaller than the spring constant.
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Figure 145: Shear stress versus relative tangential displacement

The friction can be redefined in all but the first step by the *CHANGE FRICTION
keyword card. In the same way contact pairs can be activated or deactivated in
all but the first step by using the *MODEL CHANGE card.

If CalculiX detects an overlap of the contacting surfaces at the start of a
step, the overlap is completely taken into account at the start of the step for
a dynamic calculation (*DYNAMIC or *MODAL DYNAMIC) whereas it is
linearly ramped for a static calculation (*STATIC).

Finally a few useful rules if you experience convergence problems:

• Deactivate NLGEOM (i.e. do not use NLGEOM on the *STEP card).

• Try SMALL SLIDING first, and then large sliding, if applicable.

• Try a linear pressure-overclosure relationship first (instead of exponential),
with a stiffness constant about 5 to 50 times Young’s modulus of the
adjacent materials.

• Define your slave surface based on faces, not on nodes. This can be espe-
cially helpful if you use quadratic elements.

• Make sure that the mesh density on the slave side is at least as fine as on
the master side, preferably finer.

• Deactivate friction first.

Notice that the parameter CONTACT ELEMENTS on the *NODE FILE,
*EL FILE, NODE OUTPUT, or *ELEMENT OUTPUT card stores the contact
elements which have been generated in each iteration as a set with the name
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contactelements stα inβ atγ itδ (where α is the step number, β the increment
number, γ the attempt number and δ the iteration number) in a file jobname.cel.
When opening the frd file with CalculiX GraphiX this file can be read with the
command “read jobname.cel inp” and visualized by plotting the elements in the
appropriate set. These elements are the contact spring elements and connect
the slave nodes with the corresponding master surfaces. In case of contact these
elements will be very flat. Moving the parts apart (by a translation) will improve
the visualization. Using the screen up and screen down key one can check how
contact evolved during the calculation. Looking at where contact elements have
been generated may help localizing the problem in case of divergence.

The number of contact elements generated is also listed in the screen output
for each iteration in which contact was established anew, i.e. for each iteration
≤ 8 if the SMALL SLIDING parameter was not used on the *CONTACT PAIR
card, else only in the first iteration of each increment.

Normal contact stiffness A node-to-face contact element consists of a slave
node connected to a master face (cf. Figure 142). Therefore, it consists of
1 + nm nodes, where nm is the number of nodes belonging to the master face.
The stiffness matrix of a finite element is the derivative of the internal forces in
each of the nodes w.r.t. the displacements of each of the nodes. Therefore, we
need to determine the internal force in the nodes.

Denoting the position of the slave node by p and the position of the projec-
tion onto the master face by q, the vector connecting both satisfies:

r = p− q. (186)

The clearance r at this position can be described by

r = r · n (187)

where n is the local normal on the master face. Denoting the nodes belonging
to the master face by qi, i = 1, nm and the local coordinates within the face by
ξ and η, one can write:

q =
∑

j

ϕj(ξ, η)qj , (188)

m =
∂q

∂ξ
× ∂q

∂η
(189)

and

n =
m

‖m‖ . (190)

m is the Jacobian vector on the surface. The internal force on node p is now
given by

Fp = −f(r)nap, (191)
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where f is the pressure versus clearance function selected by the user and ap is
the slave area for which node p is representative. If the slave node belongs to
N contact slave faces i with area Ai, this area may be calculated as:

ap =

N∑

i=1

Ai/nsi. (192)

The minus sign in Equation (191) stems from the fact that the internal force
is minus the external force (the external force is the force the master face exerts
on the slave node). Replacing the normal in Equation (191) by the Jacobian
vector devided by its norm and taking the derivative w.r.t. ui, where i can be
the slave node or any node belonging to the master face one obtains:

1

ap

∂Fp

∂ui

= − m

‖m‖ ⊗ ∂f

∂r

[
∂

∂ui

(
m

‖m‖ · r
)]

− f

‖m‖
∂m

∂ui

+
f

‖m‖2m⊗ ∂‖m‖
∂ui

.

(193)
Since

∂

∂ui

(
m

‖m‖ · r
)

=
1

‖m‖ r · ∂m
∂ui

− r

‖m‖
∂‖m‖
∂ui

+
m

‖m‖ · ∂r
∂ui

, (194)

the above equation can be rewritten as

1

ap

∂Fp

∂ui

=−
(
∂f

∂r

1

‖m‖2
)
m⊗

[
r · ∂m

∂ui

+m · ∂r

∂ui

− r
∂‖m‖
∂ui

]

+
f

‖m‖

[
n⊗ ∂‖m‖

∂ui

− ∂m

∂ui

]
. (195)

Consequently, the derivatives which are left to be determined are ∂m/∂ui,
∂r/∂ui and ∂‖m‖/∂ui.

The derivative of m is obtained by considering Equation (189), which can
also be written as:

m =
∑

j

∑

k

∂ϕj
∂ξ

∂ϕk
∂η

[qj × qk]. (196)

Derivation yields (notice that ξ and η are a function of ui, and that ∂qi/∂uj =
δijI) :

∂m

∂ui

=

[
∂2q

∂ξ2
× ∂q

∂η
+
∂q

∂ξ
× ∂2q

∂ξ∂η

]
⊗ ∂ξ

∂ui

+

[
∂q

∂ξ
× ∂2q

∂η
+

∂2q

∂ξ∂η
× ∂q

∂η

]
⊗ ∂η

∂ui

+

nm∑

j=1

nm∑

k=1

[
∂ϕj
∂ξ

∂ϕk
∂η

− ∂ϕk
∂ξ

∂ϕj
∂η

]
(I × qk)δij , i = 1, ..nm; p (197)
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The derivatives ∂ξ/∂ui and ∂η/∂ui on the right hand side are unknown and
will be determined later on. They represent the change of ξ and η whenever
any of the ui is changed, k being the slave node or any of the nodes belonging
to the master face. Recall that the value of ξ and η is obtained by orthogonal
projection of the slave node on the master face.

Combining Equations (186) and (188) to obtain r, the derivative w.r.t. ui

can be written as:

∂r

∂ui

= δipI −
[
∂q

∂ξ
⊗ ∂ξ

∂ui

+
∂q

∂η
⊗ ∂η

∂ui

+ ϕi(1− δip)I

]
, (198)

where p represents the slave node.

Finally, the derivative of the norm of a vector can be written as a function
of the derivative of the vector itself:

∂‖m‖
∂ui

=
m

‖m‖ · ∂m
∂ui

. (199)

The only derivatives left to determine are the derivatives of ξ and η w.r.t.
ui. Requiring that q is the orthogonal projection of p onto the master face
is equivalent to expressing that the connecting vector r is orthogonal to the
vectors ∂q/∂ξ and ∂q/∂η, which are tangent to the master surface.

Now,

r ⊥ ∂q

∂ξ
(200)

can be rewritten as

r · ∂q
∂ξ

= 0 (201)

or

[
p−

∑

i

ϕi(ξ, η)qi

]
·
[
∑

i

∂ϕi
∂ξ

qi

]
= 0. (202)

Differentation of the above expression leads to

[
dp−

∑

i

(
∂ϕi
∂ξ

qidξ +
∂ϕi
∂η

qidη + ϕidqi

)]
· qξ+

r ·
[
∑

i

(
∂2ϕi
∂ξ2

qidξ +
∂2ϕi
∂ξ∂η

qidη +
∂ϕi
∂ξ

dqi

)]
= 0 (203)

where qξ is the derivative of q w.r.t. ξ. The above equation is equivalent to:
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(dp− qξdξ − qηdη −
∑

i

ϕidqi) · qξ+

r · (qξξdξ + qξηdη +
∑

i

∂ϕi
∂ξ

dqi) = 0. (204)

One finally arrives at:

(−qξ · qξ + r · qξξ)dξ + (−qη · qξ + r · qξη)dη =

− qξ · dp+
∑

i

[
(ϕiqξ −

∂ϕi
∂ξ

r) · dqi
]

(205)

and similarly for the tangent in η-direction:

(−qξ · qη + r · qξη)dξ + (−qη · qη + r · qηη)dη =

− qη · dp+
∑

i

[
(ϕiqη −

∂ϕi
∂η

r) · dqi
]

(206)

From this ∂ξ/∂qi, ∂ξ/∂p and so on can be determined. Indeed, suppose that
all dqi, i = 1, .., nm = 0 and dpy = dpz = 0. Then, the right hand side of the
above equations reduces to −qξxdpx and −qηxdpx and one ends up with two
equations in the two unknowns ∂ξ/∂px and ∂η/∂px. Once ∂ξ/∂p is determined
one automatically obtains ∂ξ/∂up since

∂ξ

∂p
=

∂ξ

∂up

, (207)

and similarly for the other derivatives. This concludes the derivation of ∂F p/∂ui.
Since

Fj = −ϕj(ξ, η)Fp, (208)

one obtains:

∂Fj

∂ui

= −Fp ⊗
[
∂ϕj
∂ξ

∂ξ

∂ui

+
∂ϕj
∂η

∂η

∂ui

]
− ϕj

∂Fp

∂ui

(209)

for the derivatives of the forces in the master nodes.

Tangent contact stiffness To find the tangent contact stiffness matrix,
please look at Figure 146, part a). At the beginning of a concrete time in-
crement, characterized by time tn, the slave node at position pn corresponds
to the projection vector qn on the master side. At the end of the time incre-
ment, characterized by time tn+1 both have moved to positions pn+1 and qn+1,
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Figure 146: Visualization of the tangential differential displacements
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respectively. The differential displacement between slave and master surface
changed during this increment by the vector s satisfying:

s = (pn+1 − qn+1)− (pn − qn). (210)

Here, qn+1 satisfies

qn+1 =
∑

j

ϕj(ξ
m
n , η

m
n )qjn+1. (211)

Since (the dependency of ϕj on ξ and η is dropped to simplify the notation)

pn = X + un, (212)

pn+1 = X + un+1, (213)

qn =
∑

j

ϕj [Xj + (uj)n] , (214)

qn+1 =
∑

j

ϕj [Xj + (uj)n+1] , (215)

this also amounts to

s = un+1 −
∑

j

ϕj(uj)n+1 −


un −

∑

j

ϕj(uj)n


 . (216)

Notice that the local coordinates take the values of time tn (the superscript
m denotes iteration m within the increment). The differential tangential dis-
placement now amounts to:

t ≡ tn+1 = tn + s− sn, (217)

where

s = s · n. (218)

Derivation w.r.t. ui satisfies (straightforward differentiation):

∂t

∂ui

=
∂s

∂ui

− n⊗ ∂s

∂ui

− s
∂n

∂ui

(219)

∂s

∂ui

=
s

‖m‖ · ∂m
∂ui

− s

‖m‖
∂‖m‖
ui

+
m

‖m‖ · ∂s
∂ui

(220)

and

∂n

∂ui

=
1

‖m‖
∂m

∂ui

− 1

‖m‖2m⊗ ∂‖m‖
ui

. (221)
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The derivative of s w.r.t. ui can be obtained from the derivative of r

w.r.t. ui by keeping ξ and η fixed (notice that the derivative is taken at tn+1,
consequently, all derivatives of values at time tn disappear):

∂s

∂ui

= δipI − ϕi(1− δip)I. (222)

Physically, the tangential contact equations are as follows (written at the
location of slave node p):

• an additive decomposition of the differential tangential displacement in
stick te and slip tp :

t = te + tp. (223)

• a stick law (Kt ≡ λap, where λ is the stick slope and ap the representative
slave area for the slave node at stake) defining the tangential force exerted
by the slave side on the master side at the location of slave node p:

FT = Ktt
e. (224)

• a Coulomb slip limit:

‖FT ‖ ≤ µ‖FN‖ (225)

• a slip evolution equation:

ṫp = γ̇
FT

‖FT ‖
(226)

First, a difference form of the additive decomposition of the differential tan-
gential displacement is derived. Starting from

t = te + tp, (227)

one obtains after taking the time derivative:

ṫ = ṫe + ṫp. (228)

Substituting the slip evolution equation leads to:

γ̇
FT

‖FT ‖
= ṫ− ṫe, (229)

and after multiplying with Kt:

Ktγ̇
FT

‖FT ‖
= Ktṫ−Ktṫ

e (230)
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Writing this equation at tn+1, using finite differences (backwards Euler), one
gets:

Kt∆γn+1
FT n+1

‖FT n+1‖
= Kt∆tn+1 −Ktt

e
n+1 +Ktt

e
n, (231)

where ∆γn+1 ≡ γ̇n+1∆t and ∆tn+1 ≡ tn+1 − tn. The parameter Kt is assumed
to be independent of time.

Now, the radial return algorithm will be described to solve the governing
equations. Assume that the solution at time tn is known, i.e. ten and tpn are
known. Using the stick law the tangential forc FT n can be calculated. Now
we would like to know these variables at time tn+1, given the total differential
tangential displacement tn+1. At first we construct a trial tangential force
FT

trial
n+1 which is the force which arises at time tn+1 assuming that no slip takes

place from tn till tn+1. This assumption is equivalent to tpn+1 = tpn. Therefore,
the trial tangential force satisfies (cf. the stick law):

FT
trial
n+1 = Kt(tn+1 − tpn). (232)

Now, this can also be written as:

FT
trial
n+1 = Kt(tn+1 − tn + tn − tpn). (233)

or

FT
trial
n+1 = Kt∆tn+1 +Ktt

e
n. (234)

Using Equation (231) this is equivalent to:

FT
trial
n+1 = Kt∆γn+1

FT n+1

‖FT n+1‖
+Ktt

e
n+1, (235)

or

FT
trial
n+1 = (Kt∆γn+1

1

‖FT n+1‖
+ 1)FT n+1. (236)

From the last equation one obtains

FT
trial
n+1 ‖ FT n+1 (237)

and, since the terms in brackets in Equation (236) are both positive:

‖FT
trial
n+1 ‖ = Kt∆γn+1 + ‖FT n+1‖. (238)

The only equation which is left to be satisfied is the Coulomb slip limit. Two
possibilities arise:
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1. ‖FT
trial
n+1 ‖ ≤ µ‖FNn+1‖.

In that case the Coulomb slip limit is satisfied and we have found the
solution:

FT n+1 = FT
trial
n+1 = Kt(tn+1 − tpn) (239)

and

∂FT n+1

∂tn+1
= KtI. (240)

No extra slip occurred from tn to tn+1.

2. ‖FT
trial
n+1 ‖ > µ‖FNn+1‖.

In that case we project the solution back onto the slip surface and require
‖FT n+1‖ = µ‖FNn+1‖. Using Equation (238) this leads to the following
expression for the increase of the consistency parameter γ:

∆γn+1 =
‖FT

trial
n+1 ‖ − µ‖FNn+1‖

Kt
, (241)

which can be used to update tp (by using the slip evolution equation):

∆tp = ∆γn+1
FT n+1

‖FT n+1‖
= ∆γn+1

FT
trial
n+1

‖FT
trial
n+1 ‖

(242)

The tangential force can be written as:

FT n+1 = ‖FT n+1‖
FT n+1

‖FT n+1‖
= µ‖FNn+1‖

FT
trial
n+1

‖FT
trial
n+1 ‖

. (243)

Now since

∂‖a‖
∂b

=
a

‖a‖ · ∂a
∂b

(244)

and

∂

∂b

(
a

‖a‖

)
=

1

‖a‖

[
I −

(
a

‖a‖

)
⊗
(

a

‖a‖

)]
· ∂a
∂b
, (245)

where a and b are vectors, one obtains for the derivative of the tangential
force:
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∂FT n+1

∂tn+1
= µξn+1 ⊗

[
FNn+1

‖FNn+1‖
· ∂FNn+1

∂tn+1

]

+ µ
‖FNn+1‖
‖FT

trial
n+1 ‖

[I − ξn+1 ⊗ ξn+1] ·
∂FT

trial
n+1

∂tn+1,
(246)

where

ξn+1 ≡ FT
trial
n+1

‖FT
trial
n+1 ‖

. (247)

One finally arrives at (using Equation (240)

∂FT n+1

∂uin+1

= µξn+1 ⊗
[
−n · ∂FNn+1

∂uin+1

]

+ µ
‖FNn+1‖
‖FT

trial
n+1 ‖

[I − ξn+1 ⊗ ξn+1] ·Kt
∂tn+1

∂uin+1.
(248)

All quantities on the right hand side are known now (cf. Equation (195)
and Equation (219)).

In CalculiX, for node-to-face contact, Equation (210) is reformulated and
simplified. It is reformulated in the sense that qn+1 is assumed to be the
projection of pn+1 and qn is written as (cf. Figure 146, part b))

qn =
∑

j

ϕj(ξ
m
n+1, η

m
n+1)qjn. (249)

Part a) and part b) of the figure are really equivalent, they just represent
the same facts from a different point of view. In part a) the projection on
the master surface is performed at time tn, and the differential displace-
ment is calculated at time tn+1, in part b) the projection is done at time
tn+1 and the differential displacement is calculated at time tn. Now, the
actual position can be written as the sum of the undeformed position and
the deformation, i.e. p = (X + v)s and q = (X + v)m leading to:

s = (X+v)sn+1−(X+v)mn+1(ξ
m
n+1, η

m
n+1)−(X+v)sn+(X+v)mn (ξmn+1, η

m
n+1).
(250)

Since the undeformed position is no function of time it drops out:

s = vsn+1 − vmn+1(ξ
m
n+1, η

m
n+1)− vsn + vmn (ξmn+1, η

m
n+1) (251)
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Figure 147: Creation of a face-to-face penalty contact element

or:

s = vsn+1 − vmn+1(ξ
m
n+1, η

m
n+1)− vsn + vmn (ξmn , η

m
n ) (252)

+ vmn (ξmn+1, η
m
n+1)− vmn (ξmn , η

m
n ) (253)

Now, the last two terms are dropped, i.e. it is assumed that the differential
deformation at time tn between positions (ξmn , η

m
n ) and (ξmn+1, η

m
n+1) is

neglegible compared to the differential motion from tn to tn+1. Then the
expression for s simplifies to:

s = vsn+1 − vmn+1(ξ
m
n+1, η

m
n+1)− vsn + vmn (ξmn , η

m
n ), (254)

and the only quantity to be stored is the difference in deformation be-
tween p and q at the actual time and at the time of the beginning of the
increment.

6.7.6 Face-to-Face Penalty Contact

General considerations In the face-to-face penalty contact formulation the
spring element which was described in the previous section is now applied be-
tween an integration point of a slave face and a master face (spring in Figure
147). The contact force at the integration point is subsequently transferred to
the nodes of the slave face. This results in contact spring elements connecting
a slave face with a master face (full lines in Figure 147). The integration points
in the slave faces are not the ordinary Gauss points. Instead, the master and
slave mesh are put on top of each other, the common areas, which are polygons
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Figure 148: Integration points resulting from the cutting of one master face (big
square) with several slave faces (small, slanted squares)

(sides of quadratic elements are approximated by piecewise linear lines), are
identified and triangulated. For each triangle a 7-node scheme is used (Figure
148). This can result to up to 100 or more integration points within one slave
face. It usually leads to a very smooth pressure distribution. Furthermore, it is
now irrelevant which side is defined as master and which as slave. In the present
formulation the following approximations are used:

• the linear pressure-overclosure relationship is truly bilinear, i.e. zero for
positive clearance and linear for penetration (and not quasi bilinear as for
node-to-face penalty). The value of c0 is zero.

• the matching between the slave faces and master faces, the calculation
of the resulting integration points and the local normals on the master
surface is done once at the start of each increment. This information is
not changed while iterating within an increment. The same applies to the
calculation of the area for which the slave integration point is representa-
tive.

• whether a contact element is active or not is determined in each iteration
anew. A contact element is active if the penetration is positive.

Due to the freezing of the match between the slave and master surface within
each increment, large deformations of the structure may require small incre-
ments.

The contact definition in the input deck is similar to the node-to-face penalty
contact except for:

• The contact surfaces (both slave and master) must be face-based.
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• On the *CONTACT PAIR card the parameter TYPE=SURFACE TO
SURFACE must be specified.

• The SMALL SLIDING parameter on the *CONTACT PAIR card is not
allowed.

• The *SURFACE BEHAVIOR card for a linear pressure-overclosure rela-
tionship needs only one parameter: the spring constant.

• The *FRICTION card is needed to specify the friction coefficient and the
stick slope.

In addition, a new pressure-overclosure relationship is introduced with the
name TIED. It can be used to tie surfaces and usually leads to a significantly
smoother stress distribution than the MPC’s generated by the *TIE option.
For the TIED pressure-overclosure relation only two parameters are used: the
spring stiffness K (> 0, required), and the stick slope λ (> 0, optional). The
friction coefficient is irrelevant.

Weak formulation The contribution of the face-to-face penalty contact to
the weak formulation corresponds to the first term on the right hand side of
Equation (2.6) in [19], written for both the slave and master side. This amounts
to (in the material frame of reference):

∫

A0
s

δ(US −UM ) · T(N)dA, (255)

or, in the spatial frame of reference:

∫

As

δ(us − um) · t(n)da. (256)

Making a Taylor expansion for t(n), which is a function of us − um and
keeping the linear term only (the constant term vanishes since zero differential
displacements leads to zero traction) one obtains:

∫

As

δ(us − um) · ∂t(n)

∂us
· (us − um)da. (257)

Notice that the integral is over the slave faces. The corresponding positions
on the master side are obtained by local orthogonal projection. The displace-
ments within a face on the slave side can be written as a linear combination of
the displacements of the nodes belonging to the face (ns is the number of nodes
belonging to the slave face):

us =

ns∑

i

ϕiu
s
i , (258)

and similarly for the displacements on the master side (nlm is the number of
nodes belonging to the master face ml):
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uml

=

nl
m∑

j

ψlju
ml

j . (259)

Substituting the above expressions in Equation (257) one obtains:

∑

s

ns∑

i=1

ns∑

j=1

δus
i ·
[∫

As

ϕi
∂t(n)

∂us ϕjda

]
· us

j

−
∑

s

∑

l

ns∑

i=1

nm∑

j=1

δus
i ·
[∫

Al
s

ϕi
∂t(n)

∂us ψ
l
jda

]
· uml

j

−
∑

s

∑

l

nm∑

i=1

ns∑

j=1

δuml

i ·
[∫

Al
s

ψli
∂t(n)

∂us
ϕjda

]
· us

j

+
∑

s

∑

l

nm∑

i=1

nm∑

j=1

δuml

i ·
[∫

Al
s

ψli
∂t(n)

∂us
ψljda

]
· uml

j . (260)

where “Als” is the part of the slave face s, the orthogonal projection of which
is contained in the master face ml. This leads to the following stiffness contri-
butions (notice the change in sign, since the weak term has to be transferred to
the left hand side of Equation (2.6) in [19]:

[K]e(iK)(jM) = −
∫

As

ϕi
∂t(n)

K

∂us
M
ϕjda, i ∈ S, j ∈ S (261)

[K]e(iK)(jM) =
∑

l

∫

Al
s

ϕi
∂t(n)

K

∂us
M
ψljda, i ∈ S, j ∈M l (262)

[K]e(iK)(jM) =
∑

l

∫

Al
s

ψli
∂t(n)

K

∂us
M
ϕjda, i ∈M l, j ∈ S (263)

[K]e(iK)(jM) = −
∑

l

∫

Al
s

ψli
∂t(n)

K

∂us
M
ψljda, i ∈M l, j ∈M l (264)

S is the slave face “s” at stake, M l is the master face to which the orthogonal
projection of the infinitesimal slave area da belongs. The integrals in the above
expression are evaluated by numerical integration. One could, for instance,
use the classical Gauss points in the slave faces. This, however, will not give
optimal results, since the master and slave faces do not match and the function
to integrate exhibits discontinuities in the derivatives. Much better results are
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obtained by using the integration scheme presented in the previous section and
illustrated in Figure 148. In this way, the above integrals are replaced by:

−
∫

As

ϕi
∂t(n)

K

∂us
M
ϕjda = −

∑

k

ϕi(ξsk , ηsk)ϕj(ξsk , ηsk)
∂t(n)

K

∂us
M

∣∣∣∣∣
ξsk ,ηsk

‖J‖kwk,

(265)

∫

Al
s

ϕi
∂t(n)

K

∂us
M
ψljda =

∑

k

ϕi(ξsk , ηsk)ψ
l
j(ξmk

, ηmk
)
∂t(n)

K

∂us
M

∣∣∣∣∣
ξsk ,ηsk

‖J‖kwk,

(266)

∫

Al
s

ψli
∂t(n)

K

∂us
M
ϕjda =

∑

k

ψli(ξmk
, ηmk

)ϕj(ξsk , ηsk)
∂t(n)

K

∂us
M

∣∣∣∣∣
ξsk ,ηsk

‖J‖kwk,

(267)

−
∫

Al
s

ψli
∂t(n)

K

∂us
M
ψljda = −

∑

k

ψli(ξmk
, ηmk

)ψlj(ξmk
, ηmk

)
∂t(n)

K

∂us
M

∣∣∣∣∣
ξsk ,ηsk

‖J‖kwk,

(268)

where k is the number of the integration point; (ξsk , ηsk) are the local coor-
dinates of the slave integration point; (ξmk

, ηmk
) are the local coordinates of

the orthogonal projection of the slave integration point onto the master surface
w.r.t. the master face to which the projection belongs; ‖J‖k is the norm of the
local Jacobian vector at the integration point on the slave face and wk is the
weight. As noted before the projection of integration points within the same
slave face may belong to different master faces. Each slave integration point
k leads to a contact element connecting a slave face with a master face and
represented by a stiffness matrix of size 3(ns + nm) x 3(ns + nm) made up of
contributions described by the above equations for just one value of integration
point k.

From this one observes that it is sufficient to determine the 3x3 stiffness
matrix

∂t(n)
K

∂us
M

∣∣∣∣∣
ξsk ,ηsk

(269)

at the slave integration points in order to obtain the stiffness matrix of the
complete contact element. It represents the derivative of the traction in an
integration point of the slave surface with respect to the displacement vector at
the same location.
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Normal contact stiffness The traction excerted by the master face on the
slave face at a slave integration point p can be written analogous to Equation
(191):

t(n) = f(r)n. (270)

For simplicity, in the face-to-face penalty contact formulation it is assumed
that within an increment the location (ξmk

, ηmk
) of the projection of the slave

integration points on the master face and the local Jacobian on the master face
do not change. Consequently (cf. the section 6.7.5):

∂m

∂up

=
∂ξ

∂up

=
∂η

∂up

= 0. (271)

and

∂r

∂up

= I, (272)

which leads to

∂t(n)

∂up

=
∂f

∂r
n⊗ n. (273)

This is the normal contact contribution to Equation (269).

Tangent contact stiffness Due to the assumption that the projection of
the slave integration point on the master surface does not change during and
increment, and that the local normal on the master surface does not change
either, the equations derived in the section on node-to-face contact simplity to:

∂t

∂up

= (I − n⊗ n) · ∂s

∂up

, (274)

where

∂s

∂up

= I. (275)

Equation (248) now reduces to

∂t(τ)n+1

∂upn+1

= µξn+1 ⊗
[
−n ·

∂t(n)n+1

∂upn+1

]

+ µ
‖t(n)n+1

‖
‖t(τ)trialn+1

‖
[I − ξn+1 ⊗ ξn+1] ·Kt

∂tn+1

∂upn+1.
(276)

Be careful to distinguish t(n)n+1
and t(τ)n+1

, which are tractions, from tn+1,
which is a tangential differential displacement.
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6.7.7 Face-to-Face Mortar Contact

This is a face-to-face contact formulation using extra Lagrange multipliers to
model the contact stresses. It can be used for hard contact (infinite stress at
the slightest penetration) or soft contact (gradually increasing stress the larger
the penetration as in materials with a definite surface roughness). Due to the
Lagrangemultipliers the stress-penetration relationship satisfied in a weak sense.
This is different from the face-to-face penalty method, in which the knowledge
of the penetration uniquely leads to the contact stresses. Due to this property
the convergence of the mortar method is somewhat better than in the face-to-
face penalty method, i.e. less iterations are needed. However, the cost of one
iteration is higher. For details the reader is referred to [80]-[83].

The implementation in CalculiX uses dual basis functions for the Lagrange
multiplier. Dual basis functions are in a weak sense orthogonal to the standard
basis functions used for the displacements. Due to the use of dual basis functions
the Lagrange multiplier degrees of freedom can be easily eliminated from the
resulting equation system and therefore the number of unknowns in the system
is in each iteration not larger than without contact. Because the negative parts
of the standard basis functions for quadratic elements can cause problems, sev-
eral options to circumvent these problems have been implemented. Right now,
the user can choose between TYPE=MORTAR, TYPE=LINMORTAR and
TYPE=PGLINMORTAR on the *CONTACT PAIR card. For TYPE=MORTAR
the standard dual basis functions are used for the Lagrange multiplier. For
TYPE=LINMORTAR linear dual basis functions are used, i.e. the Lagrange
multiplier at the midnodes (if any) is not taken into account. For linear elements
MORTAR and LINMORTAR coincide. In case of TYPE=PGLINMORTAR the
variation of the Lagrange multiplier is done using linear standard basis functions
(PG stands for Petrov-Galerkin). The following rules apply when using Mortar
contact:

• The mortar method is only available for the *STATIC procedure. Conse-
quently, it can not be used for dynamic calculations, heat transfer calcu-
lations or (un)coupled temperature-displacement calculations, to name a
few.

• It is advised to use the mortar method for contact between genuine 3-
dimensional elements only. Usage for contact in between 1-d or 2-d el-
ements will cause problems. In general, the mortar method is not well
suited if the contact areas are too much constrained by extra multiple
point constraints.

• The mortar method cannot be combined with the penalty method in one
input file. Also a single mortar method (MORTAR or LINMORTAR or
PGLINMORTAR) has to be choosen for all contact pairs in one input file.

• Using the *CYCLIC SYMMETRY MODEL option, one has to make sure
that a one-to-one connection is made if hte slave surface touches the cyclic



246 6 THEORY

symmetry boundary. If non-matching meshes are used, one has to make
sure that the contact surfaces touching the cyclic symmetry boundary are
removed from the slave surface definition.

• One must not apply extra multiple point constraints to edge nodes on the
slave surface. Please apply extra mounting MPC’s only to corner nodes
on the slave surface.

• Define different contact pairs for different contact zones (contact search
algorithm is faster)

• Define contact surfaces only as large as needed (contact search algorithm
is faster)

• One must not use the same contact surface in more than one contact
definition

• Make sure that the contact surfaces do not touch pretension sections

• Make sure that there is not gap between the bodies for force driven quasi-
static calculations (may lead to huge accelerations since no mass is defined
and consequently no contact is found)

• Make sure that you choose a small first increment in the step if you expect
large relative displacements in tangential direction. A minimum of four
increments is recommeded. Recall that the direction of the normal and
tangential directions and the surface segmentation is only performed once
per increment.

• Shrink is always active in CalculiX, i.e. overlaps are resolved increment-
wise across the step.

• Sometimes the adpative time stepping using mortar contact is too senstive.
Try *STEP,DIRECT in that case.

6.8 Materials

A material definition starts with a *MATERIAL key card followed by material
specific cards such as *ELASTIC, *EXPANSION, *DENSITY, *HYPERELASTIC,
*HYPERFOAM, *DEFORMATION PLASTICITY, *PLASTIC, *CREEP or
*USER MATERIAL. To assign a material to an element, the *SOLID SECTION
card is used. An element can consist of one material only. Each element in the
structure must have a material assigned. Some types of loading require specific
material properties: gravity loading requires the density of the material, tem-
perature loading requires the thermal expansion coefficient. A material property
can also be required by the type of analysis: a frequency analysis requires the
material’s density.
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Some of the material cards are mutually exclusive, while others are interde-
pendent. Exactly one of the following is required: *ELASTIC, *HYPERELAS-
TIC, *HYPERFOAM, *DEFORMATION PLASTICITY and *USER MATE-
RIAL. The keyword *PLASTIC must be preceded by *ELASTIC(,TYPE=ISO).
The same applies to the *CREEP card. A *PLASTIC card in between the
*ELASTIC and *CREEP card defines a viscoplastic material. The other key-
words can be used according to your needs.

6.8.1 Linear elastic materials

Linear elastic materials are characterized by an elastic potential of which only
the quadratic terms in the strain are kept. It can be defined in a isotropic,
orthotropic or fully anisotropic version. Isotropic linear elastic materials are
characterized by their Young’s modulus and Poisson’s coefficient. Common
steels are usually isotropic. Orthotropic materials, such as wood or cubic single
crystals are characterized by 9 nonzero constants and fully anisotropic mate-
rials by 21 constants. For elastic materials the keyword *ELASTIC is used.
For finite strain (visco)plasticity, triggered by the keywords *PLASTIC and/or
*CREEP in combination with the paramter NLGEOM on the *STATIC card,
a hyperelastic-type potential is used for the elastic range. For details the reader
is referred to [19], Section 6.3.1.

6.8.2 Linear elastic materials for large strains (Ciarlet model)

In [19] it is explained that substituting the infinitesimal strains in the classical
Hooke law by the Lagrangian strain and the stress by the Piola-Kirchoff stress
of the second kind does not lead to a physically sensible material law. In par-
ticular, such a model (also called St-Venant-Kirchoff material) does not exhibit
large stresses when compressing the volume of the material to nearly zero. An
alternative for isotropic materials is the following stored-energy function devel-
oped by Ciarlet [17] (µ and λ are Lamé’s constants):

Σ =
λ

4
(IIIC − ln IIIC − 1) +

µ

4
(IC − ln IIIC − 3). (277)

The stress-strain relation amounts to (S is the Piola-Kirchoff stress of the
second kind) :

S =
λ

2
(detC − 1)C−1 + µ(I −C−1), (278)

and the derivative of S with respect to the Green tensor E reads (component
notation):

dSIJ

dEKL
= λ(detC)C−1KL

C−1IJ

+ [2µ− λ(detC − 1)]C−1IKC−1LJ

. (279)

This model was implemented into CalculiX by Sven Kaßbohm. The defini-
tion consists of a *MATERIAL card defining the name of the material. This
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name HAS TO START WITH ”CIARLET EL” but can be up to 80 characters
long. Thus, the last 70 characters can be freely chosen by the user. Within the
material definition a *USER MATERIAL card has to be used satisfying:

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value, i.e. 2.

Following line:

• E (Young’s modulus).

• ν (Poisson’s coefficient).

• Temperature.

Repeat this line if needed to define complete temperature dependence.
For this model, there are no internal state variables.

Example:

*MATERIAL,NAME=CIARLET_EL

*USER MATERIAL,CONSTANTS=2

210000.,.3,400.

defines an isotropic material with elastic constants E=210000. and ν=0.3 for a
temperature of 400 (units appropriately chosen by the user). Recall that

µ =
E

2(1 + ν)
(280)

and

λ =
νE

(1 + ν)(1 − 2ν)
. (281)

6.8.3 Linear elastic materials for rotation-insensitive small strains

This is a material formulation for very special applications. Small strains (i.e.
linearized strains) are large rotation sensitive, i.e. they become nonzero if you
apply a large rigid body rotation to a structure (cf [19]).

The Lagrange strain tensor satisfies:

2E = F TF − I, (282)

which can also be written as:

2E = (F − I)
T
+ (F − I) + (F − I)

T
(F − I). (283)
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F is the deformation gradient and the expressions in parentheses are the
gradient of the displacements. Linearizing, only the first two terms on the right
hand side of the above equation are kept. This linearization, however, is not
large-rotation insensitive. In order to create a rotation-insensitive linear strain,
the deformation gradient is replaced by the right hand stretch tensor U (recall
that F = RU , where R is the rotation tensor):

2E = (U − I)
T
+ (U − I). (284)

This strain is, although linear, large rotation insensitive. Now, what is this good
for? In some applications (e.g. in linear elastic fracture mechanics) you need
linear strains exhibiting the appropriate stress and strain singularities (e.g. at
the crack tip). However, you would still like to include appications with large
rotations. The above formulation takes care of exactly these requirements.

In order to apply this formulation in CalculiX, the user has to specify the
parameter NLGEOM on the *STEP card. In those elements, in which rotation-
insensitive linear strains should be used, the user has to replace the linear elastic
isotropic material he/she would usually apply by the user material coded in
routine umat undo nlgeom lin iso el.f. To that end the user gives a new name
to the material starting with UNDO NLGEOM LIN ISO EL. The constants
of this user material are the Young’s modulus and Poisson’s coefficient of the
original material. Suppose the original material formulation was:

*MATERIAL,NAME=EL

*ELASTIC

210000.,.3

Then, the new material is defined by:

*MATERIAL,NAME=UNDO_NLGEOM_LIN_ISO_ELx

*USER MATERIAL,CONSTANTS=2

210000.,.3

where x can be whatever character string preferred by the user, minimum 0
characters, maximum 58 characters long. Only linear elastic isotropic materials
are allowed so far.

6.8.4 Ideal gas for quasi-static calculations

A special case of a linear elastic isotropic material is an ideal gas for small
pressure deviations. From the ideal gas equation one finds that the pressure
deviation dp is related to a density change dρ by

dp =
dρ

ρ0
ρ0rT, (285)

where ρ0 is the density at rest, r is the specific gas constant and T is the
temperature in Kelvin. From this one can derive the equations
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t11 = t22 = t33 = (ǫ11 + ǫ22 + ǫ33)ρ0rT (286)

and

t12 = t13 = t23 = 0, (287)

where t denotes the stress and ǫ the linear strain. This means that an
ideal gas can be modeled as an isotropic elastic material with Lamé constants
λ = ρ0rT and µ = 0. This corresponds to a Young’s modulus E = 0 and a
Poisson coefficient ν = 0.5. Since the latter values lead to numerical difficulties
it is advantageous to define the ideal gas as an orthotropic material withD1111 =
D2222 = D3333 = D1122 = D1133 = D2233 = λ and D1212 = D1313 = D2323 = 0.

6.8.5 Hyperelastic and hyperfoam materials

Hyperelastic materials are materials for which a potential function exists such
that the second Piola-Kirchhoff stress tensor can be written as the derivative of
this potential with respect to the Lagrangian strain tensor. This definition in-
cludes linear elastic materials, although the term hyperelastic material is usually
reserved for proper nonlinear elastic materials. One important class constitutes
the isotropic hyperelastic materials, for which the potential function is a func-
tion of the strain invariants only. All rubber material models presently included
in CalculiX are of that type (Arruda-Boyce, Mooney-Rivlin, Neo Hooke, Ogden,
Polynomial, Reduced Polynomial and Yeoh). They are selected by the keyword
*HYPERELASTIC. Rubber materials are virtually incompressible (virtually no
dependence on the third Lagrangian strain invariant which takes values close
to 1). The dependence on the third invariant (the compressibility) is separated
from the dependence on the first two invariants and is governed by so called
compressibility coefficients, taking the value 0 for perfectly incompressible ma-
terials. Perfectly incompressible materials require the use of hybrid finite ele-
ments, in which the pressure is taken as an additional independent variable (in
addition to the displacements). CalculiX does not provide such elements. Con-
sequently, a slight amount of compressibility is required for CalculiX to work.
If the user inserts zero compressibility coefficients, CalculiX uses a default value
corresponding to an initial value of the Poisson coefficient of 0.475.

Another example of isotropic hyperelastic materials are the hyperfoam ma-
terials, which are also implemented in CalculiX (activated by the keyword
*HYPERFOAM). Hyperfoam materials are very compressible.

Other materials frequently simulated by a hyperelastic model are human tis-
sue (lung tissue, heart tissue..). To simulate these classes of materials anisotropic
hyperelastic models are used, in which the potential function depends on the
Lagrangian strain tensor components. No such models are implemented in Cal-
culiX, although their inclusion is not difficult to manage. For further informa-
tion the reader is referred to [8]. A very nice treatment of the large deformation
theory for hyperelastic materials is given in [77].
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6.8.6 Deformation plasticity

Deformation plasticity is characterized by a one-to-one (bijective) relationship
between the strain and the stress. This relationship is a three-dimensional
generalization of the one-dimensional Ramberg-Osgood law frequently used for
metallic materials (e.g. in the simple tension test) yielding a monotonic increas-
ing function of the stress as a function of the strain. Therefore, deformation
plasticity is very well suited to model the relation between the Cauchy (true)
stress and the strain. Because tensile and compressive test results coincide well
when plotting the Cauchy stress versus the logarithmic strain (soon to be de-
fined), these quantities are generally used in the deformation plasticity law. The
implementation in CalculiX (keyword card *DEFORMATION PLASTICITY),
however, uses the relationship to model the dependence of the Cauchy (true)
stress on the Eulerian strain. For all practical purposes, the Eulerian strain
coincides with the logarithmic strain. For a tensile test specimen, with initial
length L, initial cross section A0, final length L + ∆L and final cross section
A, loaded by a force F, the Cauchy stress σ, the logarithmic strain ǫlog and the
Eulerian strain ǫEuler satisfy:

σ = F/A =
F (L+∆L)

A0L
(288)

ǫlog = ln

[
1 +

∆L

L

]
(289)

ǫEuler =
∆L

L

[
1− ∆L

2L

]
(290)

The difference between the logarithmic strain and the Eulerian strain is
about 1.3 % for an Engineering strain ∆L/L = 20%. The user should give
the Ramberg-Osgood material constants directly (by plotting a Cauchy stress
versus Eulerian strain curve and performing a fit).

6.8.7 Incremental (visco)plasticity: multiplicative decomposition

The implementation of incremental plasticity for nonlinear geometrical calcu-
lations in CalculiX follows the algorithms in [78] and [79] and is based on the
notion of an intermediate stress-free configuration. The deformation is viewed
as a plastic flow due to dislocation motion followed by elastic stretching and
rotation of the crystal lattice. This is synthesized by a local multiplicative
decomposition of the deformation gradient F = FeFp where FkK = xk,K in
Cartesian coordinates.

In the present implementation, the elastic response is isotropic and is de-
duced from a stored-energy function (hyperelastic response). Furthermore, the
plastic flow is isochoric (the volume is conserved) and the classical von Mises-
Huber yield condition applies. This condition can be visualized as a sphere in
principal deviatoric stress space.
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The hardening can consist of isotropic hardening, resulting in an expansion
or contraction of the yield surface, of kinematic hardening, resulting in a trans-
lation of the yield surface, or of a combination of both. The hardening curve
should yield the von Mises true stress versus the equivalent plastic logarithmic
strain (cf. deformation plasticity for its definition).

Incremental plasticity is defined by the *PLASTIC card, followed by the
isotropic hardening curve for isotropic hardening or the kinematic hardening
curve for kinematic and combined hardening. For combined hardening, the
isotropic hardening curve is defined by the *CYCLIC HARDENING card. The
*PLASTIC card should be preceded within the same material definition by an
*ELASTIC card, defining the isotropic elastic properties of the material.

By allowing the stress to leave the yield surface temporarily in order to
regain it with time, creep effects can be modeled [76]. The viscous part of the
viscoplastic law is defined by the *CREEP card. Default is a Norton type law.
However, the user can also define his own law in user subroutine creep.f. If
the *CREEP card is not preceded by a *PLASTIC card, a zero yield surface
without any hardening effects is assumed. The *CREEP card must be preceded
by an *ELASTIC card defining the isotropic elastic properties of the material.
Notice that creep behavior is switched off in a *STATIC step.

For this model, there are 13 internal state variables:

• the accumulated equivalent plastic strain ēp (1)

• the unit tensor minus the inverse plastic right Cauchy-Green tensor and
divided by two (I−Cp−1)/2. For small deformations the resulting tensor
coincides with the infinitesimal plastic strain tensor ǫp (6)

• the back stress Γ (6)

These variables are accessible through the *EL PRINT (.dat file) and *EL FILE
(.frd file) keywords in exactly this order (label SDV).

By using the *CHANGE MATERIAL, *CHANGE PLASTIC, *STATIC and
*VISCO cards the user can switch between a purely plastic and creep behavior.
The viscoplastic model implemented in CalculiX is an overstress model, i.e.
creep only occurs above the yield stress. For a lot of materials this is not realistic.
At high temperatures creep is frequently observed well below the yield stress. To
simulate this behavior one can set the yield stress to zero. In order to simulate
an initial large plastic deformation (e.g. due to forging or other machining
operations) followed by creep at high temperature at operation conditions one
can proceed as follows: one defines the material as a viscoplastic material using
the *PLASTIC and *CREEP card. To switch off the creep behavior in the
machining step one uses the *STATIC procedure. In a subsequent step at
operating conditions the viscous behavior is switched on using the *VISCO
procedure whereas the yield stress is set to zero by means of a *CHANGE
MATERIAL and *CHANGE PLASTIC card.



6.8 Materials 253

6.8.8 Incremental (visco)plasticity: additive decomposition

The implementation of incremental plasticity for linear geometrical calculations
in CalculiX follows the algorithms in [19], section 5.3 and is based on an additive
decomposition of the strain tensor into an elastic and a plastic part. In Cal-
culiX, it is used in the absence of the NLGEOM parameter on the *STEP card.
The internal variables are the same as for the multiplicative decomposition (cf.
previous section) in their infinitesimal limit. It seems that the additive decom-
position exhibits less convergence issues than the multiplicative decomposition
(although this may also be attributable to the general nonlinear geometrical
setup).

6.8.9 Tension-only and compression-only materials.

These are material models which can be used to simulate textile behavior
(tension-only) and concrete (compression-only). In essence, a one-dimensional
Hooke-type relationship is established between the principal stresses and prin-
cipal strains, thereby suppressing the compressive stress range (tension-only
materials) or tensile stress range (compression-only materials).

The Cauchy-Green tensor can be written as a function of its eigenvalues and
eigenvectors as follows:

C =

3∑

i=1

ΛiM
i, (291)

where Mi are the structural tensors satisfying Mi = Ni ⊗Ni, Ni being the
principal directions [19]. From this, the second Piola-Kirchhoff stress tensor can
be defined by:

S =

3∑

i=1

f(Λi)M
i, (292)

where, for tension-only materials,

f(Λi) = E

(
Λi − 1

2

)[
1

2
+

1

π
tan−1

(
Λi − 1

2ǫ

)]
, (293)

where E is an elastic modulus, the term within the first parentheses is a
Lagrange principal strain and the term within the square brackets is a correction
term suppressing the negative stresses (pressure). It is a function tending to zero
for negative strains (-0.5 being the smallest possible Lagrange strain), to one for
large positive strains and switches between both in a region surrounding zero
strain. The extent of this region is controlled by the parameter ǫ: the smaller
its value, the smaller the transition region (the sharper the switch). It is a
monotonically increasing function of the strain, thus guaranteeing convergence.
The correction term is in fact identical to the term used to cut off tensile stresses
for penalty contact in Equation(185) and Figure (144). Replacing “overclosure”
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and “pressure” by “principal strain” and “principal stress” in that figure yields
the function f. Although compressive stresses are suppressed, they are not
zero altogether. The maximum allowed compressive stress (in absolute value)
amounts to Eǫ/π. Instead of chosing E and ǫ the user defines E and the
maximum allowed compressive stress, from which ǫ is determined.

The material definition consists of a *MATERIAL card defining the name of
the material. This name HAS TO START WITH ”TENSION ONLY” but can
be up to 80 characters long. Thus, the last 68 characters can be freely chosen
by the user. Within the material definition a *USER MATERIAL card has to
be used satisfying:

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value. The value of this pa-
rameter is 2.

Following line:

• E.

• absolute value of the maximum allowed pressure.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
For a compression-only materials the name of the material has to start with

”COMPRESSION ONLY” (maximum 64 characters left to be chosen by the
user) and the second constant is the maximum allowed tension. Examples are
leifer2 and concretebeam in the test example suite.

6.8.10 Fiber reinforced materials.

This is a model which was conceived by G. Holzapfel et al. [31] to model arterial
walls. It is an anisotropic hyperelastic model, consisting of an isotropic neo-
Hooke potential for the base material, complemented by exponential strenght-
ening terms in fiber direction. The mathematical form of the potential satisfies:

U = C10(Ī1 − 3) +
1

D1
(J − 1)2 +

n∑

i=1

k1i
2k2i

[
ek2i〈J̄4i−1〉2 − 1

]
(294)

where 〈x〉 = 0 for x < 0 and 〈x〉 = x for x ≥ 0. Thus, the fibers do not take
up any force under compression. Although the material was originally defined
for arteries, it is expected to work well for other fiber reinforced materials too,
such as reinforced nylon. The material model implemented thus far can cope
with up to 4 different fibers. The material definition consists of a *MATERIAL
card defining the name of the material. This name HAS TO START WITH
”ELASTIC FIBER” but can be up to 80 characters long. Thus, the last 67
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characters can be freely chosen by the user. Within the material definition a
*USER MATERIAL card has to be used satisfying:

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value. The value of this pa-
rameter is 2+4n, where n is the number of fiber directions.

Following line if one fiber direction is selected:

• C10.

• D1.

• nx1: x-direction cosine of fiber direction.

• ny1: y-direction cosine of fiber direction.

• k11.

• k21.

• Temperature.

Repeat this line if needed to define complete temperature dependence. The z-
direction cosine of the fiber direction is determined from the x- and y-direction
cosine since the direction norm is one. If a local axis system is defined for an
element consisting of this material (with *ORIENTATION)the direction cosines
are defined in the local system.

If more than one fiber direction is selected (up to a maximum of four),
the four entries characterizing fiber direction 1 are repeated for the subsequent
directions. Per line no more than eight entries are allowed. If more are needed,
continue on the next line.

Example:

*MATERIAL,NAME=ELASTIC_FIBER

*USER MATERIAL,CONSTANTS=18

1.92505,0.026,0.,0.7071,2.3632,0.8393,0,-0.7071,

2.3632,0.8393,0.7071,0.,2.3632,0.8393,-0.7071,0.,

2.3632,0.8393

defines an elastic fiber materials with four different fiber directions (0,0.7071,0.7071),
(0,-0.7071,0.7071), (0.7071,0.,0.7071) and (-0.7071,0.,0.7071). The constants are
C10 = 1.92505, D1 = 0.026 and k1i = 2.3632, k2i = 0.8393 ∀ i ∈ {1, 2, 3, 4}.
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6.8.11 The Cailletaud single crystal model.

The single crystal model of Georges Cailletaud and co-workers [52][53] describes
infinitesimal viscoplasticity in metallic components consisting of one single crys-
tal. The orientations of the slip planes and slip directions in these planes is gen-
erally known and described by the normal vectors nβ and direction vectors lβ,
respectively, where β denotes one of slip plane/slip direction combinations. The
slip planes and slip directions are reformulated in the form of a slip orientation
tensor mβ satisfying:

mβ = (nβ ⊗ lβ + lβ ⊗ nβ)/2. (295)

The total strain is supposed to be the sum of the elastic strain and the plastic
strain:

ǫ = ǫe + ǫp. (296)

In each slip plane an isotropic hardening variable q1 and a kinematic harden-
ing variable q2 are introduced representing the isotropic and kinematic change
of the yield surface, respectively. The yield surface for orientation β takes the
form:

hβ :=
∣∣∣σ : mβ + qβ2

∣∣∣− rβ0 +

nβ∑

α=1

Hβαq
α
1 = 0 (297)

where nβ is the number of slip orientations for the material at stake, σ is
the stress tensor, rβ0 is the size of the elastic range at zero yield and Hβα is a
matrix of interaction coefficients. The constitutive equations for the hardening
variables satisfy:

qβ1 = −bβQβαβ1 (298)

and

qβ2 = −cβαβ2 (299)

where αβ1 and αβ2 are the hardening variables in strain space. The constitu-
tive equation for the stress is Hooke’s law:

σ = C : ǫe. (300)

The evolution equations for the plastic strain and the hardening variables in
strain space are given by:

ǫ̇p =
nβ∑

β=1

γ̇βmβsgn(σ : mβ + qβ2 ), (301)
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α̇β1 = γ̇β

(
1 +

qβ1
Qβ

)
(302)

and

α̇β2 = γ̇β

[
ϕβsgn(σ : mβ + qβ2 ) +

dβqβ2
cβ

]
. (303)

The variable γ̇β is the consistency coefficient known from the Kuhn-Tucker
conditions in optimization theory [47]. It can be proven to satisfy:

γ̇β =
∣∣∣ǫ̇p

β
∣∣∣ , (304)

where ǫ̇p
β

is the flow rate along orientation β. The plastic strain rate is
linked to the flow rate along the different orientations by

ǫ̇p =
nβ∑

β=1

ǫ̇p
β

mβ . (305)

The parameter ϕβ in equation (303) is a function of the accumulated shear
flow in absolute value through:

ϕβ = φβ + (1 − φβ)e−δ
β
∫

t

0
γ̇βdt (306)

Finally, in the Cailletaud model the creep rate is a power law function of the
yield exceedance:

γ̇β =

〈
hβ

Kβ

〉nβ

. (307)

The brackets 〈〉 reduce negative function values to zero while leaving positive
values unchanged, i.e. 〈x〉 = 0 if x < 0 and 〈x〉 = x if x ≥ 0.

In the present umat routine, the Cailletaud model is implemented for a Nickel
base single crystal. It has two slip systems, a octaeder slip system with three slip
directions < 011 > in four slip planes {111}, and a cubic slip system with two
slip directions < 011 > in three slip planes {001}. The constants for all octaeder
slip orientations are assumed to be identical, the same applies for the cubic slip
orientations. Furthermore, there are three elastic constants for this material.
Consequently, for each temperature 21 constants need to be defined: the elastic
constants C1111, C1122 and C1212, and a set {Kβ, nβ , cβ, dβ , φβ , δβ, rβ0 , Q

β, bβ}
per slip system. Apart from these constants 182 interaction coefficients need
to be defined. These are taken from the references [52][53] and assumed to be
constant. Their values are included in the routine and cannot be influence by
the user through the input deck.

The material definition consists of a *MATERIAL card defining the name
of the material. This name HAS TO START WITH ”SINGLE CRYSTAL” but
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can be up to 80 characters long. Thus, the last 66 characters can be freely
chosen by the user. Within the material definition a *USER MATERIAL card
has to be used satisfying:

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value, i.e. 21.

Following lines, in sets of 3:

First line of set:

• C1111.

• C1122.

• C1212.

• Kβ (octaeder slip system).

• nβ (octaeder slip system).

• cβ (octaeder slip system).

• dβ (octaeder slip system).

• φβ (octaeder slip system).

Second line of set:

• δβ (octaeder slip system).

• rβ0 (octaeder slip system).

• Qβ (octaeder slip system).

• bβ (octaeder slip system).

• Kβ (cubic slip system).

• nβ (cubic slip system).

• cβ (cubic slip system).

• dβ (cubic slip system).

Third line of set:

• φβ (cubic slip system).

• δβ (cubic slip system).

• rβ0 (cubic slip system).
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• Qβ (cubic slip system).

• bβ (cubic slip system).

• Temperature.

Repeat this set if needed to define complete temperature dependence.
The crystal principal axes are assumed to coincide with the global coordinate

system. If this is not the case, use an *ORIENTATION card to define a local
system.

For this model, there are 60 internal state variables:

• the plastic strain tensor ǫp (6)

• the isotropic hardening variables qβ1 (18)

• the kinematic hardening variables qβ2 (18)

• the accumulated absolute value of the slip rate
∫ t
0
γ̇βdt (18)

These variables are accessible through the *EL PRINT (.dat file) and *EL FILE
(.frd file) keywords in exactly this order (label SDV). The *DEPVAR card must
be included in the material definition with a value of 60.

Example:

*MATERIAL,NAME=SINGLE_CRYSTAL

*USER MATERIAL,CONSTANTS=21

135468.,68655.,201207.,1550.,3.89,18.E4,1500.,1.5,

100.,80.,-80.,500.,980.,3.89,9.E4,1500.,

2.,100.,70.,-50.,400.

*DEPVAR

60

defines a single crystal with elastic constants {135468., 68655., 201207.}, oc-
taeder parameters {1550., 3.89, 18.E4, 1500., 1.5, 100., 80.,−80., 500.} and cubic
parameters {980., 3.89, 9.E4, 1500., 2., 100., 70.,−50.} for a temperature of 400.

6.8.12 The Cailletaud single crystal creep model.

This is the Cailletaud single crystal model reduced to the creep case, i.e. the
yield surface is reduced to zero.

The material definition consists of a *MATERIAL card defining the name of
the material. This name HAS TO STARTWITH ”SINGLE CRYSTAL CREEP”
but can be up to 80 characters long. Thus, the last 60 characters can be freely
chosen by the user. Within the material definition a *USER MATERIAL card
has to be used satisfying:

First line:

• *USER MATERIAL
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• Enter the CONSTANTS parameter and its value, i.e. 7.

Following line:

• C1111.

• C1122.

• C1212.

• Kβ (octaeder slip system).

• nβ (octaeder slip system).

• Kβ (cubic slip system).

• nβ (cubic slip system).

• Temperature.

Repeat this line if needed to define complete temperature dependence.

The crystal principal axes are assumed to coincide with the global coordinate
system. If this is not the case, use an *ORIENTATION card to define a local
system.

For this model, there are 24 internal state variables:

• the plastic strain tensor ǫp (6)

• the accumulated absolute value of the slip rate
∫ t
0
γ̇βdt (18)

These variables are accessible through the *EL PRINT (.dat file) and *EL FILE
(.frd file) keywords in exactly this order (label SDV). The *DEPVAR card must
be included in the material definition with a value of 24.

Example:

*MATERIAL,NAME=SINGLE_CRYSTAL

*USER MATERIAL,CONSTANTS=21

135468.,68655.,201207.,1550.,3.89,980.,3.89,400.

*DEPVAR

24

defines a single crystal with elastic constants {135468., 68655., 201207.}, oc-
taeder parameters {1550., 3.89} and cubic parameters {980., 3.89} for a temper-
ature of 400.



6.8 Materials 261

6.8.13 Elastic anisotropy with isotropic viscoplasticity.

This model describes small deformations for elastically anisotropic materials
with a von Mises type yield surface. Often, this model is used as a compromise
for anisotropic materials with lack of data or detailed knowledge about the
anisotropic behavior in the viscoplastic range.

The total strain is supposed to be the sum of the elastic strain and the plastic
strain:

ǫ = ǫe + ǫp. (308)

An isotropic hardening variable q1 and a kinematic hardening tensor q2 are
introduced representing the isotropic and kinematic change of the yield surface,
respectively. The yield surface takes the form:

f := ‖dev(σ)+ q2‖+
√

2

3
(q1 − r0) = 0 (309)

where dev(σ) is the deviatoric stress tensor, and r0 is the size of the elastic
range at zero yield. The constitutive equations for the hardening variables
satisfy:

q1 = −d1α1 (310)

and

q2 = −2

3
d2α2 (311)

where α1 and α2 are the hardening variables in strain space. It can be shown
that

α1 = ǫpeq, (312)

α2
eq = ǫpeq, (313)

where ǫpeq is the equivalent plastic strain defined by

ǫpeq =

√
2

3
‖ǫp‖ . (314)

and α2
eq is the equivalent value of the tensor α2 defined in a similar way.

Thus, the constitutive equations amount to

q1 = −d1ǫpeq (315)

and

q2
eq = d2ǫ

peq, (316)

where
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q2
eq =

√
3

2
‖q2‖ (317)

has the meaning of an equivalent stress value or von Mises value. The
same applies to q1. Consequently, the constitutive equations assume a linear
relationship between the hardening stress and the equivalent plastic strain.

The constitutive equation for the stress is Hooke’s law:

σ = C : ǫe. (318)

The evolution equations for the plastic strain and the hardening variables in
strain space are given by:

ǫ̇p = γ̇n, (319)

α̇1 =

√
2

3
γ̇, (320)

and

α̇2 = γ̇n, (321)

where

n =
dev(σ)+ q2

‖dev(σ)+ q2‖
. (322)

The variable γ̇ is the consistency coefficient known from the Kuhn-Tucker
conditions in optimization theory [47]. It can be proven to satisfy:

γ̇ =

√
3

2
ǫ̇peq, (323)

Finally, the creep rate is modeled as a power law function of the yield ex-
ceedance and total time t:

˙ǫpeq = A

〈√
3

2
f

〉n
tm. (324)

The brackets 〈〉 reduce negative function values to zero while leaving positive
values unchanged, i.e. 〈x〉 = 0 if x < 0 and 〈x〉 = x if x ≥ 0.

In the present implementation orthotropic elastic behavior is assumed. Con-
sequently, for each temperature 15 constants need to be defined: the elastic
constants C1111, C1122, C2222,C1133, C2233, C3333,C1212, C1313, C2323, and the
viscoplastic constants r0, d1, d2, A, n,m.

The material definition consists of a *MATERIAL card defining the name
of the material. This name HAS TO START WITH ”ANISO PLAS” but can
be up to 80 characters long. Thus, the last 70 characters can be freely chosen
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by the user. Within the material definition a *USER MATERIAL card has to
be used satisfying:

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value, i.e. 15.

Following lines, in sets of 2:

First line of set:

• C1111.

• C1122.

• C2222.

• C1133.

• C2233.

• C3333.

• C1212.

• C1313.

Second line of set:

• C2323.

• r0.

• d1.

• d2.

• A.

• n.

• m.

• Temperature.

Repeat this set if needed to define complete temperature dependence.
The principal axes of the material are assumed to coincide with the global

coordinate system. If this is not the case, use an *ORIENTATION card to
define a local system.

For this model, there are 14 internal state variables:

• the equivalent plastic strain ǫpeq (1)
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• the plastic strain tensor ǫp (6)

• the isotropic hardening variable α1 (1)

• the kinematic hardening tensor α2 (6)

These variables are accessible through the *EL PRINT (.dat file) and *EL FILE
(.frd file) keywords in exactly this order (label SDV). The *DEPVAR card must
be included in the material definition with a value of 14.

Example:

*MATERIAL,NAME=ANISO_PLAS

*USER MATERIAL,CONSTANTS=15

500000.,157200.,500000.,157200.,157200.,500000.,126200.,126200.,

126200.,0.,0.,0.,1.E-10,5,0.

*DEPVAR

14

defines a single crystal with elastic constants 500000., 157200., 500000.,
157200., 157200., 500000., 126200., 126200., 126200., and viscoplastic parame-
ters r0 = 0., d1 = 0., d2 = 0., A = 10−10, n = 5 and m = 0. Thus, the yield
surface has a zero radius and there is no hardening. Only creep is activated.

6.8.14 Elastic anisotropy with isotropic creep defined by a creep user
subroutine.

This material model is similar to the previous one, except that

• no plasticity is assumed (yield surface coincides with the origine)

• the creep model is to be provided by a creep user subroutine

In the present implementation orthotropic elastic behavior is assumed. Con-
sequently, for each temperature 9 constants need to be defined: the elastic con-
stants C1111, C1122, C2222,C1133, C2233, C3333,C1212, C1313 and C2323.

The material definition consists of a *MATERIAL card defining the name
of the material. This name HAS TO START WITH ”ANISO CREEP” but can
be up to 80 characters long. Thus, the last 69 characters can be freely chosen
by the user. Within the material definition a *USER MATERIAL card has to
be used satisfying:

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value, i.e. 9.

Following lines, in sets of 2:

First line of set:
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• C1111.

• C1122.

• C2222.

• C1133.

• C2233.

• C3333.

• C1212.

• C1313.

Second line of set:

• C2323.

• Temperature.

Repeat this set if needed to define complete temperature dependence.
The principal axes of the material are assumed to coincide with the global

coordinate system. If this is not the case, use an *ORIENTATION card to
define a local system.

For this model, there are 7 internal state variables (recall that CalculiX
does not make a distinction between plastic strain and creep strain: the field ǫp

contains the sum of both):

• the equivalent plastic strain ǫpeq (1)

• the plastic strain tensor ǫp (6)

These variables are accessible through the *EL PRINT (.dat file) and *EL FILE
(.frd file) keywords in exactly this order (label SDV). The *DEPVAR card must
be included in the material definition with a value of 7.

The creep subroutine has to be provided by the user (cf. Section 9.1). Since
the material is anisotropic the input to the creep routine is the equivalent devi-
atoric creep strain, the output is the von Mises stress and the derivative of the
equivalent deviatoric creep strain increment w.r.t. the von Mises stress.

Example:

*MATERIAL,NAME=ANISO_CREEP

*USER MATERIAL,CONSTANTS=9

500000.,157200.,500000.,157200.,157200.,500000.,126200.,126200.,

126200.

*DEPVAR

7

defines a single crystal with elastic constants 500000., 157200., 500000.,
157200., 157200., 500000., 126200., 126200. and 126200.. The creep law has
to be provide by the user in the form of a creep.f subroutine.
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6.8.15 User materials

Other material laws can be defined by the user by means of the *USER MATERIAL
keyword card. More information and examples can be found in section 9.5.

6.9 Types of analysis

An analysis type applies to a complete step, which starts with a *STEP card
and ends with an *END STEP card. The analysis type, the loading and field
output requests must be defined in between.

6.9.1 Static analysis

In a static analysis the time dimension is not involved. The loading is assumed
to be applied in a quasi-static way, i.e. so slow that inertia effects can be
neglected. A static analysis is defined by the key word *STATIC. A static step
can be geometrically linear or nonlinear. In both cases a Lagrangian point of
view is taken and all variables are specified in the material frame of reference
[21]. Thus, the stress used internally in CalculiX is the second Piola-Kirchhoff
tensor acting on the undeformed surfaces.

For geometrically linear calculations the infinitesimal strains are taken (lin-
earized version of the Lagrangian strain tensor), and the loads do not interfere
with each other. Thus, the deformation due to two different loads is the sum
of the deformation due to each of them. For linear calculations the difference
between the Cauchy and Piola-Kirchhoff stresses is negligible.

For geometrically nonlinear calculations, the full Lagrangian strain tensor is
used. A geometrically nonlinear calculation is triggered by the parameter NL-
GEOM on the *STEP card. The step is usually divided into increments, and the
user is supposed to provide an initial increment length and the total step length
on the *STATIC card. The increment length can be fixed (parameter DIRECT
on the *STATIC card) or automatic. In case of automatic incrementation, the
increment length is automatically adjusted according to the convergence charac-
teristics of the problem. In each increment, the program iterates till convergence
is reached, or a new attempt is made with a smaller increment size. In each
iteration the geometrically linear stiffness matrix is augmented with an initial
displacement stiffness due to the deformation in the last iteration and with an
initial stress stiffness due to the last iteration’s stresses [95]. For the output on
file the second Piola-Kirchhoff stress is converted into the Cauchy or true stress,
since this is the stress which is really acting on the structure.

Special provisions are made for cyclic symmetric structures. A cyclic sym-
metric structure is characterized by N identical sectors, see Figure 149 and the
discussion in next section. Static calculations for such structures under cyclic
symmetric loading lead to cyclic symmetric displacements. Such calculations
can be reduced to the consideration of just one sector, the so-called datum sec-
tor, subject to cyclic symmetry conditions, i.e. the right boundary of the sector
exhibits the same displacements as the left boundary, in cylindrical coordinates
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(NOT in rectangular coordinates!). The application of these boundary condi-
tions is greatly simplified by the use of the keyword cards *SURFACE, *TIE and
*CYCLIC SYMMETRY MODEL, defining the nodes on left and right bound-
ary and the sector size. Then, the appropriate multiple point constraints are
generated automatically. This can also be used for a static preload step prior
to a perturbative frequency analysis.

6.9.2 Frequency analysis

In a frequency analysis the lowest eigenfrequencies and eigenmodes of the struc-
ture are calculated. In CalculiX, the mass matrix is not lumped, and thus a
generalized eigenvalue problem has to be solved. The theory can be found in
any textbook on vibrations or on finite elements, e.g. [95]. A crucial point in
the present implementation is that, instead of looking for the smallest eigenfre-
quencies of the generalized eigenvalue problem, the largest eigenvalues of the
inverse problem are determined. For large problems this results in execution
times cut by about a factor of 100 (!). The inversion is performed by calling
the linear equation solver SPOOLES. A frequency step is triggered by the key
word *FREQUENCY and can be perturbative or not.

If the perturbation parameter is not activated on the *STEP card, the fre-
quency analysis is performed on the unloaded structure, constrained by the
homogeneous SPC’s and MPC’s. Any steps preceding the frequency step do
not have any influence on the results.

If the perturbation parameter is activated, the stiffness matrix is augmented
by contributions resulting from the displacements and stresses at the end of the
last non-perturbative static step, if any, and the material parameters are based
on the temperature at the end of that step. Thus, the effect of the centrifugal
force on the frequencies in a turbine blade can be analyzed by first performing
a static calculation with these loads, and selecting the perturbation parameter
on the *STEP card in the subsequent frequency step. The loading at the end
of a perturbation step is reset to zero.

If the input deck is stored in the file “problem.inp”, where “problem” stands
for any name, the eigenfrequencies are stored in the “problem.dat” file (notice
that the format of the storage depends on the symmetry of the stiffness ma-
trix; a nonsymmetric stiffness matrix results e.g. from contact friction and can
lead to complex eigenvalues). Furthermore, if the parameter STORAGE is set
to yes (STORAGE=YES) on the *FREQUENCY card the eigenfrequencies,
eigenmodes, stiffness matrix and mass matrix are stored in binary form in a
”problem.eig” file for further use (e.g. in a linear dynamic step).

All output of the eigenmodes is normalized by means of the mass matrix, i.e.
the generalized mass is one. The eigenvalue of the generalized eigenvalue prob-
lem is actually the square of the eigenfrequency. The eigenvalue is guaranteed
to be real (the stiffness and mass matrices are symmetric; the only exception
to this is if contact friction is included, which can lead to complex eigenfre-
quencies), but it is positive only for positive definite stiffness matrices. Due to
preloading the stiffness matrix is not necessarily positive definite. This can lead
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to purely imaginary eigenfrequencies which physically mean that the structure
buckles.

Apart from the eigenfrequencies the total effective mass and total effective
modal mass for all rigid body modes are also calculated and stored in the .dat-
file. There are six rigid body modes, three translations and three rotations. Let
us call any of these {R}. It is a vector corresponding to a unit rigid body mode,
e.g. a unit translation in the global x-direction. The participation factors Pi
are calculated by

Pi = {Ui}T [M ]{R}. (325)

They reflect the degree of participation of each mode in the selected rigid
body motion. Recall that the modes are mass-normalized, consequently the
unit of the mode is 1/

√
mass, the unit of the rigid body motion is length. The

effective modal mass is defined by P 2
i , the total effective modal mass by

∑

i

P 2
i (326)

(unit: mass ·length2). The total effective mass is the size of the rigid motion,
i.e. it is the internal product of the rigid motion with itself:

{R}T [M ]{R}. (327)

If one would calculate infinitely many modes the total effective modal mass
should be equal to the total effective mass. Since only a finite number of modes
are calculated the total effective modal mass will be less. By comparing the
total effective modal mass with the total effective mass one gains an impres-
sion whether enough modes were calculated to perform good modal dynamics
calculation (at least for the rigid motions).

A special kind of frequency calculations is a cyclic symmetry calculation for
which the keyword cards *SURFACE, *TIE, *CYCLIC SYMMETRY MODEL
and *SELECT CYCLIC SYMMETRY MODES are available. This kind of cal-
culation applies to structures consisting of identical sectors ordered in a cyclic
way such as in Figure 149.

For such structures it is sufficient to model just one sector (also called datum
sector) to obtain the eigenfrequencies and eigenmodes of the whole structure.
The displacement values on the left and right boundary (or surfaces) of the
datum sector are phase shifted. The shift depends on howmany waves are looked
for along the circumference of the structure. Figure 150 shows an eigenmode
for a full disk exhibiting two complete waves along the circumference. This
corresponds to four zero-crossings of the waves and a nodal diameter of two. This
nodal diameter (also called cyclic symmetry mode number) can be considered
as the number of waves, or also as the number of diameters in the structure
along which the displacements are zero.

The lowest nodal diameter is zero and corresponds to a solution which is
identical on the left and right boundary of the datum sector. For a struc-
ture consisting of N sectors, the highest feasible nodal diameter is N/2 for N
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Figure 149: Cyclic symmetry structure consisting of four identical sectors
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Figure 150: Eigenmode for a full disk with a nodal diameter of two

even and (N-1)/2 for N odd. The nodal diameter is selected by the user on the
*SELECT CYCLIC SYMMETRY MODES card. On the *CYCLIC SYMMETRY MODEL
card, the number of base sectors fitting in 360◦ is to be provided. On the same
card the user also indicates the number of sectors for which the solution is to
be stored in the .frd file. In this way, the solution can be plotted for the whole
structure, although the calculation was done for only one sector. The rotational
direction for the multiplication of the datum sector is from the dependent surface
(slave) to the independent surface (master).

Mathematically the left and right boundary of the datum sector are cou-
pled by MPC’s with complex coefficients. This leads to a complex generalized
eigenvalue problem with a Hermitian stiffness matrix, which can be reduced to
a real eigenvalue problem the matrices of which are twice the size as those in
the original problem.

The phase shift between left and right boundary of the datum sector is given
by 2πN/M , where N is the nodal diameter and M is the number of base sectors
in 360◦. Whereas N has to be an integer, CalculiX allows M to be a real number.
In this way the user may enter a fictitious value for M, leading to arbitrary phase
shifts between the left and right boundary of the datum sector (for advanced
applications).

For models containing the axis of cyclic symmetry (e.g. a full disk), the
nodes on the symmetry axis are treated differently depending on whether the
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nodal diameter is 0, 1 or exceeds 1. For nodal diameter 0, these nodes are fixed
in a plane perpendicular to the cyclic symmetry axis, for nodal diameter 1 they
cannot move along the cyclic symmetry axis and for higher nodal diameters they
cannot move at all. For these kind of structures calculations for nodal diameters
0 or 1 must be performed in separate steps.

Adjacent structures with datum sectors which differ in size can be calculated
by tying them together with the *TIE,MULTISTAGE keyword. This works well
if the size difference of the datum sectors is not too large. This is illustrated by
file multistage.inp in the test examples.

Eigenmodes resulting from frequency calculations with cyclic symmetry can
be interpreted as traveling waves (indeed, all eigenmode solutions exhibiting a
complex nature, i.e. containing a real and imaginary part, are traveling waves).
Therefore, a circumferential traveling direction can be determined. This travel-
ing direction is determined in CalculiX and stored in the .dat-file together with
the axis reference direction.

To determine the traveling direction (cw or ccw) the displacement solution
at the center of each element is calculated:

u = uR + iuI

v = vR + ivI

w = wR + iwI , (328)

where u,v and w are the displacement components, the subscript R denotes
the real part, I the imaginary part. The sum of the square amounts to

u2+ v2 +w2 = (u2R+ v2R+w2
R−u2I − v2I −w2

I )+ i(uRuI + vRvI +wRwI) (329)

or

u2 + v2 + w2 = A(r, ϕ, z)eiψ(r,ϕ,z). (330)

In the latter equation A is the amplitude, ψ the phase angle, both of which
depend on the actual location, here described by the cylindrical coordinates r, ϕ
and z. The motion of u2+ v2+w2 is now focussed on in order to determine the
traveling direction of the eigenmodes. Taking the frequency of the eigenmode
into account one arrives at:

(u2 + v2 + w2)e2iωt = A(r, ϕ, z)ei(2ωt+ψ(r,ϕ,z)). (331)

From this expression the wave character of the response is obvious. For an
observer traveling around the axis (at constant r and z) with the local wave
velocity one has:

2ωt+ ψ(r, ϕ, z) = constant (332)

or
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∂ψ

∂ϕ

dϕ

dt
= −2ω, (333)

leading to

dϕ

dt
= − 2ω

∂ψ
∂ϕ

. (334)

From the last equation one finds that the traveling direction depends on the
sign of ∂ψ/∂ϕ. If this quantity is positive the traveling direction is backwards
(or ccw when looking in the positive direction of the axis), else it is forwards.
The partial derivative of obtained by slightly moving the actual position in
positive ϕ-direction out of the center of the element and reevaluating ψ. This
procedure is repeated for all elements. For good accuracy the response from the
element for which ||u2 + v2 + w2|| is maximum (always evaluated at the center
of the element) is taken.

Finally one word of caution on frequency calculations with axisymmetric el-
ements. Right now, you will only get the eigenmodes corresponding to a nodal
diameter of 0, i.e. all axisymmetric modes. If you would like to calculate asym-
metric modes, please model a segment with volumetric elements and perform a
cyclic symmetry analysis.

6.9.3 Complex frequency analysis

This procedure is used to calculate the eigenvalues and eigenmodes taking the
Coriolis forces into account. The latter forces apply as soon as one performs
calculations in a rotating frame of reference. Therefore, using the *DLOAD card
to define a centrifugal speed in a *FREQUENCY step automatically requires to
take into account Coriolis forces. However, in a lot of applications the Coriolis
forces are quite small and can be neglected. They may be important for very
flexible rotating structures such as thin disks mounted on long rotating axes
(rotor dynamics).

The presence of Coriolis forces changes the governing equation into

[
M
] {
Ü
}
+
[
C
] {
U̇
}
+
[
K
] {
U
}
=
{
0
}

(335)

In a *FREQUENCY analysis the term with the Coriolis matrix
[
C
]
is lack-

ing. Now, the solution to the above equation is assumed to be a linear combi-
nation of the eigenmodes without Coriolis:

{
U(t)

}
=
∑

i

bi
{
Ui
}
eiωt. (336)

Substituting this assumption into the governing equation and premultiplying

the equation with
{
Uj
}T

leads to

∑

i

bi
{
Uj
}T [

C
] {
Ui
}
=

[
ω2
j − ω2

iω

]
bj . (337)
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Writing this equation for each value of j yields an eigenvalue problem of the
form

ω2
{
b
}
− iω

[
C∗
] {
b
}
−
[
Diag(ω2

j )
] {
b
}
=
{
0
}
. (338)

This is a nonlinear eigenvalue problem which can be solved by a Newton-
Raphson procedure. Starting values for the procedure are the eigenvalues of the
*FREQUENCY step and some values in between. In rare cases an eigenvalue
is missed (most often the last eigenvalue requested).

One can prove that the eigenvalues are real, the eigenmodes, however, are
usually complex. Therefore, instead of requesting U underneath the *NODE FILE
card yielding the real and imaginary part of the displacements it is rather in-
structive to request PU leading to the size and phase. With the latter informa-
tion the mode can be properly visualized in CalculiX GraphiX. In addition, the
traveling direction is determined in CalculiX and stored in the .dat-file together
with the axis reference direction.

Finally, notice that no *DLOAD card of type CORIO is needed in CalculiX.
A loading of type CENTRIF in a preceding *STATIC step is sufficient. The
usual procedure is indeed:

1. a *STATIC step to define the centrifugal force and calculate the deforma-
tion and stresses (may contain NLGEOM, but does not have to).

2. a *FREQUENCY step with PERTURBATION to calculate the eigenfre-
quencies and eigenmodes taking the centrifugal forces, stress stiffness and
deformation stiffness into account. The *FREQUENCY card must include
the parameter STORAGE=YES.

3. a *COMPLEX FREQUENCY,CORIOLIS step to include the Coriolis
forces.

6.9.4 Buckling analysis

In a linear buckling analysis the initial stiffness matrix is augmented by the
initial stress matrix corresponding to the load specified in the *BUCKLE step,
multiplied with a factor. This so-called buckling factor is determined such that
the resulting matrix has zero as its lowest eigenfrequency. Ultimately, the buck-
ling load is the buckling factor multiplied with the step load. The buckling
factor(s) are always stored in the .dat file. The load specified in a *BUCKLE
step should not contain prescribed displacements.

If the perturbation parameter is not activated on the *STEP card, the initial
stiffness matrix corresponds to the stiffness matrix of the unloaded structure.

If the perturbation parameter is activated, the initial stiffness matrix in-
cludes the deformation and stress stiffness matrix corresponding to the defor-
mation and stress at the end of the last static or dynamic step performed pre-
vious to the buckling step, if any, and the material parameters are based on the
temperature at the end of that step. In this way, the effect of previous loadings
can be included in the buckling analysis.
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In a buckling step, all loading previous to the step is removed and replaced
by the buckling step’s loading, which is reset to zero at the end of the buckling
step. Thus, to continue a static step interrupted by a buckling step, the load
has to be reapplied after the buckling step. Due to the intrinsic nonlinearity of
temperature loading (the material properties usually change with temperature),
this type of loading is not allowed in a linear buckling step. If temperature load-
ing is an issue, a nonlinear static or dynamic calculation should be performed
instead.

6.9.5 Modal dynamic analysis

In a modal dynamic analysis, triggered by the *MODAL DYNAMIC key word,
the response of the structure to dynamic loading is assumed to be a linear com-
bination of the lowest eigenmodes. These eigenmodes are recovered from a file
”problem.eig”, where ”problem” stands for the name of the structure. These
eigenmodes must have been determined in a previous step (STORAGE=YES on
the *FREQUENCY card or on the *HEAT TRANSFER,FREQUENCY card),
either in the same input deck, or in an input deck run previously. If, in the latter
case, the eigenmode analysis exhibited cyclic symmetry (i.e. if the *SELECT
CYCLIC SYMMETRY MODES card was used) make sure to use the CYCLIC
SYMMETRY parameter on the *MODAL DYNAMIC card. The dynamic load-
ing can be defined as a piecewise linear function by means of the *AMPLITUDE
key word.

The displacement boundary conditions in a modal dynamic analysis should
match zero boundary conditions in the same nodes and same directions in the
step used for the determination of the eigenmodes. This corresponds to what
is called base motion in ABAQUS. A typical application for nonzero bound-
ary conditions is the base motion of a building due to an earthquake. Notice
that in a modal dynamic analysis with base motion non-homogeneous multi-
ple point constraints are not allowed. This applies in particular to single point
constraints (boundary conditions) in a non-global coordinate system, such as
a cylindrical coordinate system (defined by a *TRANSFORM card). Indeed,
boundary conditions in a local coordinate system are internally transformed
into non-homogeneous multiple point constraints. Consequently, in a modal
dynamic analysis boundary conditions must be defined in the global Cartesian
coordinate system.

Temperature loading or residual stresses are not allowed. If such loading
arises, the direct integration dynamics procedure should be used.

Nonzero displacement boundary conditions in a modal dynamic analysis
require the calculation of the first and second order time derivatives (velocity
and acceleration) of the temporarily static solution induced by them. Indeed,
based on the nonzero displacement boundary conditions (without any other
loading) at time t a static solution can be determined for that time (that’s
why the stiffness matrix is included in the .eig file). If the nonzero displacement
boundary conditions change with time, so will the induced static solution. Now,
the solution to the dynamic problem is assumed to be the sum of this temporarily
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static solution and a linear combination of the lowest eigenmodes. To determine
the first and second order time derivatives of the induced static solution, second
order accurate finite difference schemes are used based on the solution at times
t−∆t, t and t+∆t, where ∆t is the time increment in the modal dynamic step.
At the start of a modal dynamic analysis step the nonzero boundary conditions
at the end of the previous step are assumed to have reached steady state (velocity
and acceleration are zero). Nonzero displacement boundary conditions can by
applied by use of the *BOUNDARY card or the *BASE MOTION card.

The following damping options are available:

• Rayleigh damping by means of the *MODAL DAMPING key card. It
assumes the damping matrix to be a linear combination of the problem’s
stiffness matrix and mass matrix. This splits the problem according to its
eigenmodes, and leads to ordinary differential equations. The results are
exact for piecewise linear loading, apart from the inaccuracy due to the
finite number of eigenmodes.

• Direct damping by means of the *MODAL DAMPING key card. The
damping coefficient ζ can be given for each mode separately. The results
are exact for piecewise linear loading, apart from the inaccuracy due to
the finite number of eigenmodes.

• Dashpot damping by defining dashpot elements (cf. Section 6.2.39).

A modal dynamic analysis can also be performed for a cyclic symmetric
structure. To this end, the eigenmodes must have been determined for all rel-
evant modal diameters. For a cyclic modal dynamic analysis there are two
limitations:

1. Nonzero boundary conditions are not allowed.

2. The displacements and velocities at the start of a step must be zero.

Special caution has to be applied if 1D and 2D elements are used. Since
these elements are internally expanded into 3D elements, the application of
boundary conditions and point forces to nodes requires the creation of multiple
point constraints linking the original nodes to their expanded counterparts.
These MPC’s change the structure of the stiffness and mass matrix. However,
the stiffness and mass matrix is stored in the .eig file in the *FREQUENCY
step preceding the *MODAL DYNAMIC step. This is necessary, since the mass
matrix is needed for the treatment of the initial conditions ([19]) and the stiffness
matrix for taking nonzero boundary conditions into account. Summarizing,
the *MODAL DYNAMIC step should not introduce point loads or nonzero
boundary conditions in nodes in which no point force or boundary condition was
defined in the *FREQUENCY step. The value of the point force and boundary
conditions in the *FREQUENCY step can be set to zero. An example for the
application of point forces to shells is given in shellf.inp of the test example set.
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Special effort was undertaken to increase the computational speed for modal
dynamic calculations. This is especially important if contact is used, since
contact convergence can require very small time steps. If time is an issue for
you, please take into account the following rules:

• Time varying loads slow down the execution.

• Loads applied in many elements slow down execution. Together with the
previous rule this means that e.g. a constantly changing centrifugal load
is very detrimental to the performance of the calculation.

• Nonzero displacements, centrifugal loads and gravity loads involve load
changes in the complete mesh and slow down execution.

• Point loads act very local and are good for the performance.

• Use the parameter NSET on the *NODE FILE and *EL FILE card to
limit output to a small set of nodes in order to accelerate the execution.

• Requesting element variables in the frd output slows down execution. So
does requesting nodal forces, since these are derived from the stresses
in the integration points. Limiting output to displacements (U) is very
beneficial.

• Using the user subroutine cload.f (Section 9.4.2) slows down the execution,
since this routine provides the user with the forces in the nodes at stake.

Summarizing, maximal speed will be obtained by applying a constant point
load (Heaviside step function) in one node and requesting the displacements
only in that node.

6.9.6 Steady state dynamics

In a steady state dynamics analysis, triggered by the *STEADY STATE DYNAMICS
key word, the response of the structure to dynamic harmonic loading is as-
sumed to be a linear combination of the lowest eigenmodes. This is very similar
to the modal dynamics procedure, except that the load is harmonic in na-
ture and that only the steady state response is of interest. The eigenmodes
are recovered from a file ”problem.eig”, where ”problem” stands for the name
of the structure. These eigenmodes must have been determined in a previous
step (STORAGE=YES on the *FREQUENCY card or on the *HEAT TRANS-
FER,FREQUENCY card), either in the same input deck, or in an input deck
run previously. The dynamic harmonic loading is defined by its amplitude us-
ing the usual keyword cards such as *CLOAD and a frequency interval specified
underneath the *STEADY STATE DYNAMICS card. The load amplitudes can
be modified by means of a *AMPLITUDE key word, which is interpreted as
load factor versus frequency (instead of versus time).

If centrifugal loading (cf. *DLOAD) is found, it is assumed that the complete
calculation (eigenmode calculation inclusive) has been performed in a relative
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coordinate system attached to the rotating structure. The centrifugal loading
is kept fixed and is not subject to the harmonic excitation. Coriolis forces
are activated for any part subject to centrifugal loading. The resulting response
(displacements, stresses etc.) from the steady state calculation is in the rotating
(relative) system, without the static centrifugal part.

The displacement boundary conditions in a modal dynamic analysis should
match zero boundary conditions in the same nodes and same directions in the
step used for the determination of the eigenmodes. They can be defined using
*BOUNDARY cards or *BASE MOTION cards. The latter can also be used to
define an acceleration. Temperature loading or residual stresses are not allowed.
If such loading arises, the direct integration dynamics procedure should be used.

One can define loading which is shifted by 90◦ by using the parameter LOAD
CASE = 2 on the loading cards (e.g. *CLOAD).

The frequency range is specified by its lower and upper bound. The num-
ber of data points within this range n can also be defined by the user. If no
eigenvalues occur within the specified range, this is the total number of data
points taken, i.e. including the lower frequency bound and the upper frequency
bound. If one or more eigenvalues fall within the specified range, n − 2 points
are taken in between the lower frequency bound and the lowest eigenfrequency
in the range, n − 2 between any subsequent eigenfrequencies in the range and
n − 2 points in between the highest eigenfrequency in the range and the up-
per frequency bound. In addition, the eigenfrequencies are also included in the
data points. Consequently, if m eigenfrequencies belong to the specified range,
(m+ 1)(n− 2) +m+ 2 = nm−m+ n data points are taken. They are equally
spaced in between the fixed points (lower frequency bound, upper frequency
bound and eigenfrequencies) if the user specifies a bias equal to 1. If a different
bias is specified, the data points are concentrated about the fixed points.

The following damping options are available:

• Rayleigh damping by means of the *MODAL DAMPING key card. It
assumes the damping matrix to be a linear combination of the problem’s
stiffness matrix and mass matrix. This splits the problem according to its
eigenmodes, and leads to ordinary differential equations.

• Direct damping by means of the *MODAL DAMPING key card. The
damping coefficient ζ can be given for each mode separately.

• Structural damping by means of the *DAMPING key card. The struc-
tural damping is a material characteristic and has to be specified as such
underneath a *MATERIAL card.

• Dashpot damping by defining dashpot elements (cf. Section 6.2.39).

For nonharmonic loading, triggered by the parameter HARMONIC=NO on
the *STEADY STATE DYNAMICS card, the loading across one period is not
harmonic and has to be specified in the time domain. To this end the user can
specify the starting time and the final time of one period and describe the loading
within this period with *AMPLITUDE cards. Default is the interval [0., 1.]
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and step loading. Notice that for nonharmonic loading the *AMPLITUDE
cards describe amplitude versus TIME. Internally, the nonharmonic loading is
expanded into a Fourier series. The user can specify the number of terms which
should be used for this expansion, default is 20. The remaining input is the
same as for harmonic loading, i.e. the user specifies a frequency range, the
number of data points within this range and the bias. The comments above for
harmonic loading also apply here, except that, since the loading is defined in
the time domain, the LOAD CASE parameter does not make sense here, i.e.
LOAD CASE = 1 by default.

A steady state dynamic analysis can also be performed for a cyclic sym-
metric structure. To this end, the eigenmodes must have been determined for
all relevant modal diameters. For a cyclic steady state dynamic analysis the
following limiations apply:

1. Nonzero boundary conditions are not allowed.

2. The displacements and velocities at the start of a step must be zero.

3. Dashpot elements are not allowed.

4. Structural damping is not allowed.

5. If centrifugal forces apply, the corresponding Coriolis forces are not taken
into account. The user has to assure that they are small enough so that
they can be neglected.

The output of a steady state dynamics calculation is complex, i.e. it consists
of a real and an imaginary part. Consequently, if the user saves the displace-
ments to file, there will be two entries: first the real part of the displacement,
then the imaginary part. This also applies to all other output variables such as
temperature or stress. For the displacements, the temperatures and the stresses
the user can request that these variables are stored as magnitude and phase
(in that order) by selecting beneath the *NODE FILE card PU, PNT and PHS
instead of U, NT and S respectively. This does not apply to the *NODE PRINT
card.

Special caution has to be applied if 1D and 2D elements are used. Since
these elements are internally expanded into 3D elements, the application of
boundary conditions and point forces to nodes requires the creation of multiple
point constraints linking the original nodes to their expanded counterparts.
These MPC’s change the structure of the stiffness and mass matrix. However,
the stiffness and mass matrix is stored in the .eig file in the *FREQUENCY
step preceding the *STEADY STATE DYNAMICS step. This is necessary,
since the mass matrix is needed for the treatment of the initial conditions ([19])
and the stiffness matrix for taking nonzero boundary conditions into account.
Summarizing, the *STEADY STATE DYNAMICS step should not introduce
point loads or nonzero boundary conditions in nodes in which no point force
or boundary condition was defined in the *FREQUENCY step. The value of
the point force and boundary conditions in the *FREQUENCY step can be set
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to zero. An example for the application of point forces to shells is given in
shellf.inp of the test example set.

6.9.7 Direct integration dynamic analysis

In a direct integration dynamic analysis, activated by the *DYNAMIC key word,
the equation of motion is integrated in time using the α-method developed by
Hilber, Hughes and Taylor [56]. The method is implemented exactly as de-
scribed in [19]. The parameter α lies in the interval [-1/3,0] and controls the
high frequency dissipation: α=0 corresponds to the classical Newmark method
inducing no dissipation at all, while α=-1/3 corresponds to maximum dissi-
pation. The user can choose between an implicit and explicit version of the
algorithm. The implicit version (default) is unconditionally stable.

In the explicit version, triggered by the parameter EXPLICIT in the *DY-
NAMIC keyword card, the mass matrix is lumped, and a forward integration
scheme is used so that the solution can be calculated without solving a sys-
tem of equations. Each iteration is much faster than with the implicit scheme.
However, the explicit scheme is only conditionally stable: the maximum time
step size is proportional to the time a mechanical wave needs to cross the small-
est element in the mesh. For linear elements the proportionality factor is 1.,
for quadratic elements it is 1/

√
6. For example, for elastic materials, the wave

speed in a rod is
√
E/ρ, where E is Young’s modulus and ρ is the material

density.

To accelerate explicit dynamic calculations mass scaling can be used [63]. It
was introduced in CalculiX in the course of a Master Thesis [18]. Mass scaling
is triggered by specifying the minimum time increment which the user wants
to allow underneath the *DYNAMIC keyword (third parameter). If for any
element the increment size calculated by CalculiX (based on the wave speed)
is less than the minimum, the mass of this element is automatically scaled
and redistributed such that the total mass of the element does not change.
This is obtained by moving mass from the off-diagonal positions of the element
mass matrix onto the diagonal. If any mass scaling takes place, a message is
printed and the elements for which the mass was redistributed are stored in file
“WarnElementMassScaled.nam”. This file can be read in any active cgx-session
by typing “read WarnElementMassScaled.nam inp” and the elements can be
appropriately visualized. Without a minimum time increment no mass scaling
is applied.

The following damping options are available:

• Rayleigh damping by means of the *DAMPING keyword card underneath
a *MATERIAL card. It assumes the damping matrix to be a linear com-
bination of the problem’s stiffness matrix and mass matrix. Although
possibly defined for only one material, the coefficients of the linear com-
bination apply to the whole model. For explicit calculations the damping
matrix is allowed to be mass matrix proportional only.
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• Dashpot damping by defining dashpot elements (cf. Section 6.2.39; for
implicit dynamic calculations only).

• Contact damping by defining a contact damping constant and, option-
ally, a tangent fraction using the *CONTACT DAMPING keyword card
(implicit dynamic calculations only).

6.9.8 Heat transfer

In a heat transfer analysis, triggered by the *HEAT TRANSFER procedure
card, the temperature is the independent degree of freedom. In essence, the
energy equation is solved subject to temperature and flux boundary conditions
([19]). For steady-state calculations it leads to a Laplace-type equation.

The governing equation for heat transfer reads

∇ · (−κ · ∇T ) + ρcṪ = ρh (339)

where κ contains the conduction coefficients, ρ is the density, h the heat
generation per unit of mass and c is the specific heat.

The temperature can be defined using the *BOUNDARY card using degree
of freedom 11. Flux type boundary conditions can consist of any combination
of the following:

1. Concentrated flux, applied to nodes, using the *CFLUX card (degree of
freedom 11)

2. Distributed flux, applied to surfaces or volumes, using the *DFLUX card

3. Convective flux defined by a *FILM card. It satisfies the equation

q = h(T − T0) (340)

where q is the a flux normal to the surface, h is the film coefficient, T
is the body temperature and T0 is the environment temperature (also
called sink temperature). CalculiX can also be used for forced convection
calculations, in which the sink temperature is an unknown too. This
applied to all kinds of surfaces cooled by fluids or gases.

4. Radiative flux defined by a *RADIATE card. The equation reads

q = ǫ(θ4 − θ40) (341)

where q is a flux normal to the surface, ǫ is the emissivity, θ is the absolute
body temperature (Kelvin) and θ0 is the absolute environment tempera-
ture (also called sink temperature). The emissivity takes values between
0 and 1. A zero value applied to a body with no absorption nor emission
and 100 % reflection. A value of 1 applies to a black body. The radia-
tion is assumed to be diffuse (independent of the direction of emission)
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and gray (independent of the emitted wave length). CalculiX can also be
used for cavity radiation, simulating the radiation interaction of several
surfaces. In that case, the viewfactors are calculated, see also [35] for the
fundamentals of heat transfer and [6] for the calculation of viewfactors.

The calculation of viewfactors involves the solution of a four-fold integral.
By using analytical formulas derived by Lambert this integral can be re-
duced to a two-fold integral. This is applied in CalculiX right now: the
interacting surfaces are triangulated and the viewfactor between two tri-
angles is calculated by taking a one-point integration for the base triangle
(in the center of gravity) and the analytical formula for the integration
over the other triangles covering a hemisphere about the base triangle.
One can switch to a more accurate integration over the base triangle by
increasing the variable “factor” in subroutine radmatrix, look at the com-
ments in that subroutine. This, however, will increase the computational
time.

For a heat transfer analysis the conductivity coefficients of the material are
needed (using the *CONDUCTIVITY card) and for transient calculations the
heat capacity (using the *SPECIFIC HEAT card). Furthermore, for radiation
boundary conditions the *PHYSICAL CONSTANTS card is needed, specifying
absolute zero in the user’s temperature scale and the Boltzmann constant.

Notice that a phase transition can be modeled by a local sharp maximum of
the specific heat. The energy U per unit of mass needed to complete the phase
transition satisfies

U =

∫ T1

T0

CdT, (342)

where C is the specific heat and [T0, T1] is the temperature interval within
which the phase transition takes place.

6.9.9 Acoustics

Linear acoustic calculations in gas are very similar to heat transfer calcula-
tions. Indeed, the pressure variation in a space with uniform basis pressure p0
and density ρ0 (and consequently uniform temperature T0 due to the gas law)
satisfies

∇ · (−I · ∇p) + 1

c20
p̈ = −ρ0∇ · f , (343)

where I is the second order unit tensor (or, for simplicity, unit matrix) and
c0 is the speed of sound satisfying:

c0 =
√
γRT0. (344)
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Table 9: Correspondence between the heat equation and the gas momentum
equation.

heat quantity gas quantity
T p
q ρ0(a− f )
qn ρ0(an − fn)
κ I

ρh −ρ0∇ · f
ρc 1

c20

γ is the ratio of the heat capacity at constant pressure divided by the heat
capacity at constant volume (γ = 1.4 for normal air), R is the specific gas con-
stant (R = 287J/(kgK) for normal air) and T0 is the absolute basis temperature
(in K). Furthermore, the balance of momentum reduces to:

∇p = ρ0(f − a). (345)

For details, the reader is referred to [21] and [2]. Equation (343) is the
well-known wave equation. By comparison with the heat equation, the corre-
spondence in Table (9) arises.

Notice, however, that the time derivative in the heat equation is first order, in
the gas momentum equation it is second order. This means that the transient
heat transfer capability in CalculiX can NOT be used for the gas equation.
However, the frequency option can be used and the resulting eigenmodes can be
taken for a subsequent modal dynamic or steady state dynamics analysis. Recall
that the governing equation for solids also has a second order time derivative
([19]).

For the driving terms one obtains:

∫

A

ρ0(an − fn)dA−
∫

V

ρ0∇ · fdV =

∫

A

ρ0andA, (346)

which means that the equivalent of the normal heat flux at the boundary is
the basis density multiplied with the acceleration. Consequently, at the bound-
ary either the pressure must be known or the acceleration.

6.9.10 Shallow water motion

For incompressible fluids integration of the governing equations over the fluid
depth and subsequent linearization leads to the following equation:

∇ · (−gHI · ∇η) + η̈ = 0, (347)

where g is the earth acceleration, H is the fluid depth measured from a
reference level, I is the unit tensor and η is the fluid height with respect to the
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Table 10: Correspondence between the heat equation and the shallow water
equation.

heat quantity shallow water quantity
T η
q ∂

∂t (Hv)
qn H ∂

∂t (vn)
κ HgI
ρh −
ρc 1

reference level. Usually the fluid level at rest is taken as reference level. The
derivation of the equation is described in [95]. The following assumptions are
made:

• no viscosity

• no Coriolis forces

• no convective acceleration

• H + η ≈ H

Due to the integration process the above equation is two-dimensional, i.e.
only the surface of the fluid has to be meshed. By comparison with the heat
equation, the correspondence in Table (10) arises. Therefore, shallow water
motion can be simulated using the *HEAT TRANSFER procedure.

The quantity v is the average velocity over the depth and vn is its component
orthogonal to the boundary of the domain. Due to the averaging the equations
hold for small depths only (shallow water approximation). Notice that the
equivalence of the heat conduction coefficient is proportional to the depth, which
is a geometric quantity. For a different depth a different conduction coefficient
must be defined.

There is no real two-dimensional element in CalculiX. Therefore, the two-
dimensional Helmholtz equation has to be simulated by expanding the two-
dimensional fluid surface to a three-dimensional layer with constant width and
applying the boundary conditions in such a way that no variation occurs over
the width.

Notice that, similar to the acoustic equations, the shallow water equations
are of the Helmholtz type leading to a hyperbolic system. For instationary
applications eigenmodes can be calculated and a modal analysis performed.

6.9.11 Hydrodynamic lubrication

In hydrodynamic lubrication a thin oil film constitutes the interface between a
static part and a part rotating at high speed in all kinds of bearings. A quantity
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Table 11: Correspondence between the heat equation and the dynamic lubrica-
tion equation.

heat quantity dynamic lubrication quantity
T p
q ρhv
qn ρhvn

κ h3ρ
12µv

I

ρh −
(
vb+va

2

)
· ∇(hρ)− ∂(hρ)

∂t − ṁΩ

ρc −

of major interest to engineers is the load bearing capacity of the film, expressed
by the pressure. Integrating the hydrodynamic equations over the width of the
thin film leads to the following equation [27]:

∇ · (− h3ρ

12µv
I · ∇p) = −

(
vb + va

2

)
· ∇(hρ)− ∂(hρ)

∂t
− ṁΩ, (348)

where h is the film thickness, ρ is the mean density across the thickness, p is
the pressure, µv is the dynamic viscosity of the fluid, va is the velocity on one
side of the film, vb is the velocity at the other side of the film and ṁΩ is the
resulting volumetric flux (volume per second and per unit of area) leaving the
film through the porous walls (positive if leaving the fluid). This term is zero if
the walls are not porous.

For practical calculations the density and thickness of the film is assumed to
be known, the pressure is the unknown. By comparison with the heat equation,
the correspondence in Table (11) arises. v is the mean velocity over the film,
vn its component orthogonal to the boundary. Since the governing equation is
the result of an integration across the film thickness, it is again two-dimensional
and applies in the present form to a plane film. Furthermore, observe that it is
a steady state equation (the time change of the density on the right hand side
is assumed known) and as such it is a Poisson equation. Here too, just like for
the shallow water equation, the heat transfer equivalent of a spatially varying
layer thickness is a spatially varying conductivity coefficient.

6.9.12 Irrotational incompressible inviscid flow

If incompressible flow is irrotational a potential φ exists for the velocity field
such that v = −∇φ. Furthermore, if the flow is inviscid one can prove that
if a flow is irrotational at any instant in time, it remains irrotational for all
subsequent time instants [95]. The continuity equation now reads

∇ · (−I · ∇φ) = 0, (349)
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Table 12: Correspondence between the heat equation and the equation for in-
compressible irrotational inviscid flow.

heat quantity irrotational flow quantity
T φ
q v

qn vn
κ I

ρh 0
ρc −

and the balance of momentum for gravitational flow yields

∂v

∂t
+∇

(
p

ρ0
+

v · v
2

+ gz

)
= 0, (350)

where g is the earth acceleration, p is the pressure, ρ0 is the density and z
is the coordinate in earth direction. By comparison with the heat equation, the
correspondence in Table (12) arises.

Once φ is determined, the velocity v is obtained by differentiation and the
pressure p can be calculated through the balance of momentum. Although
irrotational incompressible inviscid flow sounds very special, the application
field is rather large. Flow starting from rest is irrotational since the initial
field is irrotational. Flow at speeds below 0.3 times the speed of sound can be
considered to be incompressible. Finally, the flow outside the tiny boundary
layer around an object is inviscid. A favorite examples is the flow around a
wing profile. However, if the boundary layer separates and vortices arise the
above theory cannot be used any more. For further applications see [40].

6.9.13 Electrostatics

The governing equations of electrostatics are

E = −∇V (351)

and

∇ ·E =
ρe

ǫ0
, (352)

where E is the electric field, V is the electric potential, ρe is the elec-
tric charge density and ǫ0 is the permittivity of free space (ǫ0 = 8.8542 ×
10−12 C2/Nm2). The electric field E is the force on a unit charge.

In metals, it is linked to the current density j by the electric conductivity
σc [5]:
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Table 13: Correspondence between the heat equation and the equation for elec-
trostatics (metals and free space).

heat electrostatics
T V
q E

qn En = jn
σ

κ I

ρh ρe

ǫ0
ρc −

j = σcE. (353)

In free space, the electric field is locally orthogonal to a conducting surface.
Near the surface the size of the electric field is proportional to the surface charge
density σ[23]:

σ = Enǫ0. (354)

Substituting Equation (351) into Equation (352) yields the governing equa-
tion

∇ · (−I · ∇V ) =
ρe

ǫ0
. (355)

Accordingly, by comparison with the heat equation, the correspondence in
Table (13) arises. Notice that the electrostatics equation is a steady state
equation, and there is no equivalent to the heat capacity term.

An application of electrostatics is the potential drop technique for crack
propagation measurements: a predefined current is sent through a conducting
specimen. Due to crack propagation the specimen section is reduced and its
electric resistance increases. This leads to an increase of the electric potential
across the specimen. A finite element calculation for the specimen (electrostatic
equation with ρe = 0) can determine the relationship between the potential and
the crack length. This calibration curve can be used to derive the actual crack
length from potential measurements during the test.

Another application is the calculation of the capacitance of a capacitor.
Assuming the space within the capacitor to be filled with air, the electrostatic
equation with ρe = 0 applies (since there is no charge within the capacitor).
Fixing the electric potential on each side of the capacitor (to e.g. zero and one),
the electric field can be calculated by the thermal analogy. This field leads to a
surface charge density by Equation (354). Integrating this surface charge leads
to the total charge. The capacitance is defined as this total charge divided by
the electric potential difference (one in our equation).
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Table 14: Correspondence between the heat equation and the equation for elec-
trostatics (dielectric media).

heat electrostatics
T V
q D

qn Dn

κ ǫI
ρh ρf

ρc −

For dielectric applications Equation (352) is modified into

∇ ·D = ρf , (356)

where D is the electric displacement and ρf is the free charge density [23].
The electric displacement is coupled with the electric field by

D = ǫE = ǫ0ǫrE, (357)

where ǫ is the permittivity and ǫr is the relative permittivity (usually ǫr > 1,
e.g. for silicon ǫr=11.68). Now, the governing equation yields

∇ · (−ǫI · ∇V ) = ρf (358)

and the analogy in Table (14) arises. The equivalent of Equation (354) now
reads

σ = Dn. (359)

The thermal equivalent of the total charge on a conductor is the total heat
flow. Notice that ǫ may be a second-order tensor for anisotropic materials.

6.9.14 Stationary groundwater flow

The governing equations of stationary groundwater flow are [28]

v = −k · ∇h (360)

(also called Darcy’s law) and

∇ · v = 0, (361)

where v is the discharge velocity, k is the permeability tensor and h is the
total head defined by

h =
p

ρg
+ z. (362)
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Table 15: Correspondence between the heat equation and the equation for
groundwater flow.

heat groundwater flow
T h
q v

qn vn
κ k

ρh 0
ρc −

In the latter equation p is the groundwater pressure, ρ is its density and
z is the height with respect to a reference level. The discharge velocity is the
quantity of fluid that flows through a unit of total area of the porous medium
in a unit of time.

The resulting equation now reads

∇ · (−k · ∇h) = 0. (363)

Accordingly, by comparison with the heat equation, the correspondence in
Table (15) arises. Notice that the groundwater flow equation is a steady state
equation, and there is no equivalent to the heat capacity term.

Possible boundary conditions are:

1. unpermeable surface under water. Taking the water surface as reference
height and denoting the air pressure by p0 one obtains for the total head:

h =
p0 − ρgz

ρg
+ z =

p0
ρg
. (364)

2. surface of seepage, i.e. the interface between ground and air. One obtains:

h =
p0
ρg

+ z. (365)

3. unpermeable boundary: vn = 0

4. free surface, i.e. the upper boundary of the groundwater flow within the
ground. Here, two conditions must be satisfied: along the free surface one
has

h =
p0
ρg

+ z. (366)

In the direction n perpendicular to the free surface vn = 0 must be sat-
isfied. However, the problem is that the exact location of the free surface
is not known. It has to be determined iteratively until both equations are
satisfied.
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6.9.15 Diffusion mass transfer in a stationary medium

The governing equations for diffusion mass transfer are [35]

jA = −ρDAB∇mA (367)

and

∇ · jA + ṅA =
∂ρA
∂t

, (368)

where

mA =
ρA

ρA + ρB
(369)

and

ρ = ρA + ρB. (370)

In these equations jA is the mass flux of species A, DAB is the mass diffu-
sivity, mA is the mass fraction of species A and ρA is the density of species A.
Furthermore, ṅA is the rate of increase of the mass of species A per unit volume
of the mixture. Another way of formulating this is:

J∗
A = −CDAB∇xA (371)

and

∇ · J∗
A + ṄA =

∂CA
∂t

. (372)

where

xA =
CA

CA + CB
(373)

and

C = CA + CB . (374)

Here, J∗
A is the molar flux of species A, DAB is the mass diffusivity, xA is

the mole fraction of species A and CA is the molar concentration of species A.
Furthermore, ṄA is the rate of increase of the molar concentration of species A.

The resulting equation now reads

∇ · (−ρDAB · ∇mA) +
∂ρA
∂t

= ṅA. (375)

or

∇ · (−CDAB · ∇xA) +
∂CA
∂t

= ṄA. (376)

If C and ρ are constant, these equations reduce to:
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Table 16: Correspondence between the heat equation and mass diffusion equa-
tion.

heat mass diffusion
T ρ CA
q jA J∗

A

qn jAn JA∗n

κ DAB DAB

ρh ṅA ṄA
ρc 1 1

∇ · (−DAB · ∇ρA) +
∂ρA
∂t

= ṅA. (377)

or

∇ · (−DAB · ∇CA) +
∂CA
∂t

= ṄA. (378)

Accordingly, by comparison with the heat equation, the correspondence in
Table (16) arises.

6.9.16 Aerodynamic Networks

Aerodynamic networks are made of a concatenation of network elements filled
with a compressible medium which can be considered as an ideal gas. An ideal
gas satisfies

p = ρRT, (379)

where p is the pressure, ρ is the density, R is the specific gas constant
and T is the absolute temperature. A network element (see section 6.2.33)
consists of three nodes: in the corner nodes the temperature and pressure are the
unknowns, in the midside node the mass flow is unknown. The corner nodes play
the role of crossing points in the network, whereas the midside nodes represent
the flow within one element. To determine these unknowns, three types of
equations are available: conservation of mass and conservation of energy in the
corner nodes and conservation of momentum in the midside node. Right now,
only stationary flow is considered.

The stationary form of the conservation of mass for compressible fluids is
expressed by:

∇ · (ρv) = 0 (380)

where v the velocity vector. Integration over all elements connected to corner
node i yields:
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∑

j∈in

ṁij =
∑

j∈out

ṁij , (381)

where ṁij is the mass flow from node i to node j or vice versa. In the above
equation ṁij is always positive.

The conservation of momentum or element equations are specific for each
type of fluid section attributed to the element and are discussed in Section 6.4
on fluid sections. For an element with corner nodes i,j it is generally of the form
f(pti , Tti , ṁij , ptj ) = 0 (for positive ṁij , where p is the total pressure and Tt
is the total temperature), although more complex relationships exist. Notice in
particular that the temperature pops up in this equation (this is not the case
for hydraulic networks).

The conservation of energy for an ideal gas in stationary form requires ([26],
see also Equation (30)):

∇ · (ρhtv) = −∇ · q+ ρhθ + ρf · v, (382)

where q is the external heat flux, hθ is the body flux per unit of mass and
f is the body force per unit of mass. ht is the total enthalpy satisfying:

ht = cpT +
v · v
2

, (383)

where cp is the specific heat at constant pressure and T is the absolute
temperature (in Kelvin). This latter formula only applies if cp is considered to
be independent of the temperature. This is largely true for a lot of industrial
applications. In this connection the reader be reminded of the definition of
total temperature and total pressure (also called stagnation temperature and
stagnation pressure, respectively):

Tt = T +
v · v
2cp

, (384)

and

pt
p

=

(
Tt
T

) κ
κ−1

, (385)

where κ = cp/cv. T and p are also called the static temperature and static
pressure, respectively.

If the corner nodes of the elements are considered to be large chambers, the
velocity v is zero. In that case, the total quantities reduce to the static ones,
and integration of the energy equation over all elements belonging to end node
i yields [19]:

cp(Ti)
∑

j∈in

Tjṁij − cp(Ti)Ti
∑

j∈out

ṁij + h(Ti, T )(T − Ti) +mih
θ
i = 0, (386)
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where h(Ti, T ) is the convection coefficient with the walls. Notice that,
although this is not really correct, a slight temperature dependence of cp is
provided for. If one assumes that all flow entering a node must also leave it and
taking for both the cp value corresponding to the mean temperature value of
the entering flow, one arrives at:

∑

j∈in

cp(Tm)(Tj − Ti)ṁij + h(Ti, T )(T − Ti) +mih
θ
i = 0. (387)

where Tm = (Ti + Tj)/2.
The calculation of aerodynamic networks is triggered by the *HEAT TRANSFER

keyword card. Indeed, such a network frequently produces convective bound-
ary conditions for solid mechanics heat transfer calculations. However, network
calculations can also be performed on their own.

A particularly delicate issue in networks is the number of boundary condi-
tions which is necessary to get a unique solution. To avoid ending up with more
or less equations than unknowns, the following rules should be obeyed:

• The pressure and temperature should be known in those nodes where
mass flow is entering the network. Since it is not always clear whether at
a specific location mass flow is entering or leaving, it is advisable (though
not necessary) to prescribe the pressure and temperature at all external
connections, i.e in the nodes connected to dummy network elements.

• A node where the pressure is prescribed should be connected to a dummy
network element. For instance, if you have a closed circuit add an extra
dummy network element to the node in which you prescribe the pressure.

Output variables are the mass flow (key MF on the *NODE PRINT or
*NODE FILE card), the total pressure (key PN — network pressure — on the
*NODE PRINT card and PT on the *NODE FILE card) and the total tem-
perature (key NT on the *NODE PRINT card and TT on the *NODE FILE
card). Notice that the labels for the *NODE PRINT keyword are more generic
in nature, for the *NODE FILE keyword they are more specific. These are the
primary variables in the network. In addition, the user can also request the
static temperature (key TS on the *NODE FILE card). Internally, in network
nodes, components one to three of the structural displacement field are used for
the mass flow, the total pressure and the static temperature, respectively. So
their output can also be obtained by requesting U on the *NODE PRINT card.

6.9.17 Hydraulic Networks

Hydraulic networks are made of a concatenation of network elements (see sec-
tion 6.2.33) filled with an incompressible medium. A network element consists
of three nodes: in the corner nodes the temperature and pressure are the un-
knowns, in the midside node the mass flow is unknown. The corner nodes play
the role of crossing points in the network, whereas the midside nodes repre-
sent the flow within one element. To determine these unknowns, three types of
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equations are available: conservation of mass and conservation of energy in the
corner nodes and conservation of momentum in the midside node. Right now,
only stationary flow is considered.

The stationary form of the conservation of mass for incompressible fluids is
expressed by:

∇ · v = 0 (388)

where ρ is the density and v the velocity vector. Integration over all elements
connected to an corner node yields:

∑

j∈in

ṁij =
∑

j∈out

ṁij , (389)

where ṁij is the mass flow from node i to node j or vice versa. In the above
equation ṁij is always positive.

The conservation of momentum reduces to the Bernoulli equation. It is
obtained by projecting the general momentum equation on a flow line within
an element with corner nodes i and j and reads:

zi +
pi
ρg

+
ṁ2
ij

2ρ2A2
i g

= zj +
pj
ρg

+
ṁ2
ij

2ρ2A2
jg

+∆F ji . (390)

Here, z is the height of the node, p the pressure, ρ the density, g the gravity
acceleration, A the cross section in the node and ∆F ji is the head loss across the
element. The head loss is positive if the flow runs from i to j, else it is negative
(or has to be written on the other side of the equation). The head losses for
different types of fluid sections are described in Section 6.5.

Notice that the height of the node is important, therefore, for hydraulic
networks the gravity vector must be defined for each element using a *DLOAD
card.

The conservation of energy in stationary form requires ([19]):

cp∇ · (ρTv) = −∇ · q+ ρhθ, (391)

where q is the external heat flux, hθ is the body flux per unit of mass, cp is
the specific heat at constant pressure (which, for a fluid, is also the specific heat
at constant specific volume, i.e. cp = cv [26]) and T is the absolute temperature
(in Kelvin). Integration of the energy equation over all elements belonging to
end node i yields:

cp(Ti)
∑

j∈in

Tjṁij − cp(Ti)Ti
∑

j∈out

ṁij + h(Ti, T )(T − Ti) +mih
θ
i = 0, (392)

where h(Ti, T ) is the convection coefficient with the walls. If one assumes
that all flow entering a node must also leave it and taking for both the cp value
corresponding to the mean temperature value of the entering flow, one arrives
at:
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∑

j∈in

cp(Tm)(Tj − Ti)ṁij + h(Ti, T )(T − Ti) +mih
θ
i = 0. (393)

where Tm = (Ti + Tj)/2.
The calculation of hydraulic networks is triggered by the *HEAT TRANSFER

keyword card. Indeed, such a network frequently produces convective bound-
ary conditions for solid mechanics heat transfer calculations. However, network
calculations can also be performed on their own, i.e. it is allowed to do *HEAT
TRANSFER calculations without any solid elements.

To determine appropriate boundary conditions for a hydraulic network the
same rules apply as for aerodynamic networks.

Output variables are the mass flow (key MF on the *NODE PRINT or
*NODE FILE card), the static pressure (key PN — network pressure — on
the *NODE PRINT card and PS on the *NODE FILE card) and the total tem-
perature (key NT on the *NODE PRINT card and TT on the *NODE FILE
card). Notice that the labels for the *NODE PRINT keyword are more generic
in nature, for the *NODE FILE keyword they are more specific. These are the
primary variables in the network. Internally, in network nodes, components one
to two of the structural displacement field are used for the mass flow and the
static pressure, respectively. So their output can also be obtained by requesting
U on the *NODE PRINT or *NODE FILE card.

Notice that for liquids the total temperature virtually coincides with the
static temperature. Indeed, since

Tt − T = v2/(2cp), (394)

the difference between total and static temperature for a fluid velocity of
5 m/s and cp = 4218 J/(kg.K) (water) amounts to 0.0030 K. This is different
from the gases since typical gas velocities are much higher (speed of sound is
340 m/s) and cp for gases is usually lower.

6.9.18 Turbulent Flow in Open Channels

The turbulent flow in open channels can be approximated by one-dimensional
network calculations. For the theoretical background the reader is referred
to [16] and expecially [11] (in Dutch). The governing equation is the Bresse
equation, which is a special form of the Bernoulli equation:

dh

ds
=
S0 − Sf +

1
g
Q2

A3
∂A
∂s√

1− S2
0 − Q2B

gA3

, (395)

where (Figure 151) h is the water depth (measured perpendicular to the
channel floor), s is the length along the bottom, S0 = sin(φ), where φ is the
angle the channel floor makes with a horizontal line, Sf is a friction term, g is
the earth acceleration, Q is the volumetric flow (mass flow divided by the fluid
density), A is the area of the cross section ∂A

∂s is the change of the cross section
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Figure 151: Channel geometry

with s keeping h fixed and B is the width of the channel at the fluid surface.
The assumptions used to derive the Bresse equation are:

1. steady-state flow

2. each cross section is hydrostatic

3. the velocity is constant across each cross section

4. the velocity vector is perpendicular to each cross section.

For Sf several formulas have been proposed. In CalculiX theWhite-Colebrook
and the Manning formula are implemented. The White-Colebrook formula reads

Sf =
f

8g

Q2P

A3
, (396)

where f is the friction coefficient determined by Equation 151, and P is the
wetted circumference of the cross section. The Manning form reads

Sf =
n2Q2P 4/3

A10/3
(397)

where n is the Manning coefficient, which has to be determined experimen-
tally.

In CalculiX the channel cross section has to be trapezoidal (Figure 151). For
this geometry the following relations apply:

A = h(b+ h tan θ), (398)

P = b+
2h

cos θ
(399)
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and

B = b+ 2h tan θ. (400)

Within an element the floor width b is allowed to change in a linear way. All
other geometry parameters are invariable. Consequently:

∂A

∂s
= h

∂b

∂s
. (401)

The elements used in CalculiX for one-dimensional channel networks are
regular network elements, in which the unknowns are the fluid depth and the
temperature at the end nodes and the mass flow in the middle nodes. The equa-
tions at our disposal are the Bresse equation in the middle nodes (conservation
of momentum), and the mass and energy conservation (Equations 389 and 393,
respectively) at the end nodes.

Channel flow can be supercritical or subcritical. For supercritical flow the
velocity exceeds the propagation speed c of a wave, which satisfies c =

√
gh.

Defining the Froude number by Fr = U/c, where U is the velocity of the fluid,
supercritical flow corresponds to Fr > 1. Supercritical flow is controlled by
upstream boundary conditions. If the flow is subcritical (Fr < 1) it is con-
trolled by downstream boundary conditions. In a subcritical flow disturbances
propagate upstream and downstream, in a supercritical flow they propagation
downstream only. A transition from supercritical to subcritical flow is called a
hydraulic jump, a transition from subcritical to supercritical flow is a fall. At a
jump the following equation is satisfied [16] (conservation of momentum):

A2ṁ
2 + ρ2g

√
1− S2

0A
2
1A2yG1 = A1ṁ

2 + ρ2g
√
1− S2

0A
2
2A1yG2, (402)

where A1, A2 are the cross sections before and after the jump, yG1 and yG2

are the centers of gravity of these sections, ρ is the fluid density and ṁ is the
mass flow. A fall can only occur at discontinuities in the channel geometry, e.g.
at a discontinuous increase of the channel floor slope S0. Available boundary
conditions are the sluice gate, the weir and the infinite reservoir. They are
described in Section 6.6.

Output variables are the mass flow (key MF on the *NODE PRINT or
*NODE FILE card), the fluid depth (key PN — network pressure — on the
*NODE PRINT card and DEPT on the *NODE FILE card) and the total tem-
perature (key NT on the *NODE PRINT card and TT on the *NODE FILE
card). These are the primary variables in the network. Internally, in network
nodes, components one to three of the structural displacement field are used
for the mass flow, the fluid depth and the critical depth, respectively. So their
output can also be obtained by requesting U on the *NODE PRINT card. This
is the only way to get the critical depth in the .dat file. In the .frd file the
critical depth can be obtained by selecting HCRI on the *NODE FILE card.
Notice that for liquids the total temperature virtually coincides with the static
temperature (cf. previous section; recall that the wave speed in a channel with
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water depth 1 m is
√
10 m/s). If a jump occurs in the network, this is reported

on the screen listing the element in which the jump takes place and its relative
location within the element.

6.9.19 Three-dimensional Navier-Stokes Calculations (FEM)

The solution of the three-dimensional Navier-Stokes equations has been imple-
mented following the Characteristic Based Split (CBS) Method of Zienkiewicz
and co-workers [96],[93].The present implementation does include laminar cal-
culations for compressible and incompressible fluids. The calculations are tran-
sient, however, they are pursued up to steady state or up to the number of
iterations specified by the user. For CFD calculations with the finite element
method the *CFD procedure has to be accompanied by the parameter FEM.

The input deck format for CFD-calculations is very similar to structural
calculations. Noticable differences for incompressible flows are:

• for incompressible calculations thermal calculations do not influence the
velocity and the pressure field. A calculation is considered thermal if
initial conditions have been specified for the temperature.

• boundary conditions are specified by the *BOUNDARY card. The velocity
degrees of freedom are labeled 1 up to 3, the thermal degree is 11 and the
pressure degree is 8.

• the material properties are introduced by the *DENSITY and the *FLUID
CONSTANTS card. In case temperatures are to be calculated the *CON-
DUCTIVITY card is needed.

• the maximum number of iterations is specified by the INCF parameter on
the *STEP card. The writing frequency on e.g. the *NODE FILE card is
specified by the FREQUENCYF parameter.

For compressible flows the following additional information is needed:

• for compressible flow the temperature is strongly linked to the velocity and
the pressure. Therefore, initial conditions for all these fields are needed.

• the *CONDUCTIVITY and *SPECIFIC GAS CONSTANT card under-
neath the *MATERIAL card are required, the *DENSITY card must not
be used.

• the *PHYSICAL CONSTANTS card is required for the definition of ab-
solute zero

• the *VALUES AT INFINITY card is needed for the calculation of Cp.

• the *SHOCK SMOOTHING parameter on the *STEP card may be needed
to obtain convergence

• the EXPLICIT parameter on the *STATIC card is required.
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Fluid problems are of a quite different nature than structural problems.
What we particularly noticed in fluid problems is that

• The solution can be mesh dependent, i.e. the fluid flow sometimes follows
the element edges although this may be wrong. This is particularly true
for coarse meshes.

• Coarse meshes may produce a solution which is completely wrong. Taking
this solution as starting point for gradually finer meshes frequently leads
to the right solution.

• If the boundaries of the mesh are too close to the area of interest the
solution may not be unique. For instance, turbulent flow may lead to an
undefined reentry at the exit of your mesh. Consequently, the boundaries
of your mesh must be far enough away.

The basic idea of the CBS method is to formulate the governing equation
in a coordinate system moving with the characteristics of the flow, leading to
a disappearance of the convective first order terms. To illustrate this, we start
from a one-dimensional equation in the non-conservative form (the velocity v is
brought outside the partial differentiation)

∂φ

∂t
+ v

∂φ

∂x
− ∂

∂x

(
κ
∂φ

∂x

)
−Q = 0, (403)

exhibiting a transient, convective, diffusive and source term (φ is some de-
pendent quantity such as temperature). Applying a change of variables from x
to x’:

dx′ = dx− vdt, (404)

where x′ moves with the fluid, this equation is transformed into:

∂φ

∂t
(x′(t), t)− ∂

∂x′

(
κ
∂φ

∂x′

)
−Q(x′) = 0, (405)

i.e. the convective term disappears.
Applying Finite Differences along the characteristic from time t (superindex

n) to time t+∆t (superindex n+1) leads to (Figure 152):

1

∆t

(
φn+1 − φn|x−δ

)
≈θ
[
∂

∂x

(
κ
∂φ

∂x

)
+Q

]n+1
∣∣∣∣∣
x

+(1− θ)

[
∂

∂x

(
κ
∂φ

∂x

)
+Q

]n∣∣∣∣
x−δ

, (406)

where θ takes a value between 0 and 1. Now, by applying a Taylor series
expansion the values at x− δ can be written as a function of values at x:
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n

n+1

v

δ

xx−δ

Figure 152: Formulating the equations along characteristics

φn|x−δ = φn|x − δ
∂φ

∂x

n∣∣∣∣
x

+
δ2

2

∂2φ

∂x2

n∣∣∣∣
x

+O(δ3), (407)

∂

∂x

(
κ
∂φ

∂x

)n∣∣∣∣
x−δ

=
∂

∂x

(
κ
∂φ

∂x

)n∣∣∣∣
x

− δ
∂

∂x

[
∂

∂x

(
κ
∂φ

∂x

)]n∣∣∣∣
x

+O(δ2), (408)

and

Qn|x−δ = Qn|x − δ
∂Q

∂x

n∣∣∣∣
x

+O(δ2). (409)

Therefore, Equation (406) now yields (from now on the subindex x is dropped
to simplify the notation):

1

∆t
(φn+1 − φn+δ

∂φ

∂x

n

− δ2

2

∂2φ

∂x2

n

) ≈ θ

[
∂

∂x

(
κ
∂φ

∂x

)
+Q

]n+1

+(1− θ)

[
∂

∂x

(
κ
∂φ

∂x

)n
− δ

∂

∂x

[
∂

∂x

(
κ
∂φ

∂x

)]n]

+(1− θ)

[
Qn − δ

∂Q

∂x

n]
(410)

Now, δ = v∆t, where v can be approximated by:
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v ≈ 1

2

(
vn+1 + vn|x−δ

)
. (411)

Since

vn|x−δ = vn − δ
∂vn

∂x
+O(δ2) (412)

one obtains:

v =
1

2
(vn+1 + vn)− δ

2

∂vn

∂x
+O(∆t2)

=vn+1/2 −
(
v∆t

2

)
∂vn

∂x
+O(∆t2)

=vn+1/2 −
(
vn+1/2∆t

2

)
∂vn

∂x
+O(∆t2), (413)

where

vn+1/2 :=
1

2
(vn+1 + vn) (414)

was defined. Consequently:

δ = vn+1/2∆t−
(
vn+1/2∆t2

2

)
∂vn

∂x
+O(∆t3). (415)

Substituting this in Equation (410) and setting θ = 1/2 leads to:

1

∆t
(φn+1 − φn) =− 1

∆t

[
vn+1/2∆t− vn+1/2

2
∆t2

∂vn

∂x
+O(∆t3)

]
∂φ

∂x

n

+
1

2∆t

[(
vn+1/2

)2
∆t2 +O(∆t3)

]
∂2φ

∂x2

n

+
1

2

[
∂

∂x

(
κ
∂φ

∂x

)
+Q

]n+1

+
1

2

[
∂

∂x

(
κ
∂φ

∂x

)
+Q

]n

−∆t

2
vn+1/2 ∂

∂x

[
∂

∂x

(
κ
∂φ

∂x

)]n
+O(∆t2)

−∆t

2
vn+1/2 ∂Q

∂x

n

+O(∆t2). (416)

Since

vn+1/2 = vn +
∂v

∂t

n

∆t/2 +O(∆t2), (417)
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vn in the first line of Equation (416) can be replaced by vn+1/2 without loss
of accuracy. Therefore, the terms quadratic in ∆t in the first two lines can be
merged into:

vn+1/2∆t
2

2
∆t2

∂vn+1/2

∂x

∂φ

∂x
+ (vn+1/2)2

∆t2

2

∂2φ

∂x2
= vn+1/2∆t

2

2

∂

∂x

(
vn+1/2 ∂φ

∂x

)
,

(418)
and one now obtains:

(φn+1 − φn) =−∆t

{
vn+1/2 ∂φ

∂x

n

−
[
∂

∂x

(
κ
∂φ

∂x

)
+Q

]n+1/2
}

+
∆t2

2
vn+1/2 ∂

∂x

[
vn+1/2 ∂φ

∂x
− ∂

∂x

(
κ
∂φ

∂x

)
−Q

]n
+O(∆t3).

(419)

In the last equation vn+1/2 can be replaced by an extrapolation of v at time
tn +∆t/2 based on its values in iteration n− 1 and n without loss of accuracy.
Indeed, combining

vn+1/2 = vn +
∂v

∂t

n∆tn
2

+O(∆t2n), (420)

(∆tn := tn+1 − tn) and

vn−1 = vn − ∂v

∂t

n

∆tn−1 +O(∆t2n−1), (421)

(∆tn−1 := tn − tn−1) or, equivalently,

∂v

∂t

n

=
vn − vn−1

∆tn−1
+O(∆tn−1), (422)

one obtains

vn+1/2 = vn +
vn − vn−1

∆tn−1

(
∆tn
2

)
+O(∆tn∆tn−1) +O(∆t2n), (423)

or for ∆tn−1 = ∆tn = ∆t:

vn+1/2 = vn +
vn − vn−1

2
+O(∆t2). (424)

In the same way the diffusive and source terms at time tn+1/2 are evalu-
ated based on a similar extrapolation of the velocity and temperature (for the
momentum and energy equation, respectively).

Generalizing Equation (419) to three dimensions and writing the equation in
conservative form (i.e. replacing vn+1/2∂φ/∂x by ∂vn+1/2φ/∂x) finally yields:
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(φn+1 − φn) ≈−∆t

{
∂(v

n+1/2
j φn)

∂xj
−
[
∂

∂xj

(
κ
∂φ

∂xj

)
+Q

]n+1/2
}

+
∆t2

2
v
n+1/2
k

∂

∂xk

[
∂(v

n+1/2
j φ)

∂xj
− ∂

∂xj

(
κ
∂φ

∂xj

)
−Q

]n
. (425)

The last three terms can be viewed as stabilization terms. Usually, only
terms up to the second order derivative are taken into account. Therefore, the
stabilization term for the diffusion is usually neglected.

The corresponding weak formulation is obtained by multiplying the above
equation with the shape function ϕα for a concrete node and integrating over
the volume. Therefore, the CBS Method transforms a transport equation of the
form

∂C

∂t
= −(vkC),k +Dk,k + F, (426)

where C stands for the convective term, D for the diffusion term and F for
the source term, into

∑

β

[∫

V

ϕαϕβdV

]
∆Cβ =−∆t

∫

V

ϕα


∑

β

(vkϕβ),kCβ


 dV

−∆t

∫

V

ϕα,kDkdV

+∆t

∫

V

ϕαFdV

− ∆t2

2

∫

V

(ϕαvl),l


∑

β

(vkϕβ),kCβ


 dV

+∆t

∫

A

ϕαDknkdA

+
∆t2

2

∫

V

(ϕαvl),lFdV. (427)

Notice that the integral over the total volume in reality is a sum of the
integrals over each element. For each element the local shape functions are used
in expressions such as C =

∑
β ϕβCβ .

The first, second and third term on the right hand side correspond to con-
vection, diffusion and external forces, respectively. The fourth and sixth terms
are the stabilization terms for convection and external forces, while the fifth
term is the area term corresponding to diffusion. It is the result of partial in-
tegration. The stabilization terms were obtained through partial integration
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too. In agreement with the CBS Method the corresponding area terms are ne-
glected. Furthermore, third-order and higher order terms are neglected as well
(particularly the stabilization terms corresponding to diffusion).

This method is now applied to the transport equations for mass, momentum
and energy. Furthermore, the resulting momentum equation is split into two
parts (Split scheme A in [96]), one part of which is calculated at the beginning
of the iteration scheme. Subsequently, the conservation of mass equation is
solved, followed by the second part of the momentum equation. To this end the
correction to the momentum ∆Vk = ρ∆vk in direction k is written as a sum of
two corrections:

∆Vk = ∆V ∗
k +∆V ∗∗

k . (428)

This results in the following steps:

Step 1: Conservation of Momentum (first part)

The partial differential equation reads:

∂Vi
∂t

= − ∂

∂xk
(vkVi) +

∂tik
∂xk

− ∂p

∂xi
+ ρgi. (429)

Applying the CBS method to all terms except the pressure term leads to:

∑

β

[∫

V

ϕαϕβdV

]
∆V ∗

βi =−∆t

∫

V

ϕα


∑

β

(vkϕβ),kVβi


 dV

−∆t

∫

V

ϕα,k(tik + tRik)dV

+∆t

∫

V

ϕαρgidV

− ∆t2

2

∫

V

(ϕαvl),l


∑

β

(vkϕβ),kVβi


 dV

+
∆t2

2

∫

V

(ϕαvl),lρgidV

+∆t

∫

A

ϕα(tik + tRik)nkdA. (430)

Vi is the momentum, tik is the diffusive stress and tRik is the Reynolds stress
multiplied by ρ (only for turbulent flow), all evaluated at time t. gi is the gravity
acceleration at time t+∆t. The diffusive stress satisfies

tik = µ(vi,k + vk,i −
2

3
vm,mδik) (431)

whereas tRik is defined by
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tRik = µt(vi,k + vk,i −
2

3
vm,mδik)−

2

3
ρkδik. (432)

Here, µt is the turbulent viscosity and k is the turbulent kinetic energy.
What is lacking in equation (430) to be equivalent to the momentum transport
equation is the pressure term.

Step 2: Conservation of mass

The partial differential equation reads:

∂ρ

∂t
= −∂Vi

∂xi
(433)

This can be approximated by:

∆ρ

∆t
≈ −∂Vi

∂xi
− θ1

∂∆V ∗
i

∂xi
− θ1

∂∆V ∗∗
i

∂xi
, (434)

where θ1 is a parameter leading to an explicit scheme for θ1 = 0 and an
implicit scheme for θ1 = 1. Now, for ∆V ∗∗

i one can use the gradient of the
pressure in the momentum equation (this term can be treated in a way similar
to a source term):

∆V ∗∗
i ≈ −∆t

(
∂p

∂xi

)n+1/2

+
∆t2

2
v
n+1/2
k

∂

∂xk

(
∂p

∂xi

)n
. (435)

Before substituting Equation (435) into Equation (434) the stabilization
term is dropped (leads to a third order derivative) and the pressure gradient at
n+1/2 is changed into a gradient in between n and n+1 by use of a parameter
θ2 (θ2 is equivalent to θ in Equation(410):

∆V ∗∗
i ≈ −∆t

(
∂p

∂xi

)n
− θ2∆t

∂∆p

∂xi
. (436)

For θ2 = 0 one obtains an explicit scheme (used for compressible media), for
θ2 = 1 an implicit scheme (used for incompressible media). Now one obtains for
Equation (434):

∆ρ

∆t
≈ −∂Vi

∂xi
− θ1

∂∆V ∗
i

∂xi
− θ1∆t

[
∂2p

∂xi∂xi

n

+ θ2
∂2∆p

∂xi∂xi

]
. (437)

Applying Galerkin and partial integration to all terms on the right, this leads
to:
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∑

β

[∫

V

ϕαϕβdV

]
∆ρβ + θ1θ2(∆t)

2
∑

β

[∫

V

ϕα,iϕβ,idV

]
∆pβ

= ∆t

∫

V

ϕα,i


∑

β

ϕβVβi


 dV

+ θ1∆t

∫

V

ϕα,i


∑

β

ϕβ∆V
∗
βi


 dV

− θ1(∆t)
2

∫

V

ϕα,i


∑

β

ϕβ,ipβ


 dV

−∆t

∫

A

ϕαVinidA. (438)

In agreement with [93] the following approximation was made:

∆t

∫

A

ϕα[Vi + θ1(∆V
∗
i +∆V ∗∗

i )]nidA ≈ ∆t

∫

A

ϕαVinidA, (439)

leading to the last term in equation (438). The velocity in the mass con-
servation equation is calculated at time t + θ1∆t, whereas the pressure in the
momentum transport equation is expressed at time t+ θ2∆t (0 ≤ θ1, θ2 ≤ 1). If
θ2 = 0 the scheme is called explicit, else it is semi-implicit (in the latter case it
is not fully implicit, since the diffusion term in the momentum equation is still
expressed at time t). For compressible fluids (gas) an explicit scheme is taken.
This means that the second term on the left hand side of equation (438) dis-
appears and the only unknowns are ∆ρβ . For incompressible fluids the density
is constant and consequently the first term is zero: the unknowns are now the
pressure terms ∆pβ .

An additional difference between compressible and incompressible fluids is
that the left hand side of equation (438) for incompressible fluids (liquids) is
usually not lumped: a regular sparse linear equation solver is used. For com-
pressible fluids it is lumped, leading to a diagonal matrix. Lumping is also
applied to all other equations (momentum,energy..), irrespective whether the
fluid is a liquid or not.

Step 3: Conservation of Momentum (second part)

This equation takes care of the pressure term in the momentum equation,
which was not covered by step 1. Now, the terms are evaluated at n+ θ2:

∆V ∗∗
i ≈ −∆t

(
∂p

∂xi

)n
+ (1− θ2)∆t

2v
n+1/2
k

∂

∂xk

(
∂p

∂xi

)n
− θ2∆t

∂∆p

∂xi
. (440)
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In weak form this leads to (applying partial integration to the stabilization
term):

∑

β

[∫

V

ϕαϕβdV

]
∆V ∗∗

βi =−∆t

∫

V

ϕα


∑

β

ϕβ,ipβ


 dV

− θ2∆t

∫

V

ϕα


∑

β

ϕβ,i∆pβ


 dV

− (1− θ2)∆t
2

∫

V

(ϕαvk),k


∑

β

ϕβ,ipβ


 dV. (441)

Notice that for compressible fluids the second term on the right hand side
disappears (θ2 = 0). Consequently, ∆p is not needed for gases. This is good
news, since only ∆ρ is known at this point (conservation of mass).

Step 4: Conservation of Energy

The governing differential equations runs:

∂ρǫt
∂t

= −[vk(ρǫt + p)],k + [tkmvm + κT,k],k + [ρfkvk + ρhθ], (442)

where ǫt is the total internal energy per unit of volume, κ is the conduction
coefficient, fk are the external forces and hθ represents volumetric heat sources.
ǫt satisfies

ǫt = ǫ + cv(vivi)/2. (443)

Straightforward application of the CBS method yields
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∑

β

[∫

V

ϕαϕβdV

]
(∆ρǫt)β =−∆t

∫

V

ϕα


∑

β

(vkϕβ),k(ρǫt + p)β


 dV

−∆t

∫

V

ϕα,k(tkmvm + κT,k)dV

+∆t

∫

V

ϕα[ρfkvk + ρhθ]dV

− ∆t2

2

∫

V

(ϕαvl),l


∑

β

(vkϕβ),k(ρǫt + p)β


 dV

+
∆t2

2

∫

V

(ϕαvl),l[ρfkvk + ρhθ]dV

+∆t

∫

A

ϕα(tkmvm + κT,k)nkdA. (444)

For turbulent flows tkm has to be complemented by tRkm. For liquids the
energy equation is uncoupled from the other equations, unless the temperature
leads to motion due to differences in the density (buoyancy). For gases, however,
there is a strong coupling with the other equations through the equation of state:

p = ρrT, (445)

where r is the specific gas constant.

Step 5: Turbulence

The turbulence implementation closely follows the equations in [51]. There
are basically two extra variables: the turbulent kinetic energy k and the turbu-
lence frequency ω. The governing differential equations read

∂ρk

∂t
= −[vk(ρk)],k + [(µ+ σkρνt)k,k],k + (tRijui,j − β∗ρωk) (446)

and

∂ρω

∂t
= −[vk(ρω)],k+[(µ+σωρνt)ω,k],k+(

γ

νt
tRijui,j−βρω2+

2

ω
(1−F1)ρσω2k,jω,j).

(447)
For the meaning of the constants the reader is referred to [51]. The turbu-

lence equations are in a standard form clearly showing the convective, diffusive
and source terms. Consequently, application of the CBS scheme is straightfor-
ward.

Because of the problems occurring for laminar flow, the turbulence step has
not been activated yet.
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Notice that the unknowns in the systems of equations in all steps are the
conservative variables Vi, ρ (or p for liquids) and ρǫt. The physical variables
the user usually knows and for which boundary conditions exist are vi, p and T .
So at the start of the calculation the initial physical values are converted into
conservative variables, and within each iteration the newly calculated conserva-
tive variables are converted into physical ones, in order to be able to apply the
boundary conditions.

The conversion of conservative variables into physical ones can be obtained
using the following equations for gases:

T =
1

ρ(cp(T )− r)

[
ρǫt −

ViVi
2ρ

]
, (448)

vi = Vi/ρ, (449)

and p = ρrT . For liquids ρ is a function of the temperature T and the first
equation has to be replaced by

T =
1

ρ(T )cp(T )

[
ρ(T )ǫt −

ViVi
2ρ(T )

]
, (450)

since cv = cp. T in all equations above is the static temperature on an abso-
lute scale. For gases the total temperature and Mach number can be calculated
by:

Tt = T + ViVi/(2cp) (451)

and

M =

√
vivi
γrT

(452)

where γ = cp/cv. Notice that the equations for the static temperature are
nonlinear equations which have to be solved in an iterative way, e.g. by the
Newton-Raphson procedure.

The semi-implicit procedure for fluids and the explicit procedure for liquids
are conditionally stable. For each node i a maximum time increment ∆ti can
be determined. For the semi-implicit procedure it obeys:

∆ti = min

{
hi√
vivi

,
ρih

2
i

2µ(Ti)
,
ρih

2
iPri(Ti)

2µi(Ti)

}
, (453)

where

Pri =
µ(Ti)cp(Ti)

κ(Ti)
(454)

is the Prandl number, and for the explicit procedure it reads

∆ti =
hi

ci +
√
vivi

, (455)
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where

ci =

√
cp(Ti)rTi
cp(Ti)− r

(456)

is the speed of sound. In the above equations hi is the smallest distance
from node i to all neighboring nodes. The overall value of ∆t is the minimum
of all nodal ∆ti’s.

Feasible elements are all linear volumetric elements (F3D4, F3D6 and F3D8).
For gases a shock capturing technique has been implemented following [96].

This is essentially a smoothing procedure. To this end a field Sai is determined
for each node i as follows:

Sai =
|∑i(pi − pj)|∑

i |pi − pj |
, (457)

where the sum is over all neighboring nodes and p is the static pressure. It
can be verified that Sai = 1 for a local maximum and Sai = 0 if the pressure
varies linearly. So Sai is a measure for discontinuous pressure changes. The
smoothing procedure is such that the smoothed field x̄ is derived from the field
x by

x̄i = xi +
∆tCeSai

∆ti
[ML]

−1
ii ([M ]ij − [ML]ij)xj . (458)

[M ] is the left hand side matrix for the variable involved, [ML] is the lumped
matrix (i.e. the matrix [M] where all values in each row are summed and put
on the diagonal, all off-diagonal terms are zero) and Ce is a parameter be-
tween 0 and 2. The bigger Ce, the stronger the smoothing. This procedure was
elaborated on in [96]. After the regular calculation of ρvi, ρ and ρǫt, the tem-
perature T and the pressure p are calculated, the field Sa is determined and all
conservative variables are smoothed. This leads to new values after which the
boundary conditions for the velocity, the static pressure and static temperature
are enforced again. If no convergence is reached, a new iteration is started.

It is important to note that for CFD calculations adiabatic boundary con-
ditions have to be specified explicitly by using a *DFLUX card with zero heat
flux. This is different from solid mechanics applications, where the absence of
a *DFLUX or *DLOAD card automatically implies zero distributed heat flux
and zero pressure, respectively.

Finally, it is worth noting that the construction of the right hand side of the
systems of equations to solve has been parallelized (multithreading). Therefore
you need the lpthread library at linking time. By setting the OMP NUM THREADS
environment variable you can specify how many CPUs you would like to use (see
Section 2).

6.9.20 Three-dimensional Navier-Stokes Calculations (FVM)

This option is explained in detail in Section 7.
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6.9.21 Substructure Generation

This procedure can be used to create the stiffness matrix of a substructure
(sometimes also called a superelement) and store it in a file. A substructure
consists of selected degrees of freedom of a model. It can be used in a subsequent
linear analysis (this option is not available in CalculiX). In such an analysis, only
the selected degrees of freedom are addressable, e.g. to apply loads or boundary
conditions. The other degrees of freedom have been removed, thereby substan-
tially reducing the size of the stiffness matrix. The retained degrees of freedom
kind of constitute a new element (which explains the term superelement).

The substructure generation is triggered by the procedure card *SUBSTRUCTURE GENERATE.
The degrees of freedom which should be retained can be defined by using the
*RETAINED NODAL DOFS card. No transformation is allowed, consequently,
the degrees of freedom apply to the global Carthesian system. Finally, the stor-
age of the stiffness matrix is governed by the *SUBSTRUCTURE MATRIX OUTPUT
card, specifying the name of the file without extension. The extension .mtx is
default.

The output in the .mtx file constitutes the input one needs to use the su-
perelement in ABAQUS. It consists of:

• a *USER ELEMENT card specifying the number of degrees of freedom
involved in the substructure (misleadingly defined as “nodes”).

• a list of the nodes. Each node is listed as many times as the number of its
degrees of freedom in the substructure.

• for each retained degree of freedom its global direction. The format for
the first degree of freedom of the substructure is just the global direction.
For the subsequent degrees of freedom it consists of the number of the
degree of freedom followed by the global direction

• a *MATRIX,TYPE=STIFFNESS card followed by the upper triangle (in-
cluding the diagonal) of the stiffness matrix, column by column, and
comma separated.

Since substructures cannot be used in CalculiX, the generation of the sub-
structure stiffness matrix is meant to be used by other programs.

6.9.22 Electromagnetism

In CalculiX, certain types of electromagnetic calculations are possible. These
include:

• electrostatic calculations: these can be performed as a special case of
thermal calculations, cf. Section 6.9.13.

• magnetostatic calculations. Due to the absence of time derivatives the in-
teraction between electric and magnetic fields drops out and the magnetic
equations can be considered on their own.
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• magnetic induction calculations. These are calculations without fixed elec-
tric charges and in which the displacement current can be neglected. The
major industrial application for this type of calculation is inductive heat-
ing.

In this section only the last two applications are treated. The governing
Maxwell equations run like (the displacement current term was dropped in
Equation (462)):

∇ ·D = ρ (459)

∇×E = −∂B
∂t

(460)

∇ ·B = 0 (461)

∇×H = j (462)

where E is the electric field, D is the electric displacement field, B is the
magnetic field, H is the magnetic intensity, j is the electric current density
and ρ is the electric charge density. These fields are connected by the following
constitutive equations:

D = ǫE (463)

B = µH (464)

and

j = σE. (465)

Here, ǫ is the permittivity, µ is the magnetic permeability and σ is the elec-
trical conductivity. For the present applications ǫ and D are not needed and
Equation (459) can be discarded. It will be assumed that these relationships
are linear and isotropic, the material parameters, however, can be temperature
dependent. So no hysteresis is considered, which basically means that only para-
magnetic and diamagnetic materials are considered. So far, no ferromagnetic
materials are allowed.

Due to electromagnetism, an additional basic unit is needed, the Ampère
(A). All other quantities can be written using the SI-units A, m, s, kg and K,
however, frequently derived units are used. An overview of these units is given
in Table 17.

In what follows the references [75] and [39] have been used. In inductive
heating applications the domain of interest consists of the objects to be heated
(= workpiece), the surrounding air and the coils providing the current leading
to the induction. It will be assumed that the coils can be considered seperately
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Table 17: Frequently used units electromagnetic applications.

symbol meaning unit

I current A

E electric field V
m = kg.m

A.s3

D electric displacement field C
m2 = A.s

m2

B magnetic field T = kg
A.s2

H magnetic intensity A
m

j current density A
m2

ǫ permittivity F
m = A2s4

kgm3

µ magnetic permeability kg.m
A2.s2

σ electrical conductivity S
m = A2.s3

kg.m3

P magnetic scalar potential A

V electric scalar potential V = kg.m2

A.s3

A magnetic vector potential kg.m
A.s2
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Figure 153: Electromagnetic setup for simply connected bodies

as a driving force without feedback from the system. This requires the coils to
be equiped with a regulating system counteracting any external influence trying
to modify the current as intended by the user.

Let us first try to understand what happens physically. In the simplest
case the volume to be analyzed consists of a simply connected body surrounded
by air, Figure 153. A body is simply connected if any fictitious closed loop
within the body can be reduced to a point without leaving the body. For
instance, a sphere is simply connected, a ring is not. The coil providing the
current is located within the air. Turning on the current leads to a magnetic
intensity field through Equation (462) and a magnetic field through Equation
(464) everywhere, in the air and in the body. If the current is not changing in
time, this constitutes the solution to the problem.

If the current is changing in time, so is the magnetic field, and through Equa-
tion (460) one obtains an electric field everywhere. This electric field generates
a current by Equation (465) (called Eddy current) in any part which is electri-
cally conductive, i.e. generally in the body, but not in the air. This current
generates a magnetic intensity field by virtue of Equation (462), in a direction
which is opposite to the original magnetic intensity field. Thus, the Eddy cur-
rents oppose the generation of the magnetic field in the body. Practically, this
means that the magnetic field in the body is not built up at once. Rather, it is
built up gradually, in the same way in which the temperature in a body due to
heat transfer can only change gradually. As a matter of fact, both phenomena
are described by first order differential equations in time. The Ohm-losses of
the Eddy currents are the source of the heat generation used in industrial heat
induction applications.
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Figure 154: Electromagnetic setup for multiply connected bodies

From these considerations one realizes that in the body (domain 2, cf. Figure
153; notice that domain 1 and 2 are interchanged compared to [75]) both the
electric and the magnetic field have to be calculated, while in the air it is
sufficient to consider the magnetic field only (domain 1). Therefore, in the
air it is sufficient to use a scalar magnetic potential P satisfying:

H = T0 −∇P. (466)

Here, T0 is the magnetic intensity due to the coil current in infinite free space. T0

can be calculated using the Biot-Savart relationships [23]. The body fields can
be described using a vector magnetic potential A and a scalar electric potential
V satisfying:

B = ∇×A, (467)

E = −∂A
∂t

−∇V. (468)

In practice, it is convenient to set V = ∂v
∂t , leading to

E = −∂A
∂t

− ∂∇v
∂t

. (469)

This guarantees that the resulting matrices will be symmetric.

If the body is multiply connected, the calculational domain consists of three
domains. The body (or bodies) still consist of domain 2 governed by the un-
knowns A and V . The air, however, has to split into two parts: one part which
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is such that, if added to the bodies, makes them simply connected. This is
domain 3 and it is described by the vector magnetic potential A. It is assumed
that there are no current conducting coils in domain 3. The remaining air is
domain 1 described by the scalar magnetic potential P.

In the different domains, different equations have to be solved. In domain
1 the electric field is not important, since there is no conductance. Therefore,
it is sufficient to calculate the magnetic field, and only Equations (461) and
(462) have to be satisfied. Using the ansatz in Equation (466), Equation (462)
is automatically satiesfied, since it is satisfied by T0 and the curl of the gradient
vanishes. The only equation left is (461). One arrives at the equation

∇ · µ(T0 −∇P ) = 0. (470)

In domain 2, Equations (460), (461) and (462) have to be satisfied, using
the approach of Equations (467) and (468). Taking the curl of Equation (468)
yields Equation (460). Taking the divergence of Equation (467) yields Equation
(461). Substituting Equations (467) and (468) into Equation (462) leads to:

∇× 1

µ
(∇×A) + σ

∂A

∂t
+ σ∇V = 0. (471)

The magnetic vector potential A is not uniquely defined by Equation (467).
The divergence of A can still be freely defined. Here, we take the Coulomb
gauge, which amounts to setting

∇ ·A = 0. (472)

Notice that the fulfillment of Equation (462) automatically satisfies the con-
servation of charge, which runs in domain 2 as

∇ · j = 0, (473)

since there is no concentrated charge. Thus, for a simply connected body we
arrive at the Equations (470) (domain 1), (471) (domain 2) and (472) (domain
2). In practice, Equations (471) and (472) are frequently combined to yield

∇× 1

µ
(∇×A)−∇ 1

µ
∇ ·A+ σ

∂A

∂t
+ σ∇V = 0. (474)

This, however, is not any more equivalent to the solution of Equation (462)
and consequently the satisfaction of Equation (473) has now to be requested
explicitly:

∇ · σ(∂A
∂t

+∇V ) = 0. (475)

Consequently, the equations to be solved are now Equations (474) (domain
2), (475) (domain 2), and (470) (domain 1).
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In domain 3, only Equations (461) and (462) with j = 0 have to be satis-
fied (the coils are supposed to be in domain 1). Using the ansatz from Equa-
tion (467), Equation (461) is automatically satisfied and Equation (462) now
amounts to

∇× 1

µ
(∇×A)−∇ 1

µ
∇ ·A = 0. (476)

The boundary conditions on the interface amount to:

• continuity of the normal component of B

• continuity of the tangential component of H, and

• no current flow orthogonal to the boundary, or (ni is the normal on domain
i, pointing away from the domain):

B1 · n1 +B2 · n2 = 0, (477)

H1 × n1 +H2 × n2 = 0 (478)

and

j2 · n2 = 0 (479)

all of which have to be satisfied on Γ12. In terms of the magnetic vector potential
A, electric scalar potential V and magnetic scalar potential P this amounts to:

µ(T0 −∇P ) · n1 + (∇×A) · n2 = 0, (480)

(T0 −∇P )× n1 +
1

µ1
(∇×A)× n2 = 0 (481)

and

(
∂A

∂t
+∇V )2 · n2 = 0 (482)

on Γ12. For uniqueness, the electric potential has to be fixed in one node and
the normal component of A has to vanish along Γ12 [75]:

A · n2 = 0. (483)

To obtain the weak formulation of the above equations they are multiplied
with trial functions and integrated. The trial functions will be denoted by
δA, δV and δP . Starting with Equation(474) one obtains after multiplication
with δA and taking the vector identies

∇ · (a× b) = (∇× a) · b− a · (∇× b) (484)
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∇ · (αa) = ∇α · a+ α∇ · a (485)

into account (set b = (∇×A)/µ in the first vector identity):

1

µ
(∇× δA) · (∇×A)−∇ · (δA× 1

µ
∇×A) +

1

µ
(∇ ·A)∇ · (δA)

−∇ · [ 1
µ
(∇ ·A)δA] + δA · σ

(
∂A

∂t
+∇V

)
= 0. (486)

Integrating one obtains, using Gauss’ theorem (it is assumed that Ω2 has no
free boundary, i.e. no boundary not connected to Ω1):

∫

Ω2

1

µ
(∇× δA) · (∇×A)dΩ−

∫

Γ12

1

µ
(δA×∇A) · n2dS+

∫

Ω2

1

µ
(∇ ·A)(∇ · δA)dΩ−

∫

Γ12

1

µ
(∇ ·A)δA · n2dS+

∫

Ω2

δA · σ
(
∂A

∂t
+∇V

)
dΩ = 0 (487)

The trial functions also have to satisfy the kinematic constraints. Therefore,
δA · n2 = 0 and the second surface integral is zero.

Applying the vector identity

(a × b) · n = a · (b× n) (488)

and the boundary condition from Equation (481), the integrand of the first
surface integral can be written as:

1

µ
(δA×∇×A) · n2 =

1

µ
(δA · [(∇×A)× n2]) =

− δA · [(T0 −∇P )× n1] . (489)

Consequently, the integral now amounts to:

∫

Γ12

[−δA · (T0 × n2) + δA · (∇P × n2)] dS. (490)

Applying the same vector identity from above one further arrives at:

∫

Γ12

[−δA · (T0 × n2) + n2 · (δA×∇P )] dS. (491)

Finally, using the vector identity:
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n2 · (δA×∇P ) = P [n2 · (∇× δA)]− n2 · [∇× (PδA)] (492)

one obtains

∫

Γ12

{−δA · (T0 × n2) + P [n2 · (∇× δA)]− n2 · [∇× (PδA)]} dS. (493)

The last integral vanishes if the surface is closed due to Stokes’ Theorem.
Now the second equation, Equation (475), is being looked at. After multi-

plication with δV it can be rewritten as:

∇ ·
[
δV σ

(
∂A

∂t
+∇V

)]
−∇δV · σ

(
∂A

∂t
+∇V

)
= 0. (494)

After integration and application of Gauss’ theorem one ends up with the
last term only, due to the boundary condition from Equation (482).

Analogously, the third equation, Equation (470) leads to:

∇ · (δPµ[T0 −∇P ])−∇δP · µ(T0 − µ∇P ) = 0. (495)

After integration this leads to (on external faces of Ω1, i.e. faces not con-
nected to Ω2 or Ω3 the condition B · n1 = 0 is applied) :

∫

Ω1

∇δP · µ(T0 − µ∇P )dΩ−
∫

Γ12

δPµ(T0 −∇P ] · n1dS = 0. (496)

Applying the boundary condition from Equation (480) leads to:

∫

Ω1

∇δP · µ(T0 − µ∇P )dΩ +

∫

Γ12

δP (∇×A) · n2dS = 0. (497)

So one finally obtains for the governing equations :

∫

Ω2

1

µ
(∇× δA).(∇×A)dΩ +

∫

Ω2

1

µ
(∇ · δA)(∇ ·AdΩ+

∫

Ω2

(δA) · σ(∂A
∂t

+∇∂v

∂t
)dΩ +

∫

Γ12

P (∇× δA) · n2dS

=

∫

Γ12

δA · (T0 × n2)dS (498)

∫

Ω2

∇δV · σ
(
∂A

∂t
+∇∂v

∂t

)
dΩ = 0 (499)

−
∫

Ω1

µ∇δP · ∇PdΩ +

∫

Γ12

(δP )(∇×A) · n2dS

=

∫

Ω1

µ∇δP · T0dΩ. (500)
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Using the standard shape functions one arrives at (cf. Chapter 2 in [19]):

∑

e

N∑

i=1

N∑

j=1

{[∫

V0e2

ϕi,L
1

µ
ϕj,LδKMdVe

]
δAiKAjM−

[∫

V0e2

ϕi,M
1

µ
ϕj,KdVe

]
δAiKAjM+

[∫

V0e2

ϕi,K
1

µ
ϕj,MdVe

]
δAiKAjM+

[∫

V0e2

ϕiσϕjdVeδKM

]
δAiK

DAjM
t

+

[∫

V0e2

ϕiσϕj,KdVe

]
δAiK

Dvj
Dt

+

[∫

A0e12

eKLMϕiϕj,Ln2KdAe

]
δAjMPi

}
=

−
∑

e

N∑

j=1

[∫

A0e12

eKLMϕjT0Ln2KdAe

]
δAjM (501)

∑

e

N∑

i=1

N∑

j=1

{[∫

V0e2

ϕi,KσϕidVe

]
δvj

DAiK
Dt

[∫

V0e2

ϕi,Kσϕj,KdVe

]
δvi

Dvj
Dt

}
= 0 (502)

∑

e

N∑

i=1

N∑

j=1

{[∫

V0e1

ϕi,Kµϕj,KdVe

]
δPiPj (503)

[∫

A0e12

ϕieKLMϕj,Ln2KdAe

]
δPiAjM

}
(504)

= −
∑

e

∑

i

[∫

V0e1

µϕi,KT0KdVe

]
δPi. (505)

Notice that the first two equations apply to domain 2, the last one applies
to domain 1. In domain 3 only the first equation applies, in which the time
dependent terms are dropped.

This leads to the following matrices:

[KAA]e(iK)(jM) =

∫

(V0e)Ω2

1

µ
[ϕi,Lϕj,LδKM − ϕi,Mϕj,K + ϕi,Kϕj,M ]dVe (506)



320 6 THEORY

{F}[K] [M]

AA AP

PA PP

AA

VA

AV

VV
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P

Figure 155: Nonzero parts of the governing matrices

[KAP ]e(jM)(i) =

∫

(A0e)Γ12

eKLMϕiϕj,Ln1KdAe (507)

[KPA]e(i)(jM) =

∫

(A0e)Γ12

eKLMϕiϕj,Ln1KdAe (508)

[KPP ]e(i)(j) = −
∫

(V0e)Ω1

µϕi,Kϕj,KdVe (509)

[MAA]e(iK)(jM) =

∫

(V0e)Ω2

ϕiσϕjδKMdVe (510)

[MAv]e(iK)(j) =

∫

(V0e)Ω2

ϕiσϕj,KδKMdVe (511)

[MvA]e(j)(iK) =

∫

(V0e)Ω2

ϕj,KσϕiδKMdVe (512)

[Mvv]e(i)(j) =

∫

(V0e)Ω2

ϕi,Kσϕi,KδKMdVe (513)

{FA}e(jM) = −
∫

(A0e)Γ12

eKLMϕjT0Ln1KdAe (514)

{FP }e(i) = −
∫

(V0e)Ω1

µϕi,KT0KdVe (515)

Repeated indices imply implicit summation. The [K] matrices are analogous
to the conductivity matrix in heat transfer analyses, the [M ] matrices are the
counterpart of the capacity matrix. {F} represents the force. The resulting
system consists of first order ordinary differential equations in time and the
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corresponding matrices look like in Figure 155. Solution of this system yields
the solution for A, v and P from which the magnetic field B and the electric
field E can be determined using Equations (467,468).

The internal electromagnetic forces amount to:

{FA}(iK) = [KAA]e(iK)(jM) · {A}(jM) + [KAP ]e(iK)(j) · {P}(j)

=
1

µ

∫

(V0e)Ω2

[ϕi,LAK,L − ϕi,MAM,K + ϕi,KAM,M ]dVe

= −
∫

(A0e)Γ12

eKLMϕi,LPn1MdAe (516)

and

{F}(i) = [KPA]e(i)(jM) · {A}(jM) + [KPP ]e(i)(j) · {P}(j)

=

∫

(A0e)Γ12

ϕieKLMAM,Ln1KdAe

= −
∫

(V0e)Ω1

µϕi,KP,KdVe. (517)

They have to be in equilibrium with the external forces.
What does the above theory imply for the practical modeling? The con-

ductor containing the driving current is supposed to be modeled using shell
elements. The thickness of the shell elements can vary. The current usually
flows near the surface (skin effect), so the modeling with shell elements is not
really a restriction. The current and potential in the conductor is calculated
using the heat transfer analogy. This means that potential boundary conditions
have to be defined as temperature, current boundary conditions as heat flow
conditions. The driving current containing conductor is completely separate
from the mesh used to calculate the magnetic and electric fields. Notice that
the current in the driving electromagnetic coils is not supposed to be changed
by the electromagnetic field it generates.

The volumetric domains of interest are Ω1Ω2 and Ω3. These three domains
represent the air, the conducting workpiece and that part of the air which, if
filled with workpiece material, makes the workpiece simply connected. These
three domains are to be meshed with volumetric elements. The meshes should
not be connected, i.e., one can mesh these domains in a completely independent
way. This also applies that one can choose the appropriate mesh density for
each domain separately.

Based on the driving current the field T0 is determined in domain 1 with
the Biot-Savart law. This part of the code is parallellized, since the Biot-Savart
integration is calculationally quite expensive. Because of Equation (514) T0 is
also determined on the external faces of domain 2 and 3 which are in contact
with domain 1.
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The following boundary conditions are imposed (through MPC’s):

On the external faces of domain 1 which are in contact with domain 2 or domain
3:

• Calculation of A based on the external facial values in domain 2 and 3
(cf. the area integrals in [K])

On the external faces of domain 2 and 3 which are in contact with domain 1:

• Calculation of P based on the external facial values in domain 1.

• Imposition of A · n = 0.

On the faces between domain 2 and 3:

• Continuity of A

These MPC’s are generated automatically within CalculiX and have not to be
taken care of by the user. Finally, the value of V has to be fixed in at least
one node of domain 2. This has to be done by the user with a *BOUNDARY
condition on degree of freedom 8.

The material data to be defined include:

• the electrical conductivity in the driving coils

• the magnetic permeability in the air

• the density, the thermal conductivity, the specific heat, the electrical con-
ductivity and the magnetic permeability in the workpiece.

To this end the cards *DENSITY, *CONDUCTIVITY, *SPECIFIC HEAT,
*ELECTRICAL CONDUCTIVITY, MAGNETIC PERMEABILITY can be used.
In the presence of thermal radiation the *PHYSICAL CONSTANTS card is also
needed.

The procedure card is *ELECTROMAGNETICS. For magnetostatic calcu-
lations the parameter MAGNETOSTATICS is to be used, for athermal elec-
tromagnetic calculations the parameter NO HEAT TRANSFER. Default is an
electromagnetic calculation with heat transfer.

Available output variables are POT (the electric potential in the driving
current coil) on the *NODE FILE card and ECD (electric current density in
the driving current coil), EMFE (electric field in the workpiece) and EMFB
(magnetic field in the air and the workpiece) on the *EL FILE card. Examples
are induction.inp and induction2.inp.
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6.9.23 Sensitivity

A sensitivity analysis calculates how a variable G (called the objective function)
changes with some other variables s (called the design variables), i.e. DG/Ds.

If s are the coordinates of some nodes, then the objective function usually
takes the form G(s, U(s)), i.e. it is a direct function of the coordinates and
it is a direct function of the displacements, which are again a function of the
coordinates. One can write (vector- and matrix-denoting parentheses have been
omitted; it is assumed that the reader knows that U and F are vectors, K and
M are matrices and that s and G are potentially vectors):

DG

Ds
=
∂G

∂s
+
∂G

∂U

∂U

∂s
. (518)

The governing equation for static (linear and nonlinear) calculations is Fint(s, U(s)) =
Fext(s, U(s)), which leads to

∂Fint

∂s
+
∂Fint

∂U

∂U

∂s
=
∂Fext

∂s
+
∂Fext

∂U

∂U

∂s
. (519)

or

∂U

∂s
= K−1

(
∂Fext

∂s
− ∂Fint

∂s

)
, (520)

where

K =
∂Fint

∂U
− ∂Fext

∂U
. (521)

Since for linear applications Fint(s, U(s)) = K(s) · U and Fext(s, U(s)) = F (s),
the above equations reduce in that case to

∂K

∂s
· U +K · ∂U

∂s
=
∂F

∂s
, (522)

or

∂U

∂s
= K−1

(
∂F

∂s
− ∂K

∂s
· U
)
. (523)

Consequently one arives at the equation:

DG

Ds
=
∂G

∂s
+
∂G

∂U
K−1

(
∂F

∂s
− ∂K

∂s
· U
)
. (524)

For the speed-up of the calculations it is important to perform the calculation
of the term ∂K

∂s · U on element level and to calculate the term ∂G
∂UK

−1 before

multiplying with the last term in brackets. Furhermore, ∂G
∂UK

−1 should be
calculated by solving an equation system and not by inverting K.

For special objective functions this relationship is further simplified:

• if G is the mass ∂G
∂U = 0.
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• if G is the shape energy ∂G
∂UK

−1 = U .

• if G are the displacements Equation (523) applies directly

For eigenfrequencies as objective function one starts from the eigenvalue
equation:

K · Ui = λiM · Ui, (525)

from which one gets:

∂λi
∂s

M · Ui = (K − λiM) · ∂Ui
∂s

+

(
∂K

∂s
− λi

∂M

∂s

)
· Ui. (526)

Premultiplying with UTi and taking the eigenvalue equation and the normal-
ization of the eigenvectors w.r.t. M into account leads to

∂λi
∂s

= UTi ·
(
∂K

∂s
− λi

∂M

∂s

)
· Ui. (527)

Notice that this is the sensitivity of the eigenvalues, not of the eigenfrequen-
cies (which are the square roots of the eigenvalues). This is exactly how it is
implemented in CalculiX: you get in the output the sensitivity of the eigenvalues.

Subsequently, one can derive the eigenvalue equation to obtain the deriva-
tives of the eigenvectors:

(K − λiM)
∂Ui
∂s

= −
(
∂K

∂s
− λi

∂M

∂s
− ∂λi

∂s
M

)
· Ui. (528)

If s is the orientation in some or all of the elements, the term ∂G
∂s is in

addition zero in the above equations.
In CalculiX, G is defined with the keyword *OBJECTIVE, s is defined with

the keyword DESIGNVARIABLES and a sensitivity analysis is introduced with
the procedure card *SENSITIVITY.

If the parameter NLGEOM is not used on the *SENSITIVITY card, the
calculation of ∂K

∂s does not contain the large deformation and stress stiffness,

else it does. Similarly, without NLGEOM ∂G
∂s is calculated based on the linear

strains, else the quadratic terms are taken into account.
If the objective function is the mass, the shapeenergy or the displacements

a *STATIC step must have been performed. The displacements U and the
stiffness matrix K from this step are taken for K and U in Equation (524) (in
the presence of a subsequent sensitivity step K is stored automatically in a file
with the name jobname.stm). If the static step was calculated with NLGEOM,
so should the sensitivity step in order to be consistent. So the procedure cards
should run like:

*STEP

*STATIC

...
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*STEP

*SENSITIVITY

...

or

*STEP,NLGEOM

*STATIC

...

*STEP,NLGEOM

*SENSITIVITY

...

If the objective functions are the eigenfrequencies (which include the eigen-
modes), a *FREQUENCY step must have been performed with STORAGE=YES.
This frequency step may be a perturbation step, in which case it is preceded by
a static step. The displacements U , the stiffness matrix K and the mass ma-
trix M for equations (527) and (528) are taken from the frequency step. If the
frequency step is performed as a perturbation step, the sensitivity step should
be performed with NLGEOM, else it is not necessary. So the procedure cards
should run like:

*STEP

*FREQUENCY,STORAGE=YES

...

*STEP

*SENSITIVITY

...

or

*STEP

*STATIC

...

*STEP,PERTURBATION

*FREQUENCY,STORAGE=YES

...

*STEP,NLGEOM

*SENSITIVITY

...

or

*STEP,NLGEOM

*STATIC

...

*STEP,PERTURBATION
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*FREQUENCY,STORAGE=YES

...

*STEP,NLGEOM

*SENSITIVITY

...

(a perturbation frequency step only makes sense with a preceding static
step).

The output of a sensitivity calculation is stored as follows (frd-output only
if the SEN output request was specified underneath a *NODE FILE card):

For TYPE=COORDINATE design variables the results of the target func-
tions MASS, STRAIN ENERGY, EIGENFREQUENCY and DISPLACEMENT
(i.e. the square root of the sum of the squares of the displacements in all ob-
jective nodes) are stored in the .frd-file and can be visualized using CalculiX
GraphiX.

For TYPE=ORIENTATION design variables the eigenfrequency sensitivity
is stored in the .dat file whereas the displacement sensitivity (i.e. the derivative
of the displacements in all nodes w.r.t. the orientation) is stored in the .frd-
file. The order of the design variables is listed in the .dat-file. All orientations
defined by *ORIENTATION cards are varied, each orientation is defined by
3 independent variables. So for n *ORIENTATION cards there are 3n design
variables. The sensitivity of the mass w.r.t. the orientation is zero.

Finally, it is important to know that a sensitivity analysis in CalculiX only
works for true 3D-elements (no shells, beams, plane stress, etc...).

6.9.24 Green functions

With the *GREEN keyword card Green functions Xj can be calculated satisfy-
ing

[K − ω2
0M ] ·Xj = Ej , (529)

where K is the stiffness matrix of the structure, M the mass matrix, ω0

a scalar frequency and Ej a unit force at degree of freedom j. The degree of
freedom j corresponds to a specific coordinate direction in a specific node. For
ω0 = 0 the Green function is the static answer of a system to a unit force at
some location in one of the global coordinate directions. Usually, these Green
functions are used in subsequent calculations. The Green function procedure
is a linear perturbation procedure, i.e. nonlinear behavior from a previous
*STATIC step can be taken into account (through the appropriately modified
stiffness matrix) using the PERTURBATION parameter on the *STEP card in
the Green step.

The degrees of freedom in which a unit force is to be applied can be defined
by use of the *CLOAD card (the force value specified by the user is immaterial,
a unit value is taken). ω0 is a parameter on the *CLOAD card.

If the input deck is stored in the file “problem.inp”, where “problem” stands
for any name, the Green functions, the stiffness matrix and the mass matrix are
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stored in binary form in a ”problem.eig” file for further use (e.g. in a sensitivity
step). Furthermore, the Green functions can be stored in the “problem.frd” file,
using the standard *NODE FILE or *NODE OUTPUT card.

The sensitivity of the Green functions can be calculated in a subsequent
*SENSITIVITY step in which the objective function is set to GREEN (cf.
*OBJECTIVE).

Cyclic symmetry can be taken into account by use of the *CYCLIC SYMMETRY MODEL
card to define the cyclic symmetry and the *SELECT CYCLIC SYMMETRY MODES
card to define the nodal diameters. This is analogous to frequency calculations
with cyclic symmetry.

6.10 Convergence criteria

6.10.1 Thermomechanical iterations

To find the solution at the end of a given increment a set of nonlinear equations
has to be solved. In order to do so, the Newton-Raphson method is used,
i.e. the set of equations is locally linearized and solved. If the solution does
not satisfy the original nonlinear equations, the latter are again linearized at
the new solution. This procedure is repeated until the solution satisfies the
original nonlinear equations within a certain margin. Suppose iteration i has
been performed and convergence is to be checked. Let us introduce the following
quantities:

• q̄αi : the average flux for field α at the end of iteration i. It is defined by:

q̄αi =

∑
e

∑
ne

∑
kn

|qαi |∑
e

∑
ne
kαn

(530)

where e represents all elements, ne all nodes belonging to a given element,
kn all degrees of freedom for field α belonging to a given node and qαi is
the flux for a given degree of freedom of field α in a given node belonging
to a given element at the end of iteration i. Right now, there are two
kind of fluxes in CalculiX: the force for mechanical calculations and the
concentrated heat flux for thermal calculations.

• q̃αi : the iteration-average of the average flux for field α of all iterations in
the present increment up to but not including iteration i.

• rαi,max: the largest residual flux (in absolute value) of field α at the end
of iteration i. For its calculation each degree of freedom is considered
independently from all others:

rαi,max = max
DOF

|δqαi |, (531)

where δ denotes the change due to iteration i.
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• ∆uαi,max: the largest change in solution (in absolute value) of field α in the
present increment, i.e. the solution at the end of iteration i of the present
increment minus the solution at the start of the increment :

∆uαi,max = max
e

max
ne

max
kn

|∆uαi |, (532)

where ∆ denotes the change due to the present increment. In mechanical
calculations the solution is the displacement, in thermal calculations it is
the temperature.

• cαi,max: the largest change in solution (in absolute value) of field α in
iteration i. :

cαi,max = max
e

max
ne

max
kn

|δuαi |. (533)

Now, two constants c1 and c2 are introduced: c1 is used to check convergence
of the flux, c2 serves to check convergence of the solution. Their values depend
on whether zero flux conditions prevail or not. Zero flux is defined by

q̄αi ≤ ǫαq̃αi . (534)

The following rules apply:

• if(q̄αi > ǫαq̃αi ) (no zero flux):

– if (i ≤ Ip[9]) c1 = Rαn [0.005], c2 = Cαn [0.02].

– else c1 = Rαp [0.02], c2 = Cαn [0.02].

• else (zero flux) c1 = ǫα[10−5], c2 = Cαǫ [0.001]

The values in square brackets are the default values. They can be changed
by using the keyword card *CONTROLS. Now, convergence is obtained if

rαi,max ≤ c1q̃
α
i (535)

AND if, for thermal or thermomechanical calculations (*HEAT TRANSFER,
*COUPLED TEMPERATURE-DISPLACEMENT or *UNCOUPLED TEMPERATURE-DISPLACEMENT
the temperature change does not exceed DELTMX,

AND at least one of the following conditions is satisfied:

• cαi,max ≤ c2∆u
α
i,max

•
rαi,maxc

α
i,max

min{rαi−1,max, r
α
i−2,max}

< c2∆u
α
i,max. (536)

The left hands side is an estimate of the largest solution correction in the
next iteration. This condition only applies if no gas temperatures are to
be calculated (no forced convection).
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• rαi,max ≤ Rαl [10
−8]q̃αi . If this condition is satisfied, the increment is as-

sumed to be linear and no solution convergence check is performed. This
condition only applies if no gas temperatures are to be calculated (no
forced convection).

• q̄αi ≤ ǫα[10−5]q̃αi (zero flux conditions). This condition only applies if no
gas temperatures are to be calculated (no forced convection).

• cαi,max < 10−8.

If convergence is reached, and the size of the increments is not fixed by the
user (no parameter DIRECT on the *STATIC, *DYNAMIC or *HEAT TRANSFER
card) the size of the next increment is changed under certain circumstances:

• if(i > IL[10]): dθ = dθDB[0.75], where dθ is the increment size relative
to the step size (convergence was rather slow and the increment size is
decreased).

• if(i ≤ IG[4]) AND the same applies for the previous increment: dθ =
dθDD[1.5] (convergence is fast and the increment size is increased).

If no convergence is reached in iteration i, the following actions are taken:

• if, for thermomechanical calculations, the temperature change exceeds
DELTMX, the size of the increment is multiplied by DELTMX

temperature changeDA

[0.85].

• if i > IC [16], too many iterations are needed to reach convergence and
any further effort is abandoned: CalculiX stops with an error message.

• if i ≥ I0[4] AND |rαi,max > 10−20| AND |cαi,max > 10−20| AND rαi−1,max >
rαi−2,max AND rαi,max > rαi−2,max AND rαi,max > c1q̃

α
i then:

– if the parameter DIRECT is active, the solution is considered to be
divergent and CalculiX stops with an error message.

– else, the size of the increment is adapted according to dθ = dθDF [0.25]
and the iteration of the increment is restarted.

• if i ≥ IR[8], the number of iterations x is estimated needed to reach
convergence. x roughly satisfies:

rαi,max

(
rαi,max
rαi−1,max

)x
= Rαn q̃

α
i (537)

from which x can be determined. Now, if

i+
ln
(
Rαn

q̃αi
rα
i,max

)

ln
(

rα
i,max

rα
i−1,max

) > IC [16] (538)
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(which means that the estimated number of iterations needed to reach con-
vergence exceeds IC) OR i = IC , the increment size is adapted according
to dθ = dθDC [0.5] and the iteration of the increment is restarted unless
the parameter DIRECT was selected. In the latter case the increment is
not restarted and the iterations continue.

• if none of the above applies iteration continues.

6.10.2 Contact

In the presence of contact the convergence conditions in the previous section
are slightly modified. Let us first repeat the general convergence check strategy
(coded in checkconvergence.c):

• If, at the end of an iteration, convergence is detected then:

– a new increment is started (unless the step is finished)

– it is checked whether the size of this increment has to be decreased
w.r.t. the present increment size (slow convergence) or can be in-
creased (fast convergence)

• else (no convergence detected)

– it is checked whether the number of allowable iterations has been
reached, if so the program stops

– it is checked whether divergence occurred in the following order:

∗ due to non-convergence in a material user subroutine

∗ the force residual is larger than in the previous iteration AND
larger than in the iteration before the previous iteration (only
done after I0 iterations). Let us call this check the major diver-
gence check.

∗ due to the violation of a user-defined limit (e.g. temperature
change limit, viscous strain limit)

– if divergence is detected then

∗ if the increment size is fixed by the user the program stops

∗ else a new increment is started with a smaller size (unless the
size is smaller than a user-defined quantity, in which case the
program stops)

– if no divergence is detected then a check is performed for too slow
convergence. If this is the case then

∗ if the increment size is fixed by the user the program stops

∗ else a new increment is started with a smaller size (unless the
size is smaller than a user-defined quantity, in which case the
program stops)
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– if no divergence is detected and the convergence is not too slow the
next iteration is started.

In the case penalty contact was defined an additional parameter iflagact is
defined expressing whether the number of contact elements changed significantly
between the present and the previous iteration. In the latter case iflagact=1,
else it takes the value zero (default). Whether a change is significantly or not
is governed by the value of the parameter delcon, which the user can define un-
derneath a *CONTROLS,PARAMETERS=CONTACT card (default is 0.001,
i.e. 0.1 %).

Now, in the case of node-to-face penalty contact the standard convergence
check algorithm is modified as follows:

• If iflagact=1 at the end of the present iteration the counter for I0 and IR
is reset to zero and the value of IC is incremented by 1.

• Mechanical convergence requires iflagact to be zero.

In the case of face-to-face penalty contact the criteria are modified as follows:

• Mechanical convergence requires iflagact to be zero.

• If convergence occurred the check whether the next increment must be
decreased is not done

• If no convergence occurred then

– the check whether the number of allowable iterations has been reached
is not done

– the major divergence check (see above) is only done if one of the
following conditions is satisfied:

∗ the present force residual exceeds 1.e9

∗ iflagact is zero (no significant change in contact elements). If,
in this case, the major divergence check points to divergence
and the solution condition cαi,max ≤ c2∆u

α
i,max is satisfied the

aleatoric flag is set to 1. Physically, this means that the force
residuals are increasing although the displacement solution does
not change much, i.e. a local minimum has been reached. In or-
der to leave this minimum a percentage of the contacts (default:
10 %; can be changed with the *CONTROLS,PARAMETERS=CONTACT
card) is removed in an aleatoric way in order to stir the complete
structure.

∗ the number of contact elements is oscillating since the last two
iterations (e.g. the number of contact elements increased in the
present iteration but decreased in the previous one or vice versa)
and there is no significant change in the sum of the residual force
in the present and previous iteration (compared to the sum of
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Figure 156: Principle of the line search method

the residual force in the previous iteration and the one before
the previous iteration). Physically this means that solution is
alternating between two states.

– if divergence is detected not only the time increment is decreased,
also the spring stiffness in case of linear pressure-overclosure and
the stick slope are reduced by a factor of 100 (this number can be
changed with the *CONTROLS,PARAMETERS=CONTACT card).
This factor (variable “kscale” in the code) is reset to one at the next
convergence detection in which case the iteration is continued until
renewed successful convergence for kscale=1.

– the too slow convergence check is replaced by a check whether the
number of iterations has reached the value of 60 (this number can be
changed with the *CONTROLS,PARAMETERS=CONTACT card).
In that case the spring stiffness in case of linear pressure-overclosure
and the stick slope are reduced by a factor of 100 (this number can be
changed with the *CONTROLS,PARAMETERS=CONTACT card).
This factor (variable “kscale” in the code) is reset to one at the next
convergence detection in which case the iteration is continued until
renewed successful convergence for kscale=1). The time increment is
NOT decreased, unless this is already the second cutback or higher.

6.10.3 Line search

In the case of static calculations with face-to-face penalty contact the displace-
ment increment ∆u in each iteration is scaled with a scalar λ in order to get
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better convergence. λ is determined such that the residual (i.e. external force
minus internal force) of the scaled solution u + λ∆u is orthogonal to the dis-
placement increment:

∆u ·R(u+ λ∆u) = 0. (539)

Now, the residual for λ = 0 is known from the previous increment, and the
residual for λ = 1 is known from the present increment. In between a linear
relationship is assumed (cf. Figure 156), which yields the value of λ without
extra calculations. With the *CONTROLS card the user can specify a value for
λmin (default: 0.25) and λmax(default: 1.01).

6.10.4 Network iterations

For network iterations two kinds of convergence criteria are applied: the resid-
uals and the change in the solution must be both small enough.

For the mass and energy flow residuals q̃αi and rαi,max are calculated as spec-
ified in Equations (530) and (531) with kn = 1 and qαi equal to the mass flow
(unit of mass/unit of time) and the energy flow (unit of energy/unit of time).
For the element equation q̃αi is taken to be 1 (the element equation is dimen-
sionless) and rαi,max is calculated based on the element equation residuals. The
residual check amounts to

rαi,max ≤ c1∗q̃
α
i (540)

where c1∗ takes the value c1t, c1f and c1p for the energy balance, mass bal-
ance and element equation, respectively. In addition, an absolute check can be
performed in the form

rαi,max ≤ a1∗ (541)

where a1∗ takes the value a1t, a1f and a1p for the energy balance, mass balance
and element equation, respectively. Default is to deactivate the absolute check
(the coefficients a1∗ are set to 1020).

In the same way the maximum change in solution in network iteration i
cαi,max is compared with the maximum change in the solution since the start
of the network iterations, i.e. the solution at the end of iteration i minus the
solution at the beginning of the increment(before network iteration 1). This
is done separately for the temperature, the mass flow, the pressure and the
geometry. It amounts to the equation:

cαi,max ≤ c2∗∆u
α
i,max, (542)

where c2∗ takes the value c2t, c2f , c2p and c2a for the temperature, the mass
flow, the pressure and the geometry, respectively. In addition, an aboslute check
can be performed in the form

cαi,max ≤ a2∗, (543)
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where a2∗ takes the value a2t, a2f and a2p for the temperature, the mass flow,
the pressure and the geometry. Default is to deactivate the absolute check (the
coefficients a2∗ are set to 1020).

The parameters c1t, c1f , c1p, c2, c2f , c2p, c2a and a1t, a1f , a1p, a2, a2f ,
a2p, a2a can be changed using the *CONTROLS,PARAMETERS=NETWORK
card.

Both criteria are important. A convergent solution with divergent residuals
points to a local minimum, convergent residuals with a divergent solution point
to a singular equation system (i.e. infinitely many solutions).

6.10.5 Implicit dynamics

In CalculiX, implicit dynamics is implemented using the α-method [19]. The
method is unconditionally stable and second order accurate. The parameter
α ∈ [−1/3, 0] represents high frequency damping. The lower the value, the
more high frequency dissipation is introduced. This is frequently desired in
order to reduce noice. However, it also leads to energy loss.

An analysis has shown that the usual static convergence criteria have to be
supplemented by energy criteria in order to obtain good results. To this end,
the relative energy balance is used defined by:

r̂e =
∆E(tn) + ∆K(tn) + ∆Ec(tn)− Wext|tnt0 − Wdamp|tnt0

maxt∈[t0,tn](|∆E(t)|, |K(t)|, |Wext(t)|)
, (544)

where

• t0 is the time at the beginning of the present step

• tn is the actual step time

• ∆ denotes the difference of a quantity between the actual time and the
time at the beginning of the step

• E is the internal energy

• K is the kinetic energy

• Ec is the contact spring energy

• Wext|tnt0 is the external work done since the start of the present step

• Wdamp|tnt0 is the work done by damping since the start of the present step
(always negative)

• in the denominator the choice of the kinetic energy versus the CHANGE
of the internal energy is on purpose.
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At the start of the step the relative energy balance is zero. During the step it
usually decreases (becomes negative) and increases in size. Limiting the relative
energy decay at the end of the step to ǫ, during the step the following minimum
energy decay function is proposed:

r̂min
e = − ǫ

2
(1 +

√
θ), (545)

where θ is the relative step time, 0 ≤ θ ≤ 1. The following algorithm is now
used:
If

r̂e ≤ − ǫ

2
(1 +

√
θ), (546)

the increment size is decreased. Else if

r̂e ≤ −0.9
ǫ

2
(1 +

√
θ), (547)

the increment size is kept. Else it is increased.
In dynamic calculations contact is frequently an important issue. As soon as

more than one body is modeled they may and generally will come into contact.
In CalculiX penalty contact is implemented by the use of springs, either in a
node-to-face version or in a face-to-face version (face-to-face mortar contact is
only available for static procedures). A detailed analysis of contact phenomena
in dynamic calculations [64] has revealed that there are three instances at which
energy may be lost: at the time of impact, during persistent contact and at the
time of rebound.

At the time of impact a relative energy decrease has been observed, whereas
at the time of rebound a relative energy increase occurs. The reason for this is
the finite time increment during which impact or rebound takes place. During
closed contact the contact forces do not perform any work (they are equal and
opposite and are subject to a common motion). However, in the increment
during which impact or rebound occurs, they do perform work in the part of
the increment during which the gap is not closed. The more precise the time
of impact coincides with the beginning or end of an increment, the smaller the
error. Therefore, the following convergence criteria are prososed:

At impact the relative energy decrease (after impact minus before impact)
should not exceed 0.008, i.e.

∆r̂rel|after impact
before impact ≥ −0.008, (548)

else the increment size is decreased by a factor of 4.
At rebound the relative energy increase between the time of rebound and

the time of impact should not exceed 0.0025, i.e.

∆r̂rel|reboundimpact ≤ −0.0025, (549)

else the increment size is decreased by a factor of 2.
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In between impact and rebound (persistent contact) both the impact crite-
rion as well as the rebound criterion has to be satisfied. Furthermore it has been
observed that during contact frequently vibrations are generated corresponding
to the eigenfrequency of the contact springs. Due to the high frequency damp-
ing characteristics of the α-method this contributes additionally to a decay of
the relative energy. To avoid this, the time increment should ideally exceed the
period of these oscillations substantionally,

10Te
Tstep

≤ dθ ≤ 100Te
Tstep

(550)

is aimed at, where Te is the period of the oscillations, Tstep is the duration
of the step and dθ is the relative increment size.

6.11 Loading

All loading, except residual stresses, must be specified within a step. Its magni-
tude can be modified by a time dependent amplitude history using the *AMPLITUDE
keyword. This makes sense for nonlinear static, nonlinear dynamic, modal dy-
namic and steady state dynamics procedures only. Default loading history is a
ramp function for *STATIC procedures and step loading for *DYNAMIC and
*MODAL DYNAMIC procedures.

6.11.1 Point loads

Point loads are applied to the nodes of the mesh by means of the *CLOAD key
word. Applying a point load at a node in a direction for which a point load was
specified in a previous step replaces this point load, otherwise it is added. The
parameter OP=NEW on the *CLOAD card removes all previous point loads.
It takes only effect for the first *CLOAD card in a step. A buckling step always
removes all previous loads.

6.11.2 Facial distributed loading

Distributed loading is triggered by the *DLOAD card. Facial distributed loads
are entered as pressure loads on the element faces, which are for that purpose
numbered according to Figures 157, 158 and 159.

Thus, for hexahedral elements the faces are numbered as follows:

• Face 1: 1-2-3-4

• Face 2: 5-8-7-6

• Face 3: 1-5-6-2

• Face 4: 2-6-7-3

• Face 5: 3-7-8-4

• Face 6: 4-8-5-1
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Figure 157: Face numbering for hexahedral elements
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Figure 158: Face numbering for tetrahedral elements
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Figure 159: Face numbering for wedge elements

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1

for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-4

• Face 4: 4-1
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Figure 160: Equivalent nodal forces for a face of a C3D20(R) element

for triangular plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-1

for beam elements:

• Face 1: pressure in 1-direction

• Face 2: pressure in 2-direction

For shell elements no face number is needed since there is only one kind of
loading: pressure in the opposite direction of the normal on the shell.

Applying a pressure to a face for which a pressure was specified in a previous
step replaces this pressure. The parameter OP=NEW on the *DLOAD card
removes all previous distributed loads. It only takes effect for the first *DLOAD
card in a step. A buckling step always removes all previous loads.

In a large deformation analysis the pressure is applied to the deformed face
of the element. Thus, if you pull a rod with a constant pressure, the total force
will decrease due to the decrease of the cross-sectional area of the rod. This
effect may or may not be intended. If not, the pressure can be replaced by
nodal forces. Figures 160 and 161 show the equivalent forces for a unit pressure
applied to a face of a C3D20(R) and C3D10 element. Notice that the force is
zero (C3D10) or has the opposite sign (C3D20(R)) for quadratic elements. For
the linear C3D8(R) elements, the force takes the value 1/4 in each node of the
face.
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Figure 161: Equivalent nodal forces for a face of a C3D10 element

6.11.3 Centrifugal distributed loading

Centrifugal loading is selected by the *DLOAD card, together with the CEN-
TRIF label. Centrifugal loading is characterized by its magnitude (defined as
the rotational speed square ω2) and two points on the rotation axes. To obtain
the force per unit volume the centrifugal loading is multiplied by the density.
Consequently, the material density is required. The parameter OP=NEW on
the *DLOAD card removes all previous distributed loads. It only takes effect for
the first *DLOAD card in a step. A buckling step always removes all previous
loads.

6.11.4 Gravity distributed loading

Gravity loading with known gravity vector is selected by the *DLOAD card,
together with the GRAV label. It is characterized by the vector representing
the acceleration. The material density is required. Several gravity load cards
can appear in one and the same step, provided the element set and/or the
direction of the load varies (else, the previous gravity load is replaced). The
parameter OP=NEW on the *DLOAD card removes all previous distributed
loads. It only takes effect for the first *DLOAD card in a step. A buckling step
always removes all previous loads.

General gravity loading, for which the gravity vector is calculated by the
momentaneous mass distribution is selected by the *DLOAD card, together
with the NEWTON label. For this type of loading to make sense all ele-
ments must be assigned a NEWTON type label loading, since only these el-
ements are taken into account for the mass distribution calculation. This type
of loading requires the material density (*DENSITY) and the universal gravi-
tational constant (*PHYSICAL CONSTANTS). It is typically used for the cal-
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Figure 162: Point load in a node belonging to a 8-noded face

culation of orbits and automatically triggers a nonlinear calculation. Conse-
quently, it can only be used in the *STATIC, *VISCO, *DYNAMIC or *COU-
PLED TEMPERATURE-DISPLACEMENT step and not in a *FREQUENCY,
*BUCKLE, *MODAL DYNAMIC or *STEADY STATE DYNAMICS step. It’s
use in a *HEAT TRANSFER step is possible, but does not make sense since
mechanical loading is not taken into account in a pure heat transfer analysis.

6.11.5 Forces obtained by selecting RF

This section has been included because the output when selecting RF on a
*NODE PRINT, *NODE FILE or *NODE OUTPUT card is not always what
the user expects. With RF you get the sum of all external forces in a node. The
external forces can be viewed as the sum of the loading forces and the reaction
forces. Let us have a look at a couple of examples:

Figure 162 represents the upper surface of a plate of size 1 x 1 x 0.1, modeled
by just one C3D20R element. Only the upper face of the element is shown.
Suppose the user has fixed all nodes belonging to this face in loading direction.
In node 1 an external point loading is applied of size P. Since this node is fixed
in loading direction, a reaction force of size R=P will arise. The size of the total
force, i.e. the point loading plus the reaction force is zero. This is what the user
will get if RF is selected for this node.

Figure 163 shows the same face, but now the upper surface is loaded by a
pressure of size 1. Again, only one C3D20R element is used and the equivalent
point forces for the pressure load are as shown. We assume that all nodes on
the border of the plate are fixed in loading direction (in this case this means
all nodes, since all nodes are lying on the border). Therefore, in each node a
reaction force will arise equal to the loading force. Again, the total force in each
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Figure 163: Equivalent forces of a uniform pressure on a plate (1 element)

node is zero, which is the value the user will get by selecting RF on the *NODE
PRINT, *NODE FILE or *NODE OUTPUT card.

Now, the plate is meshed with 4 quadratic elements. Figure 164 shows a
view from above. All borders of the plate are fixed and the numbers at the
nodes represent the nodal forces corresponding to the uniform pressure of size
1. Suppose the user would like to know the sum of the external forces at the
border nodes (e.g. by selecting RF on a *NODE PRINT card with parameter
TOTALS=ONLY). The external forces are the sum of the reaction forces and the
loading forces. The total reaction force is -1. The loading forces at the border
nodes are the non-circled ones in Figure 164, summing up to 5/12. Consequently
the sum of the external forces at the border nodes is -7/12.

By selecting an even finer mesh the sum of the external forces at the border
nodes will approach -1.

Summarizing, selecting RF gives you the sum of the reaction forces and
the loading forces. This is equal to the reaction forces only if the elements
belonging to the selected nodes are not loaded by a *DLOAD card, and the
nodes themselves are not loaded by a *CLOAD card.

6.11.6 Temperature loading in a mechanical analysis

Temperature loading is triggered by the keyword *TEMPERATURE. Specifica-
tion of initial temperatures (*INITIAL CONDITIONS, TYPE=TEMPERATURE)
and expansion coefficients (*EXPANSION) is required. The temperature is
specified at the nodes. Redefined temperatures replace existing ones.

6.11.7 Initial(residual) stresses

In each integration point of an element a residual stress tensor can be specified
by the keyword *INITIAL CONDITIONS, TYPE=STRESS. The residual stress
should be defined before the first *STEP card.
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Figure 164: Equivalent forces of a uniform pressure on a plate (4 elements)
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6.11.8 Concentrated heat flux

Concentrated heat flux can be defined in nodes by using the *CFLUX card.
The units are those of power, flux entering the body is positive, flux leaving the
body is negative.

6.11.9 Distributed heat flux

Distributed heat flux can be defined on element sides by using the *DFLUX
card. The units are those of power per unit of area, flux entering the body is
positive, flux leaving the body is negative. Nonuniform flux can be defined by
using the subroutine dflux.f.

In the absence of a *DFLUX card for a given element face, no distributed
heat flux will be applied to this face. This seems reasonable, however, this only
applies to solid structures. Due to the iterative way in which fluid dynamics
calculations are performed an external element face in a CFD calculation ex-
hibits no heat flux only if a *DFLUX card was defined for this surface with a
heat flux value of zero.

6.11.10 Convective heat flux

Convective heat flux is a flux depending on the temperature difference between
the body and the adjacent fluid (liquid or gas) and is triggered by the *FILM
card. It takes the form

q = h(T − T0) (551)

where q is the a flux normal to the surface, h is the film coefficient, T is
the body temperature and T0 is the environment fluid temperature (also called
sink temperature). Generally, the sink temperature is known. If it is not,
it is an unknown in the system. Physically, the convection along the surface
can be forced or free. Forced convection means that the mass flow rate of the
adjacent fluid (gas or liquid) is known and its temperature is the result of heat
exchange between body and fluid. This case can be simulated by CalculiX by
defining network elements and using the *BOUNDARY card for the first degree
of freedom in the midside node of the element. Free convection, for which the
mass flow rate is a n unknown too and a result of temperature differences, cannot
be simulated.

6.11.11 Radiative heat flux

Radiative heat flux is a flux depending on the temperature of the body and
is triggered by the *RADIATE card. No external medium is needed. If other
bodies are present, an interaction takes place. This is called cavity radiation.
Usually, it is not possible to model all bodies in the environment. Then, a
homogeneous environmental body temperature can be defined. In that case,
the radiative flux takes the form
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q = ǫ(θ4 − θ40) (552)

where q is a flux normal to the surface, ǫ is the emissivity, θ is the absolute
body temperature (Kelvin) and θ0 is the absolute environment temperature
(also called sink temperature). The emissivity takes values between 0 and 1.
A zero value applied to a body with no absorption nor emission and 100 %
reflection. A value of 1 applies to a black body. The radiation is assumed to be
diffuse (independent of the direction of emission) and gray (independent of the
emitted wave length).

If other bodies are present, the radiative interaction is taken into account
and viewfactors are calculated if the user selects the appropriate load label.

6.12 Error estimators

6.12.1 Zienkiewicz-Zhu error estimator

The Zienkiewicz-Zhu error estimator [97], [98] tries to estimate the error made
by the finite element discretization. To do so, it calculates for each node an
improved stress and defines the error as the difference between this stress and
the one calculated by the standard finite element procedure.

The stress obtained in the nodes using the standard finite element procedure
is an extrapolation of the stresses at the integration points [19]. Indeed, the ba-
sic unknowns in mechanical calculations are the displacements. Differentiating
the displacements yields the strains, which can be converted into stresses by
means of the appropriate material law. Due to the numerical integration used
to obtain the stiffness coefficients, the strains and stresses are most accurate
at the integration points. The standard finite element procedure extrapolates
these integration point values to the nodes. The way this extrapolation is done
depends on the kind of element [19]. Usually, a node belongs to more than one
element. The standard procedure averages the stress values obtained from each
element to which the node belongs.

To determine a more accurate stress value at the nodes, the Zienkiewicz-
Zhu procedure starts from the stresses at the reduced integration points. This
applies to quadratic elements only, since only for these elements a reduced inte-
gration procedure exists (for element types different from C3D20R the ordinary
integration points are taken instead) . The reduced integration points are su-
perconvergent points, i.e. points at which the stress is an order of magnitude
more accurate than in any other point within the element [7]. To improve the
stress at a node an element patch is defined, usually consisting of all elements
to which the nodes belongs. However, at boundaries and for tetrahedral ele-
ments this patch can contain other elements too. Now, a polynomial function is
defined consisting of the monomials used for the shape function of the elements
at stake. Again, to improve the accuracy, other monomials may be considered
as well. The coefficients of the polynomial are defined such that the polyno-
mial matches the stress as well as possible in the reduced integration points of
the patch (in a least squares sense). Finally, an improved stress in the node
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is obtained by evaluating this polynomial. This is done for all stress compo-
nents separately. For more details on the implementation in CalculiX the user
is referred to [54].

In CalculiX one can obtain the improved CalculiX-Zhu stress by selecting
ZZS underneath the *EL FILE keyword card. It is available for tetrahedral
and hexahedral elements. In a node belonging to tetrahedral, hexahedral and
any other type of elements, only the hexahedral elements are used to defined
the improved stress, if the node does not belong to hexahedral elements the
tetrahedral elements are used, if any.

6.12.2 Gradient error estimator

A different error estimator is based on the difference between the maximum and
minimum of an elementwise-selected principal stress at the integration points in
the elements belonging to one and the same node . It is triggered by selecting
ERR underneath the *EL FILE keyword card.

The elementwise-selected principal stress is either the smallest or the largest
principal stress (first or third). It is the largest principal stress if the maximum
over all integration points in the element of the absolute value of the largest
principal stress is larger than the maximum over all integration points in the
element of the absolute value of the smallest principal stress. Else, it is the
smallest principal stress.

A node usually belongs to several elements. The stresses are available (and
most accurate) at the integration points of these elements. If the largest differ-
ence between the elementwise-selected principal stress at all integration points
within an element is small, the stresses vary little across the element and the
element size is deemed adequate to yield an accurate stress prediction. From
the absolute value of the largest difference a relative element value is calculated.
The relative element value is the absolute value divided by the absolute value
of the largest elementwise-selected principal stress within the element.

To obtain the relative value at the nodes the maximum is taken of the
relative element value across all elements belonging to the node. In a strict
sense this is not an error estimator, it is just a measure for the variation of the
elementwise-selected principal stress across all elements belonging to the node.

By applying this concept to a large number of examples for which the stress
error was known a heuristic relationship was deduced. It allows for a given
element type to determine the error in the elementwise-selected principal stress
in a node (called STR in the frd file; it is obtained by selecting ERR under-
neath the *EL FILE or *ELEMENT OUTPUT card) from the relative measure
just defined (describing the relative change of the elementwise-selected principal
stress in the adjacent elements). If a node belongs to several element types the
worst value is taken. The STR-value is in %.

For heat transfer a similar error estimator was coded for the heat flux. It is
triggered by selecting HER underneath the *EL FILE keyword card. It repre-
sents the variation of the size of the heat flux vector across all elements belonging
to one and the same node. For thermal problems too heuristic relationships con-
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necting the largest temperature gradient in the adjacent element to a node and
the temperature error in the node have been established. The temperature er-
ror is called TEM in the frd file and is in %. It is obtained by selecting HER
underneath the *EL FILE or *ELEMENT OUTPUT card.

6.13 Output variables

Output is provided with the commands *NODE FILE and *EL FILE in the .frd
file (ASCII), with the commands *NODE OUTPUT and *ELEMENT OUTPUT
in the .frd file (binary) and with the commands *NODE PRINT and *EL PRINT
in the .dat file (ASCII). Binary .frd files are much shorter and can be faster read
by CalculiX GraphiX. Nodal variables (selected by the *NODE FILE, *NODE
OUTPUT and *NODE PRINT keywords) are always stored at the nodes. El-
ement variables (selected by the *EL FILE, *ELEMENT OUTPUT and *EL-
EMENT PRINT keywords) are stored at the integration points in the .dat file
and at the nodes in the .frd file. Notice that element variables are more accurate
at the integration points. The values at the nodes are extrapolated values and
consequently less accurate. For example, the von Mises stress and the equiva-
lent plastic strain at the integration points have to lie on the stress-strain curve
defined by the user underneath the *PLASTIC card, the extrapolated values at
the nodes do not have to.

In fluid networks interpolation is used to calculate the nodal values at nodes
in which they are not defined. Indeed, due to the structure of a network ele-
ment the total temperature, the static temperature and the total pressure are
determined at the end nodes, whereas the mass flow is calculated at the middle
nodes. Therefore, to guarantee a continuous representation in the .frd file the
values of the total temperature, the static temperature and the total pressure at
the middle nodes are interpolated from their end node values and the end node
values of the mass flow are determined from the neighboring mid-node values.
This is not done for .dat file values (missing values are in that case zero).

A major different between the FILE and PRINT requests is that the PRINT
requests HAVE TO be accompanied by a set name. Consequently, the output
can be limited to a few nodes or elements. The output in the .frd file can but
does not have to be restricted to subsets. If no node set is selected by using the
NSET parameter (both for nodal and element values, since output in the .frd
file is always at the nodes) output is for the complete model.

The following output variables are available:

Table 18: List of output variables.

variable meaning type .frd file .dat file
COORD coordinates int.point x

U displacement nodal x x
PU magnitude and phase nodal x

of displacement
MAXU worst displacement nodal x
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Table 18: (continued)

variable meaning type .frd file .dat file
orthogonal to a given vector

in cyclic symmetric
frequency calculations

NT structural temperature nodal x x
total temperature in a network

PNT magnitude and phase nodal x
of temperature

TT total temperature in a gas network nodal x
TS static temperature in a network nodal x x
TTF total temperature in a 3D fluid nodal x x
TSF static temperature in a 3D fluid nodal x x
RF total force nodal x x
RFL total flux nodal x x
PRF magnitude and phase of external forces nodal x
PT total pressure in a gas network nodal x
PS static pressure in a liquid network nodal x x
PN network pressure nodal x

(generic term for any of the above)
PTF total pressure in a 3D fluid nodal x x
PSF static pressure in a 3D fluid nodal x x
CP pressure coefficient in a compressible 3D fluid nodal x x

DEPT fluid depth in a channel network nodal x
HCRI critical depth in a channel network nodal x
MF mass flow in a network nodal x x
V velocity of a structure nodal x x
VF velocity in a 3D fluid nodal x x

MACH Mach number in a compressible 3D fluid nodal x x
TURB turbulence variables in a 3D fluid nodal x

S Cauchy stress (structure) int.point x x
SF total stress (3D fluid) int.point x
SVF viscous stress (3D fluid) int.point x x
ZZS Zienkiewicz-Zhu stress int.point x
PHS magnitude and phase int.point x

of stress
MAXS worst principal stress int.point x

in cyclic symmetric
frequency calculations

HFL heat flux in a structure int.point x x
HFLF heat flux in a 3D fluid int.point x x
E Lagrange strain int.point x x
ME mechanical strain int.point x x

MAXE worst principal strain int.point x
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Table 18: (continued)

variable meaning type .frd file .dat file
in cyclic symmetric

frequency calculations
PEEQ equivalent plastic strain int.point x x
ENER internal energy density int.point x x
SDV internal variables int.point x x
ELSE internal energy element x
ELKE kinetic energy element x
EVOL volume element x
EMAS mass and mass moments of inertia element x
DRAG stress on surface surface x
FLUX flux through surface surface x
SOF section forces surface x
SOM section moments surface x

SOAREA section area surface x
POT electric potential nodal x
ECD electric current density int.point x
EMFE electric field int.point x
EMFB magnetic field int.point x
EBHE heating power due to induction elem x
CDIS relative contact displacements nodal x x
CSTR contact stress nodal x x
CELS contact energy nodal x x
PCON amplitude and phase of the relative contact nodal x

displacements and contact stresses
CNUM total number of contact elements model x
CF total contact force surface x
CFN total normal contact force surface x
CFS total shear contact force surface x
ERR error estimator for the worst principal stress int.point x
HER error estimator for the temperature int.point x
SEN sensitivity nodal x

7 The Finite Volume Method for Fluid Dynam-
ics

7.1 Introduction

Computational Fluid Dynamics (CFD) is an enormously rich field on its own.
Originally covered by the finite difference method, the CFD field equations are
nowadays usually solved by the finite volume method. Occasionally one also
encounters finite element CFD codes. Whereas the finite element method can
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Figure 165: Mesh parameters

be considered as a code for which the primary variables (i.e. the variables
solved for in the ensuing linear equation system such as the displacements) are
determined at the nodes and the secondary variables (derived from the primary
ones by differentiation, such as the strains) at the integration points, the finite
volume method is characterized by the primary variables (such as velocity, static
temperature, static pressure... in CFD calculations) being determined at the
center point of the elements (usually called cells). Thus, the size of the equation
system corresponds to the number of elements. In what follows frequent recourse
will be taken to references [61] and [22]

7.2 Determination of facial values

7.2.1 True interpolation

Although the primary variables are determined at the element centers the gov-
erning equations require their values at the element faces, as well as their gra-
dient at the centers and faces. Let us have a look at a typical element P and
one of its neighbors F (Figure 165; P and F will be used to denote the elements
as well as their centers).

Based on the values of a variable φ at the element centers P and F the value
in the center f of face f is looked for. To that end the following vectors are
defined: iξ is a unit vector connecting P with f, while n is the normal vector on
face f at its center f (pointing way from the element). The angle between both
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is α. Furthermore, jξ is a vector connecting P with F, β is the angle between
n and jξ, Q is the orthogonal projection of f on the straight line connecting P
with F and rf connects Q to f. The value φf can now be approximated by

φf ≈ φQ ≈ [φP d(Q,F ) + φF d(Q,P )]

d(P, F )
, (553)

where d(Q,F ) is the Euclidean distance between Q and F. The next better
approximation takes rf into account:

φf ≈ φQ + (∇φ)Q · rf . (554)

To this end the gradient is approximated by

(∇φ)Q ≈ (∇φ)P d(Q,F ) + (∇φ)F d(Q,P )
d(P, F )

. (555)

The value of the gradient at the element centers can be obtained from the
facial values. Indeed, by Gauss the following applies:

∫

V

∇ · adV =

∫

A

a · ndA (556)

for an arbitrary vector a. Setting a = φ · ik, where ik is a unit vector in
carthesian direction k, one obtains

∫

V

∇ · (φik)dV =

∫

A

φik · ndA ≈
∑

f

φf ik · nfAf =
∑

f

φf (nk)fAf . (557)

and

∫

V

∇ · (φik)dV =

∫

V

(∇φ) · ikdV =

∫

V

φ,k dV ≈ (φ,k )PVP . (558)

From which one obtains

(φ,k )P ≈ 1

VP


∑

f

φf (nk)fAf


 , (559)

where the sum is over all faces f belonging to element P, φf is the value of φ
at the center of face f, Af is the area of face f and VP is the volume of element
P.

The calculation of φf is usually done iteratively using the following steps:

1. use Equation (553) to determine φf except if φf is known by a boundary
condition (BC). In the latter case take the value of the BC.

2. use Equation (559) to determine (∇φ)P and (∇φ)F .
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Figure 166: Mesh parameters for a boundary element

3. by Equation (555) determine (∇φ)Q.

4. Use Equation (554) to improve φf except if φf is know from a BC (in that
case take the value of the BC).

Steps 2 up to 4 can be repeated to improve the value of φf further. Usually
one such extra iteration is sufficient. Notice that (∇φ)Q can be used as an
approximation of (∇φ)f .

For a boundary element (Figure 166) the situation is slightly different. The
value at Q is now extrapolated from the center value at the neighboring element
W (if any) bordering the face opposite to face f:

φQ = φP +
φP − φW
d(P,W )

d(P,Q) (560)

= φP

(
1 +

d(P,Q)

d(P,W )

)
− φW

d(P,Q)

d(P,W )
. (561)
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Figure 167: Contributing elements if performing steps 1-2-3

Apart from this, the situation is completely analogous. If no element on the
opposite side exists the center value is taken, i.e. φf = φP . This also amounts
to (∇φ)f · iξ = 0. Notice also that for a boundary element iξ = jξ.

The preceding discourse is generic and, although explained here for 2-dimensional
elements applies in 3 dimensions equally well. In fact, CalculiX only knows
three-dimensional hexahedral, pentahedral and tetrahedral fluid elements. In
the following the values of φf and (∇φ)f obtained in the above way will be
denoted by φf and (∇φ)f , respectively.

(∇φ)f , however, can be further improved. The value of (∇φ)e (Figure 167),
as calculated in step 3 above, depends on (∇φ)P and (∇φ)E . These depend on
the values φf of all faces belonging to elements P and E, respectively (step 2).

Each of these depends on the neighboring element values, e.g. φn depends on
φN and φP (step 1). Overall, all dashed elements in addition of element P and E
in the figure contribute to (∇φ)e. If, instead of just performing steps 1 through
3, steps 1-2-3-4-2-3 are taken, the values in the vertically dashed elements in
Figure 168 will also contribute.

However, for consistency it has proven vital that the simple neighbor rela-
tionship

(∇φ)e · jPE =
φE − φP
lPE

(562)
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Figure 168: Contributing elements if performing steps 1-2-3-4-2-3

be satisfied (lPE = d(P,E)). This can be obtained by setting

(∇φ)e = (∇φ)e +
(
φE − φP
lPE

− (∇φ)e · jPE
)
jPE . (563)

(∇φ)e is an improved value of the facial gradient. It will be denoted without
bar on top.

7.2.2 Convective interpolation

In the preceding section the problem of finding facial values once the element
center values are known, was solved in a generic way, independent of the flow
direction. Using these values in the convective terms of the conservation laws,
however, may lead to overshoots and ocillatory behavior. Therefore, alternative
schemes have been developed specifically for these convective terms. For details
the reader is referred to [61] (compressible flow) and [36] (incompressible flow).
Here, the schemes used for that purpose in CalculiX are briefly discussed. In

what follows the facial values used in convective schemes are denoted by
−→
φf for

face f (so the arrow does NOT denote a vector!). Notice that convective facial
values are only relevant for internal faces.



7.2 Determination of facial values 355

P E

f

v

Figure 169: Element participation for the Upwind Scheme
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Figure 170: Element participation for High Resolution Schemes

Upwind scheme In this simple scheme the facial value is set to the element
center value upwind of the face. For instance for the flow in Figure 169:

−→
φ e = φP . (564)

The upwind scheme introduces spurious viscosity leading to smeared flow
characteristics (unless a very fine mesh is used).

High resolution schemes To remedy the problem of spurious viscosity sev-
eral high resolution schemes have been invented [61]. They nearly all consist of
piecewise functions of the form

−̃→
φ e = aφ̃P + b, (565)

where a and b are constants and φ̃P and
−̃→
φe are defined as (cf. Figure 170,

in which a regular mesh is shown):
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Figure 171: Setting for high resolution scheme in irregular mesh

φ̃P :=
φP − φW
φE − φW

(566)

and

−̃→
φe :=

−→
φe − φW
φE − φW

. (567)

Substituting Equations (566) and (567) in Equation (565) yields:

−→
φe = aφP + bφE + (1− a− b)φW . (568)

For irregular meshes element centers W, P and E may not be aligned There-
fore, usually a fictituous aligned position W’ is assumed such that (Figure 171):

φW ′ = φE − 2∇φP · jξd(P,E) (569)

and used in Equation (568) instead of φW leading to

−→
φe = aφP + (1− a)φE − 2(1− a− b)∇φP · jξd(P,E). (570)

The coefficients a and b in Equation (565) usually depend in a discrete way on

the value of φ̃P , which can be approximated by:
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φ̃P = 1− φE − φP
φE − φW

≈ 1− φE − φP
2∇φP · jξd(P,E)

. (571)

For the Modified Smart Scheme, which is implemented in CalculiX, the
following relationships are defined:

φ̃P < 0 :
−̃→
φ f = φ̃P (a = 1, b = 0) (572)

0 ≤ φ̃P < 1/6 :
−̃→
φ f = 3φ̃P (a = 3, b = 0) (573)

1/6 ≤ φ̃P < 7/10 :
−̃→
φ f = 3/4φ̃P + 3/8 (a = 3/4, b = 3/8) (574)

7/10 ≤ φ̃P < 1 :
−̃→
φ f = 1/3φ̃P + 2/3 (a = 1/3, b = 2/3) (575)

1 ≤ φ̃P :
−̃→
φ f = φ̃P (a = 1, b = 0) (576)

Notice that by using the resulting equations (570) and (571) the convective
interpolation at face e only depends on element center values in the neighbor-
ing elements P and E. Therefore, these formulas can be used in a completely
irregular mesh. Finally, it is worth noting that if φ is a vector field (e.g. the
velocity) the above formulas are applied componentwise.

Gamma Method For incompressible flows a scheme was proposed for the
convective facial values consisting of a linear combination of the upwind scheme
and the facial values φf [36]:

−→
φ f = γφf + (1 − γ)φP . (577)

Here, γ is a piecewise linear function of φ̃P :

φ̃P ≤ 0 : γ = 0 (Upwind Difference) (578)

0 < φ̃P < βm : γ = φ̃P /βm (579)

βm ≤ φ̃P < 1 : γ = 1 (Central Difference) (580)

1 ≤ φ̃P : γ = 0 (Upwind Difference) (581)

Due to the second term in the above equation
−→
φ f is a nonlinear function of

φP . βm should be in the range 0.1 ≤ βm ≤ 0.5. In CalculiX βm = 0.1.
For the velocity v the scalar ||v|| is used to calculate γ. Since

||v||,j =
vi
||v||vi,j (582)

one obtains

|̃|v||P = 1− (||v||E − ||v||P )||v||P
2vP · ∇vTP · jξd(P,E)

. (583)
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7.3 General approach for solving the CFD equations

The fields to be determined (velocity, pressure, temperature, turbulent kinetic
energy....) will be obtained by solving the conservation laws (conservation of
mass, of momentum...) in their transient form. Steady state solutions are
obtained by continuing a transient calculation up to a point at which the solution
does not significantly change any more. Stepping forward in time is done by
fluid time increments, the increment number will be denoted by a superscript,
e.g. vn. The actual time increment for which the solution is to be found will
be assumed to be n. If no increment superscript is used in a variable, n is
assumed. In order to get the solution at the end of increment n, iterations
1, ....,m have to be performed. To denote the solution at the end of iteration m
a superscript in parenthesis (m) will be used. If no such superscript is used for
a variable the convergent solution is meant. Consequently, at the beginning of
a new increment n we have

pn(0) = pn−1, (584)

which means that the convergent solution at the end of increment n − 1 is
taken as starting solution for increment n.

7.4 Conservation of momentum (compressible flow)

The conservation principles are of utmost importance in fluid dynamics. They
lead to sets of linear equations the solution of which yields the fields we are look-
ing for (velocity, pressure, temperature...). The conservation of momentum can
be written in the following component form (in spatial carthesian coordinates)
[19]:

ρ
Dvi
Dt

= σij,j + ρfi. (585)

Since (definition of the total derivative):

ρ
Dvi
Dt

= ρ
∂vi
∂t

+ ρvi,jvj (586)

and (conservation of mass) [19]

∂ρ

∂t
+ (ρvj),j = 0, (587)

one can write

ρ
Dvi
Dt

=
∂ρvi
∂t

+ (ρvivj),j (588)

and consequently Equation (585) amounts to:

∂ρvi
∂t

+ (ρvivj),j = tij,j − p,j δij + ρfi, (589)
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since the Cauchy stress σij can be written as the viscous stress tij minus the
hydrostatic pressure p:

σij = tij − pδij . (590)

The viscous stress tij can be written as the sum of the laminar viscous stress
tlij and the turbulent viscous stress ttij satisfying [67]

tlij = µ(vi,j + vj,i −
2

3
vk,kδij) (591)

ttij = µt(vi,j + vj,i −
2

3
vk,kδij)−

2

3
ρkδij , (592)

(k is the turbulent kinetic energy and µt is the turbulent viscosity) leading
to

σij = (µ+ µt)(vi,j + vj,i −
2

3
vk,kδij)− (p+

2

3
ρk)δij . (593)

Integrating Equation (589) over an element one obtains (using Gauss’ theo-
rem):

∂

∂t

∫

V

ρvidv +

∫

A

ρviv · nda =

∫

A

tijnjda−
∫

A

pnida+

∫

V

ρfidv, (594)

where V is the volume of the element and A the external surface (which is
the sum of the area of all external faces of the element). The area of a face is
calculated by considering it as a 2-dimensional finite element and calculating
the Jacobian vector at the center (1-point integration). The volume is obtained
by replacing φ by the coordinate x and k by 1 in Equation (559):

Vp =
∑

f

xf (n1)fAf . (595)

Now, turning to Equation (594) each term is considered in detail for element
P and iteration (m) of increment n.

7.4.1 Transient term

∂

∂t

∫

V

ρvidv ≈ ρ
(m−1)
P VP

[v
(m)
i − vn−1

i ]

∆t
, (596)

where

ρ
(m−1)
P =

p
(m−1)
P

rT
(m−1)
P

. (597)

p is the static pressure, T is the static temperature and r is the gas constant.
The derivative was replaced by a backward Euler scheme. Notice that quantities
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such as pressure, temperature and density are taken from iteration (m − 1).
Therefore, the scheme will not be unconditionally stable (although this is a
property of the backward Euler scheme).

7.4.2 Convection term

This term corresponds to

(A) :=

∫

A

ρv · nvida. (598)

Now, the integral is split into a sum over all element faces:

(A) =
∑

f

∫

Af

ρv · nvida, (599)

and the integral across a face is evaluated using the convective face value at
the center of the face:

(A) ≈
∑

f

ṁf

−−−→
(vi)f . (600)

The flux ṁf is taken from the previous iteration:

(A) ≈
∑

f

ṁ
(m−1)
f

−−→
(vi)

(m)
f . (601)

For the first iteration (m = 1) ṁ
(0)
f is calculated from the initial conditions:

ṁ
(0)
f = −→ρ (0)

f v
(0)
f · nfAf , (602)

where −→ρ (0)
f is the convective interpolation through Upwind Difference of the

density at the face centers.
For the convective face value in Equation (601) a deferred correction ap-

proach is taken based on an upwind scheme, i.e.

−−→
(vi)

(m)
f ≈ −−→

(vi)
UD(m)
f +

[−−→
(vi)

(m−1)
f −−−→

(vi)
UD(m−1)
f

]
. (603)

This approximation is exact at convergence, for which the values in iteration
(m − 1) and (m) coincide. By the above approximation all values at iteration

(m) are element center values. Indeed, recall that
−−→
(vi)

UD(m)
f is the element

center value of vi, either of the element at stake (P), or its neighbor, depending

on the flow direction (i.e. the sign of ṁ
(m−1)
f ). Consequently

(A) ≈
∑

f

ṁ
(m−1)
f

[−−→
(vi)

UD(m)
f +

−−→
(vi)

(m−1)
f −−−→

(vi)
UD(m−1)
f

]
. (604)
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The terms within the square bracket with superscript (m− 1) end up on the
right hand side of the quation, the terms with superscript (m) contribute to the
left hand side.

Since velocity boundary conditions are automatically taken into account in
the calculation of −→v no special treatment is necessary. We have:

• Inlet: (−→vi )(m)
f is given; contributes to the right hand side.

• Wall and Sliding conditions: ṁ
(m−1)
f = 0: no contribution

• Outlet: (−→vi )(m)
f = (−→vi )UD(m)

f = (vi)
(m)
P ∀m: constant velocity. Con-

tributes to the left hand side.

For the convective interpolation of the velocity the upwind difference scheme
as well as the modified smart scheme (or other high resolution schemes) can be
selected.

7.4.3 Diffusion term

The diffusion term amounts to

∫

A

tijnjda, (605)

which amounts to, taking into account Equations (591) and (592):

∫

A

µT vi,jnjda+

∫

A

µT vj,injda−
2

3

∫

A

[µT vk,k + ρk]δijnjda, (606)

where µT := µ + µt is the total dynamic viscosity. The first term contains
the gradient in normal direction. For face e between elements P and E it is
approximated by:

∫

Ae

µT vi,jnjda ≈ µT (m−1)
e Ae

(vi)
(m)
E − (vi)

(m)
P

lPE
+µT (m−1)

e Ae(∇vi)(m−1)
e ·(ne−je).

(607)
This amounts to the following approximation:

∇(m)
n ≈ ∇(m)

j + (∇(m−1)
n −∇(m−1)

j ). (608)

This amounts to a deferred correction for the gradient. Terms 2 and 3 of
Equation (606) are computed from iteration (m− 1):

µT (m−1)(vj,i)
(m−1)
f (nj)fAf −

2

3

[
µT (m−1)(vk,k)

(m−1)
f + ρ

(m−1)
f k

(m−1)
f

]
δijnjAf

(609)
The boundary conditions for the diffusion term deserve special attention.

The following cases are distinguished:
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Figure 172: Near-wall stress

Inlet The velocity at the inlet face is known. Therefore, the first term of
Equation (607) is changed into:

µT (m−1)
e Ae

(vi)
(m)
e − (vi)

(m)
P

lPe
(610)

Outlet At an outlet the velocity is assumed not to change in flow direction.
Furthermore, the mesh is assumed such that j corresponds with the flow direc-
tion. From this we have

(vi)
(m)
e = (vi)

(m)
P (611)

(assuming that e is the face at the outlet) and the first term in Equation
(607), which takes now a similar form as in Equation (610) drops out.

Non-moving Wall At a wall the velocity is zero. However, it is more effective
to calculate the stress at the wall directly. The mass conservation amounts to

∂ρ

∂t
+ ρ,j vj + ρvj,j = 0. (612)

For stationary flow (∂ρ/∂t = 0) at the wall (v = 0) we arrive at

vj,j = 0 (613)

or (Figure 172)
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∂vn
∂n

+
∂vt
∂t

= 0. (614)

Since vt does not change along the wall (zero everywhere along the wall) one
arrives at

∂vn
∂n

= 0. (615)

Now, because

tnn = 2µT vn,n − 2

3
(µT vk,k + ρk) (616)

one obtaines tnn = 0, since vk,k = 0 (just derived) and also the turbulent
kinetic energy at the wall is zero. For the tangential component one obtains:

tnt = µT (vn,t + vt,n). (617)

Since vn,t = 0, one arrives at

tnt = µT vt,n. (618)

The velocity at P (Figure 172) is now decomposed into a component normal
and a component tangent to the wall:

(vP )n = (vP · en)en (619)

and

(vP )t = vP − (vP · en)en = vP − (vP · n)n = (vP · et)et, (620)

where en and et are unit vectors in n- and t-direction, respectively. The
stress tensor amounts to:

[
0 tnt
tnt ttt

]
(621)

and the normal vector orthogonal and external to the surface satisfies:

n = −en + 0 · et. (622)

This leads to the following stress vector t :

[
0 tnt
tnt ttt

]
·
[
−1
0

]
=

[
0

−tnt

]
(623)

or

t = −tntet. (624)

Approximating vt,n by
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vt,n ≈ vt · et
(rS − rP ) · n

, (625)

one obtains by combining Equations (618) and (624):

t =
−µTvt · et

(rS − rP ) · n
· et = −µ

T [vP − (vP · n)n]
(rS − rP ) · n

. (626)

Therefore, the integral at the wall can be approximated by:

(∫

wall

tijnjda

)
ei ≈ − µT (m−1)Aw

(rS − rP ) · n
v
(m)
P + µT (m−1)Aw

(v
(m−1)
P · n)n

(rS − rP ) · n
, (627)

where Aw is the area of the wall face. The first term contributes to the left
hand side, the second term to the right hand side of the system of equations.

Sliding conditions In case of sliding conditions the shear stress is zero: tnt =
0. The stress vector now amounts to:

[
tnn 0
0 ttt

]
·
[
−1
0

]
=

[
−tnn
0

]
(628)

or

t = −tnnen = tnnn, (629)

where

tnn = 2µT vn,n − 2

3
(µT vk,k + ρk). (630)

Consequently, t can be approximated by:

t ≈ 2µT
vP · en

(rS − rP ) · n
n− 2

3

(
µT vk,k + ρk

)
n. (631)

This finally amounts to:

t ≈ −2µT (m−1) v
(m−1)
P · n

(rS − rP ) · n
n− 2

3

(
µT (m−1))(∇ · v)(m−1) + ρ(m−1)k(m−1)

)
n.

(632)

7.4.4 Pressure term

The pressure term is approximated by:

∫

A

pnida ≈
∑

f

p
(m−1)
f (ni)fAf . (633)

For the pressure the face values from the previous iterations are taken.
Therefore, this term ends up on the right hand side of the system of equations.
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7.4.5 Volume forces

The term with volume forces is modeled by:

∫

V

ρgidv ≈ ρ
(m−1)
P giVP (634)

and ends up on the right hand side.
After solving the resulting system of equations leading to vmomentum the

solution v∗ is calculated by blending v(m−1) (20 %) with vmomentum (80 %). This
is called underrelaxation and is needed to ensure stability in the SIMPLE scheme
(the specifics of this scheme will be discussed when treating the conservation of
mass). For the SIMPLE scheme underrelaxation is needed for all conservation
equations: for the conservation of momentum, temperature, k and ω in the
above blend, for the conservation of mass using the inverse blend, i.e. 20 % of
the new solution combined with 80 % of the old solution. For the SIMPLEC
scheme (also discussed further along the line) no underrelaxation is needed.

7.5 Rhie-Chow interpolation

Before continuing with the conservation of mass equation a new type of interpo-
lation has to be introduced: the Rhie-Chow interpolation. So far we encountered
for the primary variables such as velocity, static pressure or static temperature
at internal faces the mean interpolation (e.g. vf ) and the convective interpo-
lation (e.g. −→vf ) . For external faces the extrapolation is dictated by the kind of
boundary condition (e.g. outflow: constant extrapolation or wall/sliding con-
dition: linear extrapolation) and these facial values are denoted without any
extra sign.

The need for the Rhie-Chow interpolation comes from the fact that for a long
time CFD calculations on collocated grids (i.e. grids for which the velocity, pres-
sure, temperature etc. are unknown at the same positions) were not successfull
due to the occurrence of checkerboard-type solutions. Therefore, people resorted
to staggered grids, in whch the pressure was calculated at positions halfway the
velocity positions [61]. Especially in three dimensions this leads to hopelessly
complicated data structures. The use of the Rhie-Chow interpolation, however,
solved this problem.

The Rhie-Chow interpolation (only defined on internal faces) starts from a
velocity/pressure field satisfying the conservation of momentum equation. From
the last section this equation can be written as follows at element center P:

v
(m)
P +HP (v

(m)) = B
(m−1)
P −DP∇p(m−1)

P . (635)

The terms correspond to:

1. A velocity term for element P at the current iteration. Notice that the
equation has been divided by the diagonal coefficient aP of the left hand
side of the equation system
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2. HP (v
(m)): velocity contributions from the element neighbors at the cur-

rent iteration. Here H is to be understood as a linear function.

3. B
(m−1)
P : the right hand side terms calculated in the previous iterations

4. DP∇p(m−1)
P : the pressure gradient; DP corresponds to VP /aP where VP

is the volume of element P. Notice that Gauss’ theorem was not applied
to this term.

More generically, this equation can be written for a velocity field v and
pressure field p satisfying the momentum equations as follows:

vP +HP (v) = BP −DP∇pP (636)

and for element F:

vF +HF (v) = BF −DF∇pF . (637)

Now we are looking for the velocity vf at the face f satisfying the momentum
equation as well, i.e.

vf +Hf (v) = Bf −Df∇pf , (638)

where

Hf = Hf = (HP +HF )/2 (639)

Bf = Bf = (BP +BF )/2 (640)

Df = Df = (DP +DF )/2. (641)

Hence:

vf +Hf (v) = Bf −Df∇pf . (642)

On the other hand. one can also just take the mean of equation (636) and
(637) resulting in:

vf +Hf (v) = Bf −
1

2
(DP∇pP +DF∇pF ), (643)

which is within second order accurary equivalent to [61]:

vf +Hf (v) = Bf −Df∇pf . (644)

Subtracting Equation (644) from Equation (642) yields:

vf = vf +Df

[
∇pf −∇pf

]
. (645)

Recall that (Equation (566)) ∇pf is the corrected form of ∇pf obtained by
enforcing the short range gradient based on elements P and F, i.e.
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∇pf · ePF = (pF − pP )/lPF . (646)

This is done by defining

∇pf = ∇pf +
[
pF − pP
lPF

−∇pf · jf
]
jf . (647)

Substituting Equation (647) into Equation (645) yields

vf = vf −Df

[
pF − pP
lPF

−∇pf · jf
]
jf . (648)

Whereas vf is obtained through mean interpolation vf is obtained by Rhie-
Chow interpolation. It is a kind of improved value for the velocity by enforcing
the short-range correctness of the pressure gradient.

7.6 Conservation of mass (compressible flow)

Let us denote the velocity calculated from the momentum equation by v∗. Thus:

v∗
P +HP (v

∗) = B
(m−1)
P −DP∇p(m−1)

P (649)

and

v∗
f = v∗

f −Df

[
p
(m−1)
F − p

(m−1)
P

lPF
−∇p(m−1)

f · jF

]
jf (650)

= v∗
f +Df (∇p

(m−1)

f −∇p(m−1)
f ) (651)

The resulting mass flow ṁ∗
f through face f corresponds to:

ṁ∗
f = −→ρ (m−1)

f Afv
∗
f · nf , (652)

where −→ρ (m−1)
f is obtained from

−→ρ (m−1) =
−→p (m−1)

rT
(m−1)

(653)

while at the element centers we have (e.g. at P):

ρ
(m−1)
P =

p
(m−1)
P

rT
(m−1)
P

. (654)

Now, mass conservation requires:

∂ρ

∂t
+ (ρvj),j = 0, (655)
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which after solving the conservation of momentum equation in iteration m
of increment n reads (integrated form):

VP
ρ
(m−1)
P − ρn−1

P

∆t
+
∑

f

ṁ∗
f = 0, (656)

which is probably not satisfied. Therefore, a correction of the density, pres-
sure, velocity and mass flow is proposed in the form:

ρ(m) = ρ(m−1) + ρ′ (657)

p(m) = p(m−1) + p′ (658)

v(m) = v∗ + v′ (659)

ṁ
(m)
f = ṁ∗

f + ṁ′
f . (660)

Assume that v, p also satisfy the conservation of momentum equation just
solved, i.e.

v
(m)
P +HP (v

(m)) = B
(m−1)
P −DP∇p(m)

P (661)

and

v
(m)
f = v

(m)
f +Df

[
∇p(m)

f −∇p(m)
f

]
, (662)

leading to (subtract Equation (649) from Equation (661))

v′
P +HP (v

′) = −DP∇p′P (663)

and (subtract Equation (651) from Equation (662))

v′
f = v′

f +Df (∇p
′

f −∇p′f ). (664)

With the corrected values the conservation of mass reads:

VP
ρ
(m−1)
P + ρ′P − ρn−1

P

∆t
+
∑

f

ṁ
(m)
f = 0. (665)

Now, ṁ
(m)
f satisfies:

ṁ
(m)
f = (−→ρ (m−1)

f +−→ρ ′
f )Af (v

∗
f + v′

f ) · nf (666)

≈ ṁ∗
f +

−→ρ (m−1)
f Afv

′
f · nf +−→ρ ′

fAfv
∗
f · nf , (667)

neglecting second order terms. Since

−→p (m−1)
f = −→ρ (m−1)

f rT
(m−1)

f (668)
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we also have (the temperature T is kept constant)

−→p ′
f = −→ρ ′

frT
(m−1)

f (669)

and the last term can be replaced by

−→ρ ′
fAfv

∗
f · nf =

−→p ′
f

rT
(m−1)

f

ṁ∗
f

−→ρ (m−1)
f

. (670)

The second term in Equation (667) amounts to:

−→ρ (m−1)
f Afv

′
f · nf = −→ρ (m−1)

f Afv
′
f · nf

+−→ρ (m−1)
f AfDf (∇p

′

f −∇p′f ) · nf . (671)

Since

v′
P +HP (v

′) = −DP∇p′P (672)

we have

v′
F +HF (v

′) = −DF∇p′F (673)

and (taking the mean)

v′
f +Hf (v

′) = −Df∇p
′

f , (674)

and the second term now reads:

−→ρ (m−1)
f Afv

′
f · nf = −−→ρ (m−1)

f AfDf∇p′f · nf
−−→ρ (m−1)

f AfHf (v
′) · nf (675)

leading to the folowing form for the conservation of mass:

VP
ρ
(m−1)
P + ρ′P − ρn−1

P

∆t
+
∑

f

{
ṁ∗
f

− −→ρ (m−1)
f AfDf∇p′f · nf − −→ρ (m−1)

f AfHf (v
′) · nf

+
−→p ′
f

rT
(m−1)

f

ṁ∗
f

−→ρ (m−1)
f



 = 0 (676)

or
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VP p
′
P

rT
(m−1)
P ∆t

+
∑

f

−→p ′
f

ṁ∗
f

rT
(m−1)

f
−→ρ (m−1)
f

−
∑

f

−→ρ (m−1)
f AfDf∇p′f · nf −

∑

f

−→ρ (m−1)
f AfHf (v

′) · nf

= VP
ρn−1
P − ρ

(m−1)
P

∆t
−
∑

f

ṁ∗
f (677)

The first term is transient-like, the second convection-like and the third
diffusion-like. The fourth term containing the H-terms is usually neglected
(this corresponds to the so-called SIMPLE algorithm - Semi-Implicit Method
for Pressure-Linked Equations [66]).

For the convective interpolation of the pressure correction the upwind dif-
ference scheme is always used.

The normal gradient in the diffusion term can be written as:

∇p′f · nf ≈ p′F − p′P
lPF

+∇p′f · (nf − jf ). (678)

Therefore, Equation (677) has to be solved in an iterative way: in the first
subiteration only the first term in Equation (678) is taken into account, in the
following subiterations the first term in Equation (678) is based on the actual
subiteration, the second term is calculated based on the p′ solution from the
previous subiteration. This can be expressed as follows:

(∇p′f · nf )s ≈
p′sF − p′sP
lPF

+∇p′s−1
f · (nf − jf ), (679)

where s is the subiteration number. Usually, only 2 subiterations are needed.
The solution of the conservation of mass yields p′ at the element centers.

Also here, underrelaxation is applied by taking only about 20 % of p′ into
account. This is typical for the SIMPLE algorithm and is due to the neglection
of the H-terms hereby increasing the risk of divergence. After determining p′

the other corrections satisfy:

v′
P = −DP∇p′P −HP (v

′), (680)

ṁ′
f =

−→p ′
fṁ

∗
f

−→p (m−1)
f

− −→ρ (m−1)
f AfDf∇p′f · nf − −→ρ (m−1)

f AfHf (v
′) · nf , (681)

(the Hf -terms are usually neglected)

v
(m)
P = v∗

P + v′
P , (682)
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ṁ
(m)
f = ṁ∗

f + ṁ′
f , (683)

and

p
(m)
P = p

(m−1)
P + 0.2p′P (684)

p
(m)
f and v

(m)
f are obtained from p

(m)
P and v

(m)
P with the usual procedures.

Also here the boundary conditions are of utmost importance. The convection
boundary conditions amount to:

• Inlet: if no pressure is given (subsonic flow) the face correction is set
equal to the element center correction: −→p ′

f ≈ p′P . If the pressure is given

(supersonic flow) we have −→p ′
f = 0.

• Outlet: the same rules apply as for the inlet. If the pressure is given
(subsonic flow) the correction is zero, if it is not given the element center
value is taken.

• wall or sliding conditions: since ṁ∗
f = 0 the convection correction term is

zero.

The diffusion boundary conditions satisfy:

• Inlet and pressure given: since at the inlet the temperature is usually
given, so is the density (gas equation). At an inlet also the velocity is
specified, so the mass flow is fixed. Therefore, the total correction to the
mass flow is zero. Since the pressure correction is zero, so is the convective
mass flow correction. Therefore, the diffusive mass flow correction must
also be zero.

• Inlet and no pressure given: the term for the inlet face is neglected. This
boils down to the assumption that the pressure correction does not change
in normal inlet direction.

• Outlet and pressure given: the gradient of the pressure correction is calcu-
lated between the outlet face and the element center. Since the correction
at the face is zero Equation (678) is replaced by:

∇p′f · nf ≈ −p′P
lPf

+∇p′f · (nf − jf ). (685)

• Outlet and no pressure given: same procedure as for the inlet without
given pressure.

• wall or sliding conditions: the mass flow is zero, so also the total correction
is zero. Since the convective correction is zero (see above), the diffusive
correction must also be zero.
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In the SIMPLE algorithm the H-terms were neglected. This leads to slower
convergence and the need to introduce unterrelaxation in order to avoid diver-
gence. Since the publication of the SIMPLE scheme by Patankar and Spalding
[66] several other schemes have been proposed to improve the convergence. One
of them is the SIMPLEC scheme, which stands for SIMPLE-Consistent [87].
Instead of neglecting the H-terms it is assumed that the velocity correction
in P is the weighted mean of the correction in its neighbors. The weighting
coefficients are taken from the momentum equation. Mathematically this can
be written as:

v′
P ≈

∑
F aFv

′
F∑

F aF
. (686)

Now, the left hand side of Equation (672) can be written as:

v′
P +HP (v

′) = v′
P +

∑

F

aFv
′
F

aP

= v′
P + v′

P

∑
F aF
aP

= v′
P + v′

PHP (1)

= v′
P (1 +HP (1)). (687)

Now, Equation (672) can be replaced by:

v′
P = −Dc

P∇p′P , (688)

where

Dc
P =

DP

1 +HP (1)
. (689)

In a similar way, Equation (674) amounts to:

v′
f = −Dc

f∇p
′

f , (690)

and Equation (675) is replaced by:

−→ρ (m−1)
f Afv

′
f · nf = −−→ρ (m−1)

f AfD
c

f∇p′f · nf . (691)

Therefore, in the SIMPLEC scheme, the fourth term in (677) is taken into
account by replacingDf in the third term byD

c

f . The SIMPLEC scheme usually
converges faster, especially since no underrelaxation is needed any more.
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7.7 Conservation of Energy (compressible flow)

The convervation of energy amounts to (Equation (1.551) in [19]):

ρε̇ = dkltkl − p∇ · v −∇ · (−λ∇T ) + ρh, (692)

where d is the deformation rate tensor, λ is the heat conduction coefficient
and h is the heat production per unit of volume. The total time derivative of
the energy density ε can also be written as:

ρε̇ = ρ
DcvT

Dt
= ρ

[
∂cvT

∂t
+ v · ∇(cvT )

]
. (693)

cv is the specific heat at constant volume. Since (conservation of mass)

∂ρ

∂t
+∇ · (ρv) = 0, (694)

this also amounts to:

ρε̇ =
∂ρcvT

∂t
+∇ · (ρcvTv), (695)

leading to

∂ρcvT

∂t
+∇ · (ρcvTv) = ∇ · (λ∇T ) + dkltkl − p∇ · v + ρh. (696)

In some other books one may find the completely equivalent expression:

∂ρcpT

∂t
+∇ · (ρcpTv) = ∇ · (λ∇T ) + dkltkl + v · ∇p+ ∂p

∂t
+ ρh, (697)

where cp is the specific heat at constant pressure. Integrating across a volume
V one obtains:

∂

∂t

∫

V

ρcvTdv +

∫

S

ρcvTv · nds =
∫

A

λ
∂T

∂n
da+

∫

V

dkltkldv

−
∫

V

p∇ · vdv +
∫

V

ρhdv. (698)

The following terms can be distinguished:

7.7.1 Transient term

∂

∂t

∫

V

ρcvTdv ≈ ρ
(m−1)
P (cv)

(m−1)
P VP

T
(m)
P − T n−1

P

∆t
. (699)
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7.7.2 Convection term
∫

A

cvTρv · nda ≈
∑

f

ṁ
(m)
f c(m−1)

v

−→
T

(m)
f . (700)

Notice that the corrected mass flow (calculated in iteration (m)) is taken!−→
T

(m)
f is approximated by (cf. the exposure in the section on the conservation

of momentum):

−→
T

(m)
f ≈ −→

T
UD(m)
f +

[−→
T

(m−1)
f −−→

T
UD(m−1)
f

]
. (701)

The boundary conditions amount to:

• Inlet:
−→
T

(m)
f is given

• Outlet:

−→
T

(m)
f =

−→
T
UD(m)
f = T

(m)
P (702)

Consequently, the facial value is identical to the upstream element center
value.

• wall and sliding conditions: ṁ
(m)
f = 0, so there is no contribution.

For the convective interpolation of T the modified smart algorithm has not
shown any advantages, therefore, the upwind difference scheme is always used.

7.7.3 Diffusion term

For turbulent flow λ in the energy equation has to be replaced by λ+ λt where

λt =
cpµt
Prt

, (703)

where Prt ≈ 0.9 is the turbulent Prandl number. Therefore, one now arrives
at:

∫

A

λT
∂T

∂n
da ≈

∑

f

λ
T (m−1)
f Af

[
T

(m)
F − T

(m)
P

lPF
+∇T (m−1)

f · (nf − jf )

]
, (704)

where λT := λ+ λt and

(λt)
(m−1)
f =

c
(m−1)
p ρ(m−1)k(m−1)

Prt ω(m−1)
. (705)

ω is the turbulence frequency. The dynamic turbulent viscosity µt can be
written as µt = ρk/ω.

The boundary conditions for the diffusion term amount to:
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• Inlet: the temperature T
(m)
f is known, therefore the term reduces to:

λ
T (m−1)
f Af

[
T

(m)
f − T

(m)
P

lPf
+∇T (m−1)

f · (nf − jf )

]
(706)

• Outlet: the temperature gradient in j-direction is assumed to be zero and
the term now reads:

λ
T (m−1)
f Af

[
∇T (m−1)

f · (nf − jf )
]

(707)

• wall or sliding conditions.

Either the temperature is given or the heat flux is given (may be zero
as for adiabatic conditions). If the temperature is given the treatment is
analogous to the case of an inlet, if the heat flux is given the solution is
trivial since the diffusion term for an external surface is nothing else than
the value of the heat flux through this surface.

7.7.4 Dissipation, pressure term and heat generation

This term amounts to:

∫

V

(dkltkl− p∇·v+ ρh)dv ≈ VP

[
(dkltkl)

(m−1) − p(m)(∇ · v)(m) + ρ(m−1)hn
]
P
,

(708)
where

(dkltkl)
(m−1) = µ(m−1)


2

[(
∂v1
∂x1

)2

+

(
∂v2
∂x2

)2

+

(
∂v3
∂x3

)2
](m)

+

[(
∂v1
∂x2

+
∂v2
∂x1

)2

+

(
∂v1
∂x3

+
∂v3
∂x1

)2

+

(
∂v2
∂x3

+
∂v3
∂x2

)2
](m)

− 2

3
(∇ · v(m))2

)
(709)

All terms are evaluated at iteration (m) except for the dynamic viscosity.
Whether they end up on the right or left hand side of the system of equations
depends on their sign. It has proven advantageous for the stability to include
positive source terms on the right hand side and negative source terms (sinks)
on the left hand side. Consequently, the terms on the first two lines in Equation
(709) end up on the right hand side, the term on the third line on the left hand
side. Similarly, if −p(m)(∇·v)(m) and ρ(m−1)hn are positive they end up on the
right hand side, else on the left hand side. A term which is moved to the left

hand side has to be divided by T
(m−1)
P and multiplied by T

(m)
P in order to fit in
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the equation system. For instance, if the heat source hn is negative, ρ(m−1)hn

is rewritten as:

ρ(m−1)hn ≈
(
ρ(m−1)hn

T (m−1)

)
T (m) (710)

at element center P.

7.7.5 Density update

After calculating the update to the pressure (conservation of mass) and tem-
perature (conservation of energy) the density is updated:

ρ
(m)
P is obtained from p

(m)
P and T

(m)
p :

ρ
(m)
P =

p
(m)
P

rT
(m)
P

, (711)

whereas −→ρ (m)
f satisfies

−→ρ (m)
f =

−→p (m)
f

rT
(m)

f

. (712)

7.8 Turbulence equations (compressible flow)

Here, the two-parameter turbulence models BSL (baseline) and SST (shear
stress transport) are treated [51]. The k − ǫ [37] and the k − ω-model [90] are
special cases of the BSL-model. The two parameters are the turbulent kinetic
energy k and the turbulence frequency ω. The equation for k reads [51]:

∂ρk

∂t
+∇ · (ρkv) = ∇ · [(µ+ σkµt)∇k] + ttij

∂vi
∂xj

− β∗ρωk. (713)

Since

ttij = 2µt(dij −
1

3
dkkδij)−

2

3
ρkδij (714)

and

tlij = 2µ(dij −
1

3
dkkδij), (715)

one can write

ttij =
µt
µ
tlij −

2

3
ρkδij . (716)

This leads to:
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∂ρk

∂t
+∇ · (ρkv) = ∇ · [(µ+ σkµt)∇k] +

µt
µ
tlijdij −

2

3
ρkdkk − β∗ρωk. (717)

Notice that µtt
l
ijdij/µ can be written as:

µt
µ
tlijdij = µt

(
2

[(
∂v1
∂x1

)2

+

(
∂v2
∂x2

)2

+

(
∂v3
∂x3

)2
]

+

[(
∂v1
∂x2

+
∂v2
∂x1

)2

+

(
∂v1
∂x3

+
∂v3
∂x1

)2

+

(
∂v2
∂x3

+
∂v3
∂x2

)2
]

− 2

3
(∇ · v)2

)
(718)

In the above conservation equation σk is a function of the flow characteristics
through the blending factor F1 [51] and the dynamic turbulent viscosity satisfies:

µt = ρ
k

ω
. (719)

In fact, the BSL model is a linear combination of the k − ω model and the
k − ǫ-model with coefficients F1 and 1− F1, respectively. Near a wall F1 tends
to 1, thus favoring the k − ω-model which is particularly good in the near-wall
region, far away from a wall F1 tends to zero, leading to a pure k − ǫ-model.

The blending factor used in iteration (m) is F
(m−1)
1 , i.e. its calculation is

mainly based on the results from the previous iteration and satisfies the following
equations:

(F1)
(m−1)
P = tanh

[(
arg1

(m−1)
P

)4]
(720)

arg1
(m−1)
P = min


max




√
k
(m−1)
P

0.09ω
(m−1)
P yP

,
500µ

(m−1)
P

y2Pω
(m−1)
P ρ

(m)
P


 ,

4ρ
(m)
P σω2k

(m−1)
P

(CDkω)
(m−1)
P y2P




(721)

(CDkω)
(m−1)
P = max

(
2ρ

(m)
P σω2

1

ω
(m−1)
P

∇k(m−1)
P · ∇ω(m−1)

P , 10−20

)
, (722)

where yP is the distance from the element center P to the next solid surface.
Using the blending factor one obtains the correct parameter values, e.g.:

σk = F1σk1 + (1− F1)σk2. (723)

For completeness the parameters are listed here:
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γ1 =
β1
β∗

− σω1κ
2

√
β∗

γ2 =
β2
β∗

− σω2κ
2

√
β∗

(724)

σk1 = 0.5 σω1 = 0.5 β1 = 0.075 (725)

σk2 = 1.0 σω2 = 0.856 β2 = 0.0828 (726)

β∗ = 0.09 κ = 0.41 (727)

In the conservation equation for k one very easily identifies the time-dependent,
convective, diffusive and body terms. They are treated in a completely analo-
gous way to the energy equation. The convective boundary conditions amount
to:

• Inlet:
−→
k

(m)
f = 10−(2→5)ν∞(1 → 10)v∞L is given

• Outlet:
−→
k

(m)
f =

−→
k
UD(m)
f = k

(m)
P

• Wall and sliding conditions: ṁ
(m)
f = 0: no contribution

For the convective interpolation of k the modified smart algorithm has not
shown any advantages, therefore, the upwind difference scheme is always used.

The diffusion boundary conditions are:

• Inlet:

(µ+ σkµt)
(m−1)
f

[−→
k

(m)
f − k

(m)
P

lPf
+ (∇k)(m−1)

f (nf − jf )

]
. (728)

k
(m)
f is known (cf. convective inlet boundary conditions), and

(µ+ σkµt)
(m−1)
f ≈ µ

(m−1)
f + (σk)

(m−1)
P

−→ρ (m)
f

−→
k

(m−1)
f

−→ω (m−1)
f

. (729)

Notice that no facial values are calculated for the turbulent parameters.
Therefore, (σk)f in the above equation is approximated by (σk)P .

• Outlet: ∇k = 0 in j-direction; the term reduces to:

(µ+ σkµt)
(m−1)
f

[
(∇k)(m−1)

f nf

]
. (730)

• Wall: k = 0 is known (therefore also (µt)f = 0), treatment similar as for
inlet. One obtains:

µ
(m−1)
f

[
−k(m)

P

lPf
+ (∇k)(m−1)

f (nf − jf )

]
. (731)
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The source terms are treated in the following way:

• ∫

V

[
µt
µ
tlijdij

]
dV ≈ VP

[
µt
µ
tlijdij

](m−1)

P

, (732)

in which the term in brackets depends on µ
(m−1)
t = ρ(m)k(m−1)/ω(m−1)

and ∇v(m) only, cf. Equation (718). It can be split in a sum of

VPµt
(m−1)
P

[
tlijdij

µ
+

2

3
d2kk

](m)

P

, (733)

which is positive and corresponds to a source (treated explicitly, i.e. on
the right hand side) and

− VPµt
(m−1)
P

[
2

3
d2kk

](m)

P

, (734)

which is negative (sink) and is treated implicitly (left hand side).

• Depending on whether dkk > 0 or dkk < 0 the remaining production term
is treated as

− 2

3
VPρ

(m)k(m)d
(m)
kk (735)

or

− 2

3
VPρ

(m)k(m−1)d
(m)
kk , (736)

respectively.

• The kω - term is approximated as follows:

−
∫

V

β∗ρωkdv ≈ −β∗ρ(m)ω(m−1)k(m)VP . (737)

This term is treated implicitly (K is evaluated at iteration (m) and the
term ends up on the left hand side) since it is a negative source.

The equation for the turbulence frequency ω runs [51]:

∂ρω

∂t
+∇·(ρωv) = ∇·[(µ+ σωµt)∇ω]+

γ

νt
ttijdij−βρω2+2ρ(1−F1)σω2

1

ω
∇k·∇ω,

(738)
which can be rewritten as:
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∂ρω

∂t
+∇ · (ρωv) = ∇ · [(µ+ σωµt)∇ω] +

γ

νt

[
µt
µ
tlijdij

]

− 2

3
γρωdkk − βρω2 + 2ρ(1− F1)σω2

1

ω
∇k · ∇ω. (739)

One easily recognizes the time-dependent, convective, diffusive and source
terms. The convective boundary conditions amount to:

• Inlet: −→ω (m)
f = (1 → 10)v∞L is given

• Outlet: −→ω (m)
f = −→ω UD(m)

f

• Wall and sliding conditions: ṁ
(m)
f = 0: no contribution

For the convective interpolation of ω the modified smart algorithm has not
shown any advantages, therefore, the upwind difference scheme is always used.

The diffusion boundary conditions are:

• Inlet:

(µ+ σωµt)
(m−1)
f

[
ω
(m)
f − ω

(m)
P

lPf
+ (∇ω)(m−1)

f (nf − jf )

]
. (740)

ω
(m)
f is known (cf. convective inlet boundary conditions), and

(µ+ σωµt)
(m−1)
f ≈ µ

(m−1)
f + (σω)

(m−1)
P

−→ρ (m)−→k (m)

−→ω (m−1)
. (741)

Notice that no facial values are calculated for the turbulent parameters.
Therefore, (σω)f in the above equation is approximated by (σω)P .

• Outlet: ∇ω = 0 in j-direction; the term reduces to:

(µ+ σωµt)
(m−1)
f

[
(∇ω)(m−1)

f nf

]
. (742)

• Wall: ω is known ([51]):

ω = 10
6µ(m−1)

β1(∆y1)2ρ(m)
, (743)

where β1 = 0.075 and ∆y1 is the distance to the next point away from the
wall; same treatment as for inlet (notice, however, hat µt = 0 at the wall).

The source terms are treated as follows:
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• The first part of the turbulent production term can be written as:

∫

v

γ

νt

[
µt
µ
tlijdij

]
dv ≈ γ

(m−1)
P ρ

(m)
P f(∇v

(m)
P VP (744)

where f(∇v
(m)
P ) is the term in the outer brackets on the right hand side of

Equation (709). Part of this term goes to the right hand side (sources) and
part to the left hand side (sinks) as discussed extensively for the energy
equation.

• The second part of the turbulent production is approximated by

− 2

3
γ
(m−1)
P ρ

(m)
P ω

(m)
P (dkk)

(m)
P VP (745)

if (dkk)
(m)
P > 0 (sink) and by

− 2

3
γ
(m−1)
P ρ

(m)
P ω

(m−1)
P (dkk)

(m)
P VP (746)

if (dkk)
(m)
P < 0 (source).

• The ω2-term is a sink and is treated implicitly:

− β
(m−1)
P ρ

(m)
P ω

(m−1)
P ω

(m)
P (747)

• Finally, the cross-diffusion term is approximated by:

2ρ
(m)
P (1− F

(m−1)
1 )σω2

∇k(m)
P ∇ω(m−1)

P

ω
(m−1)
P

VP (748)

if the term is positive (source), and by:

2ρ
(m)
P (1− F

(m−1)
1 )σω2

∇k(m)
P ∇ω(m−1)

P

(ω
(m−1)
P )2

ω
(m)
P VP , (749)

if the term is negative (sink).

7.9 Summary of the compressible flow equations

Conservation of momentum:
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ρ
(m−1)
P VP

(vi)
(m)
P − (vi)

n−1
P

∆t

+
∑

f

ṁ
(m−1)
f

[
(−→vi )UD(m)

f +
(
(−→vi )(m−1)

f − (−→vi )UD(m−1)
f

)]

=
∑

f

µTf Af

[
(vi)

(m)
F − (vi)

(m)
P

lPF
+ (∇vi)(m−1)

f · (nf − jf )

]

−
∑

f

µTf Af (vj,i)
(m−1)
f (nj)f

− 2

3
Af

[
µTf (vk,k)

(m−1)
f +−→ρ (m−1)

f k
(m−1)
f

]
δij(nj)f

−
∑

f

p
(m−1)
f (ni)fAf + ρ

(m−1)
P giVP (750)

Conservation of mass:

VP p
′
P

rT
(m−1)
P ∆t

+
∑

f

−→p ′UD
f

ṁ∗
f

rT
(m−1)
f

−→ρ (m−1)
f

−
∑

f

−→ρ (m−1)
f AfDf

[
p′F − p′P
lPF

+ (∇p′)f · (nf − jf )

]

= VP
ρn−1
P − ρ

(m−1)
P

∆t
−
∑

f

ṁ∗
f (751)

Conservation of energy:

ρ
(m−1)
P (cv)

(m−1)
P VP

T
(m)
P − T n−1

P

∆t

+
∑

f

ṁ
(m)
f (cv)

(m−1)
f

{−→
T
UD(m)
f +

[−→
T

(m−1)
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where
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Φ(x, y) :=

(
1 + sign(x)

2

)
x+

(
1− sign(x)

2

)
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y(m−1)
x (753)

Equation for the turbulent kinetic energy:
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Equation for the turbulence frequency ω = k/νt:
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For flows with no viscosity, no heat conduction, no body forces and no heat
sources these equations reduce to (Euler equations):

Conservation of momentum:
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ṁ
(m−1)
f

[
(−→vi )UD(m)

f +
(
(−→vi )(m−1)

f − (−→vi )UD(m−1)
f

)]

= −
∑

f

p
(m−1)
f (ni)fAf (756)

Conservation of mass:
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Conservation of energy:
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7.10 Incompressible flow

The major difference between compressible and imcompressible flow is that the
conservation of mass equation reduces to ∇ · v = 0. The consequence of this
is that the transient and convective term disappear from the pressure equation,
i.e. the equation becomes purely diffusive (elliptical instead of hyperbolic). The
differences are summarized in the next sections.

7.10.1 Divergence term

The term ∇ · v = 0 occurs in several equations, e.g. in the diffusion term of the
momentum equation. Consequently, in Equation (606) the second integral and
the first term of the third integral are zero. Similarly, the second term on the
right hand side of Equation (632) disappears.
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7.10.2 Transient terms

For incompressible flow it has proven advantageous to use a second order scheme
for all transient terms in the conservation equations. For instance, for the
conservation of momentum equation this amounts to:

∂

∂t

∫

V

ρvidv ≈ ρ
(m−1)
P VP

[3v
(m)
i − 4vn−1

i + vn−2
i ]

2∆t
. (759)

7.10.3 Convective terms

Equation (604) is still valid. For incompressible fluids the Gamma method is
applied which results in (Equation (577)):

−→v (m−1)
f = γv

(m−1)
f + (1− γ)−→v UD(m−1)

f . (760)

Therefore, one ends up with:
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7.10.4 Mass conservation equation

For incompressible flow the mass flow as expressed by Equation (667) can be
written as:

ṁ
(m)
f = −→ρ (m−1)

f Afv
(m)
f · nf , (762)

where −→ρ (m−1)
f is a function of

−→
T

(m−1)
f only. Therefore, the density is con-

stant while treating the mass conservation equation. Using Equation (662) this
can be further rewritten as:
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f Af

(
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[
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f −∇p(m)
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In the next step Equation (661) is approximated by:

v
(m)
P +HP (v

∗) = B
(m−1)
P −DP∇p(m)

P (764)

Notice that v(m) in the H-term was replaced by v∗. This does not corre-
spond to the SIMPLE algorithm, since the term is not neglected, but also not
quite corresponds to the SIMPLEC algorithm, since v∗ is used. Writing this
equation for the neighboring element E and taking the mean leads to:

v
(m)
f +Hf (v

∗) = B
(m−1)

f −Df∇p
(m)

f , (765)

in which the second order correctionDf∇p(m)
f ≈ Df∇p

(m)

f was used. There-
fore Equation (763) now reduces to:
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Figure 173: Alternative derivation of the pressure gradient
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· nf , (766)

or, with the abbreviation v�
f := B

(m−1)

f −Hf (v
∗):
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If the velocity on the face is known the mass flow can be calculated directly.
Therefore, Equation (677) now reads:

∑

f\BC

−→ρ (m−1)
f AfDf∇p(m)

f · nf =
∑

f\BC

−→ρ (m−1)
f Afv

�
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where BC stands for the faces on which the velocity is defined by the user.
Notice that the unknown here is the pressure and not the correction to the
pressure as in compressible flow.

The pressure gradient can be treated as in Equation (679). Alternatively,
one can also write (Figure 173):

∇pf =
pF ′ − pP ′

(rF − rP ) · n
. (769)

Since

pF ′ ≈ pF +∇pF · (rF ′ − rF ) (770)

and

pP ′ ≈ pP +∇pP · (rP ′ − rP ) (771)

one obtains:
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(772)
If the pressure is known on the face, the expression reduces to:

(∇pf · nf )s ≈
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7.11 Summary of the incompressible flow equations

Conservation of momentum:
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Conservation of mass:
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Conservation of energy:
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Equation for the turbulent kinetic energy:
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Equation for the turbulence frequency ω = k/νt:
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7.12 Convergence considerations

7.12.1 Time increment

Although the scheme has basic implicit characteristics (the solution is found at
all element centers simultaneously by solving a system of equations) it is in fact
not implicit in the sense that:

• the equations contain variables evaluated in a previous increment. For
instance, the momentum equation contains the pressure and dynamic vis-
cosity evaluated in the one but last increment.

• the variables velocity, pressure, temperature etc. are solved for in a con-
secutive way.

Therefore, the procedure is not unconditionally stable. In fact, it is advised
to use the same bounds on the increment length as in an explicit procedure, i.e.
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∆t = min
all elements

{
h

v
,
h2ρ

2µT
,
h2ρcv
2λT

}
(779)

The first term in brackets is due to convection and represents the time for the
fluid needed to transverse an element. The second term is due to the mechanical
diffusion, the last term due to thermal diffusion. The diffusion coefficients are
the sum of their laminar and turbulent counterparts.

To determine the height of a hexahedral element the minimum of the ratio of
the volume to each of its facial surfaces is taken. Generalizing to other elements:

hP = min
f
αfVP /Af , (780)

where αf = 1 for hexahedral elements and triangular faces of wedge elements,
2 for quadrilateral faces of wedges and 3 for tetrahedral elements.

The value of h used for convective stability can be further increased by
calculating h in the direction of the flow. This boils down to using:

hP conv = min
f

αfVP ||vP ||
Af |nf · vP |

(781)

For steady state calculations the time increment can be further increases by
mass scaling. Indeed, steady state calculations are performed by running tran-
sient calculations till steady state. Since one is not interested in the intermediate
results, one may increase the time step arbitrarily, provided convergence is not
jeopardized. If in Equation (779) one of the diffusion terms is the limiting fac-
tor, one may increase this factor up to the level of the convective time step by
increasing the density. This can be done on an element by element basis. The
ensuing scaling factors are subsequently used in the transient terms of the con-
servation equations. Consequently, for steady state calculations the convective
time step is the limiting factor.

7.12.2 Iterative procedure

In a lot of cases the loop momentum-mass-energy-turbulence equations has only
to be performed once for each increment, i.e. there is only one iteration per
increment. This is for instance the case for steady state incompressible flow.
For compressible flow, however, one is not only interested in the stability and
the final results, also the intermediate results have to be accurate. The transient
terms in the equations are modeled by a first order backward Euler scheme for
compressible flow and a second order scheme for incompressible flow. Just one
iteration per increment may not be sufficient to obtain a satisfactory residual
for the governing equations, i.e. for accuracy reasons as many iterations per
increment are performed in a transient incompressible flow calculation until
the maximum residual is small enough. This roughly also applies to transient
compressible flow. For steady state compressible flow the issue is rather the
stability. Compressible flow is much more sensitive, since the mass, momentum
and energy equation are tightly linked through the ideal gas equation. Therefore,
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usually more than 1 iteration is needed per increment. Furthermore, it might
even be necessary to introduce subiterations iterating the mass-energy equations
separately. Indeed, the solution variable of these equations are the pressure
and temperature, again tightly connected through the gas equation. This is
especially the case for inviscid flow, where the beneficial effects of viscosity are
absent. Apart from these iterations, there are extra local iterations necessary
to take the arbitrary geometry of the elements into account: this applies to the
determination of the interpolated values at the faces and to the diffusion term
in the conservation of mass equation.

8 Input deck format

This section describes the input of CalculiX.
The jobname is defined by the argument after the -i flag on the command line.

When starting CalculiX, it will look for an input file with the name jobname.inp.
Thus, if you called the executable “CalculiX” and the input deck is “beam.inp”
then the program call looks like

CalculiX -i beam

The -i flag can be dropped provided the jobname follows immediately after
the CalculiX call.

CalculiX will generate an output file with the name jobname.dat and an
output file with the name jobname.frd. The latter can be viewed with cgx.

If the step is a *FREQUENCY step or a *HEAT TRANSFER,FREQUENCY
step and the parameter STORAGE=YES is activated, CalculiX will generate a
binary file containing the eigenfrequencies, the eigenmodes, the stiffness and the
mass matrix with the name jobname.eig. If the step is a *MODAL DYNAMIC
or *STEADY STATE DYNAMICS step, CalculiX will look for a file with that
name. If any of the files it needs does not exist, an error message is generated
and CalculiX will stop.

The input deck basically consists of a set of keywords, followed by data
required by the keyword on lines underneath the keyword. The keywords can
be accompanied by parameters on the same line, separated by a comma. If the
parameters require a value, an equality sign must connect parameter and value.
Blanks in the input have no significance and can be inserted as you like. The
keywords and any other alphanumeric information can be written in upper case,
lower case, or any mixture. The input deck is case insensitive: internally, all
alphanumeric characters are changed into upper case. The data do not follow
a fixed format and are to be separated by a comma. A line can only contain
as many data as dictated by the keyword definition. The maximum length for
user-defined names, e.g. for materials or sets, is 80 characters, unless specified
otherwise.The structure of an input deck consists of geometric, topological and
material data before the first step definition, and loading data (mechanical,
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thermal, or prescribed displacements) in one or more subsequent steps. The
user must make sure that all data are given in consistent units (the units do not
appear in the calculation).

A keyword can be of type step or model definition. Model Definition cards
must be used before the first *STEP card. Step keywords can only be used
within a step. Among the model definition keywords, the material ones occupy
a special place: they define the properties of a material and should be grouped
together following a *MATERIAL card.

Node and element sets can share the same name. Internally, the names are
switched to upper case and a ’N’ is appended after the name of a node set and
a ’E’ after the name of an element set. Therefore, set names printed in error or
warning messages will be discovered to be written in upper case and to have a
’N’ or ’E’ appended.

Keyword cards in alphabetical order:

8.1 *AMPLITUDE

Keyword type: step or model definition
This option may be used to specify an amplitude history versus time. The

amplitude history should be given in pairs, each pair consisting of a value of
the reference time and the corresponding value of the amplitude or by user
subroutine uamplitude.f.

There are four optional parameters TIME, USER, SHIFTX and SHIFTY
and one required parameter NAME.If the parameter TIME=TOTAL TIME is
used the reference time is the total time since the start of the calculation, else
it is the local step time. Use as many pairs as needed, maximum four per line.

The parameter USER indicates that the amplitude history versus time was
implemented in user subroutine uamplitude.f. No pair data is required.

With the parameters SHIFTX and SHIFTY the reference time and the am-
plitude of the (time,amplitude) pairs can be shifted by a fixed amount.

The parameter NAME, specifying a name for the amplitude so that it can
be used in loading definitions (*BOUNDARY, *CLOAD, *DLOAD and *TEM-
PERATURE) is required (maximum 80 characters).

In each step, the local step time starts at zero. Its upper limit is given by
the time period of the step. This time period is specified on the *STATIC,
*DYNAMIC or *MODAL DYNAMIC keyword card. The default step time
period is 1.

In *STEADY STATE DYNAMICS steps the time is replaced by frequency,
i.e. the *AMPLITUDE is interpreted as amplitude versus frequency (in cy-
cles/time).

The total time is the time accumulated until the beginning of the actual
step augmented by the local step time. In *STEADY STATE DYNAMICS
procedures total time coincides with frequency (in cycles/time).

The loading values specified in the loading definitions (*BOUNDARY, *CLOAD,
*DLOAD and *TEMPERATURE) are reference values. If an amplitude is se-
lected in a loading definition, the actual load value is obtained by multiplying



392 8 INPUT DECK FORMAT

the reference value with the amplitude for the actual (local step or total) time.
If no amplitude is specified, the actual load value depends on the procedure:
for a *STATIC procedure, ramp loading is assumed connecting the load value
at the end of the previous step (0 if there was none) to the reference value at
the end of the present step in a linear way. For *DYNAMIC and *MODAL
DYNAMIC procedures, step loading is assumed, i.e. the actual load equals the
reference load for all time instances within the step. Reference loads which are
not changed in a new step remain active, their amplitude description, however,
becomes void, unless the TIME=TOTAL TIME parameter is activated. Be-
ware that at the end of a step, all reference values for which an amplitude was
specified are replaced by their actual values at that time.

Notice that no different amplitude definitions are allowed on different degrees
of freedom in one and the same node if a non-global coordinate system applied
to that node. For instance, if you define a cylindrical coordinate system for a
node, the amplitude for a force in radial direction has to be the same as for the
tangential and axial direction.

First line:

• *AMPLITUDE

• Enter the required parameter.

Following line, using as many entries as needed (unless the parameter USER
was selected):

• Time.

• Amplitude.

• Time.

• Amplitude.

• Time.

• Amplitude.

• Time.

• Amplitude.

Repeat this line if more than eight entries (four data points) are needed.

Example:

*AMPLITUDE,NAME=A1

0.,0.,10.,1.

defines an amplitude function with name A1 taking the value 0. at t=0. and
the value 1. at t=10. The time used is the local step time.

Example files: beamdy1, beamnldy.
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8.2 *BASE MOTION

Keyword type: step

This option is used to prescribe nonzero displacements and/or accelerations
in *MODAL DYNAMIC and *STEADY STATE DYNAMICS calculations. The
parameters DOF and AMPLITUDE are required, the parameter TYPE is op-
tional.

The prescribed boundary condition applies to the degree of freedom DOF in
all nodes in which a homogeneous *BOUNDARY condition has been defined for
this degree of freedom. If using *BASE MOTION it is good practice to define
these *BOUNDARY conditions BEFORE the step in which *BASE MOTION
is used, else the effect may be unpredictable. The parameter DOF can only
take the values in the range from 1 to 3. With the parameter AMPLITUDE
the user specifies the amplitude defining the value of the boundary condition.
This amplitude must have been defined using the *AMPLITUDE card.

The TYPE parameter can take the string DISPLACEMENT or ACCELER-
ATION. Default is ACCELERATION. Acceleration boundary conditions can
only be used for harmonic steady state dynamics calculations, displacements
can be used for any modal dynamic or steady state dynamic calculation. Since
only three degrees of freedom are at the user’s disposal, defining more than three
*base motion cards does not make sense.

The *BASE MOTION card is more restrictive than the *BOUNDARY card
in the sense that the same amplitude applies to a specific degree of freedom in
all nodes in which a homogeneous boundary condition for exactly this degree of
freedom has been defined. It is, however, less restrictive in the sense that for
steady state dynamics calculations also accelerations can be applied.

First line and only line:

• *BASE MOTION

• Enter any needed parameters and their value.

Example:

*BASE MOTION,DOF=2,AMPLITUDE=A1

specifies a base motion with amplitude A1 for the second degree of free-
dom for all nodes in which a homogeneous boundary condition was defined for
precisely this degree of freedom.

Example files: beamdy10bm.

8.3 *BEAM SECTION

Keyword type: model definition
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This option is used to assign material properties to beam element sets.
The parameters ELSET, MATERIAL and SECTION are required, the param-
eters ORIENTATION, OFFSET1, OFFSET2 and NODAL THICKNESS are
optional. The parameter ELSET defines the shell element set to which the
material specified by the parameter MATERIAL applies. The parameter ORI-
ENTATION allows to assign local axes to the element set. If activated, the
material properties are applied to the local axis. This is only relevant for non
isotropic material behavior.

The parameter SECTION defines the cross section of the beam and takes
the value RECT for a rectangular cross section, CIRC for an elliptical cross
section, PIPE for a pipe cross section and BOX for a box cross section. A rect-
angular cross section is defined by its thickness in two perpendicular directions,
an elliptical cross section is defined by the length of its principal axes. These
directions are defined by specifying direction 1 on the third line of the present
keyword card. A pipe cross section is defined by its outer radius (first parame-
ter) and its thickness (second parameter). A box cross section is defined by the
parameters a,b,t1,t2,t3 and t4 (cf. Figure 96, a is in the local 1-direction, b is in
the local 2-direction (perpendicular to the local 1-direction), t1 is the thickness
in the positive local 1-direction and so on).

Notice that, internally, PIPE and BOX cross sections are expanded into
beams with a rectangular cross section (this is also the way in which the beam
is stored in the .frd-file and is visualized in the postprocessor. The actual cross
section is taken into account by appropriate placement of the integration points).
This rectangular cross section is the smallest section completely covering the
PIPE or BOX section. For instance, for a pipe section the expanded section
is square with side length equal to the outer diameter. For the expansion the
local direction 1 and 2 are used, therefore, special care should be taken to define
direction 1 on the second line underneath the *BEAM SECTION card. The
default for direction 1 is (0,0,-1).

The OFFSET1 and OFFSET2 parameters indicate where the axis of the
beam is in relation to the reference line defined by the line representation given
by the user. The index 1 and 2 refer to the local axes of the beam which are
perpendicular to the local tangent. To use the offset parameters direction the
local directions must be defined. This is done by defining local direction 1 on
the third line of the present keyword card. The unit of the offset is the thickness
of the beam in the direction of the offset. Thus, OFFSET1=0 means that in 1-
direction the reference line is the axis of the shell, OFFSET2=0.5 means that in
2-direction the reference line is the top surface of the beam. The offset can take
any real value and allows to construct beam of nearly arbitrary cross section
and the definition of composite beams.

The parameter NODAL THICKNESS indicates that the thickness for ALL
nodes in the element set are defined with an extra *NODAL THICKNESS card
and that any thicknesses defined on the *BEAM SECTION card are irrelevant.

First line:

• *BEAM SECTION
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• Enter any needed parameters.

Second line:

• thickness in 1-direction

• thickness in 2-direction

Third line:

• global x-coordinate of a unit vector in 1-direction (default:0)

• global y-coordinate of a unit vector in 1-direction (default:0)

• global z-coordinate of a unit vector in 1-direction (default:-1)

Example:

*BEAM SECTION,MATERIAL=EL,ELSET=Eall,OFFSET1=-0.5,SECTION=RECT

3.,1.

1.,0.,0.

assigns material EL to all elements in (element) set Eall. The reference
line is in 1-direction on the back surface, in 2-direction on the central surface.
The thickness in 1-direction is 3 unit lengths, in 2-direction 1 unit length. The
1-direction is the global x-axis.

Example files: beamcom, beammix, shellbeam, swing, simplebeampipe1,simplebeampipe2,simplebeampipe3,simpleb

8.4 *BOUNDARY

Keyword type: step or model definition
This option is used to prescribe boundary conditions. This includes:

• temperature, displacements and rotations for structures

• total temperature, mass flow and total pressure for gas networks

• temperature, mass flow and static pressure for liquid networks

• temperature, mass flow and fluid depth for channels

For liquids and structures the total and static temperature virtually coincide,
therefore both are represented by the term temperature.

The following degrees of freedom are being used:

• for structures:

– 1: translation in the local x-direction

– 2: translation in the local y-direction
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– 3: translation in the local z-direction

– 4: rotation about the local x-axis (only for nodes belonging to beams
or shells)

– 5: rotation about the local y-axis (only for nodes belonging to beams
or shells)

– 6: rotation about the local z-axis (only for nodes belonging to beams
or shells)

– 11: temperature

• for gas networks:

– 1: mass flow

– 2: total pressure

– 11: total temperature

• for liquid networks:

– 1: mass flow

– 2: static pressure

– 11: temperature

• for liquid channels:

– 1: mass flow

– 2: fluid depth

– 11: temperature

If no *TRANSFORM card applied to the node at stake, the local directions
coincide with the global ones. Notice that a *TRANSFORM card is not allowed
for nodes in which boundary conditions are applied to rotations.

Optional parameters are OP, AMPLITUDE, TIME DELAY, LOAD CASE,
USER, MASS FLOW, FIXED, SUBMODEL, STEP and DATA SET. OP can
take the value NEW or MOD. OP=MOD is default and implies that previously
prescribed displacements remain active in subsequent steps. Specifying a dis-
placement in the same node and direction for which a displacement was defined
in a previous step replaces this value. OP=NEW implies that previously pre-
scribed displacements are removed. If multiple *BOUNDARY cards are present
in a step this parameter takes effect for the first *BOUNDARY card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the boundary values are scaled (mainly used for nonlinear static and
dynamic calculations). This only makes sense for nonzero boundary values.
Thus, in that case the values entered on the *BOUNDARY card are interpreted
as reference values to be multiplied with the (time dependent) amplitude value
to obtain the actual value. At the end of the step the reference value is replaced
by the actual value at that time. In subsequent steps this value is kept constant
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unless it is explicitly redefined or the amplitude is defined using TIME=TOTAL
TIME in which case the amplitude keeps its validity.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

The LOADCASE parameter is only active in *STEADY STATE DYNAMICS
calculations. LOAD CASE = 1 means that the loading is real or in-phase.
LOAD CASE = 2 indicates that the load is imaginary or equivalently phase-
shifted by 90◦. Default is LOAD CASE = 1.

If the USER parameter is selected the boundary values are determined by
calling the user subroutine uboun.f, which must be provided by the user. This
applies to all nodes listed beneath the *BOUNDARY keyword. Any boundary
values specified behind the degrees of freedom are not taken into account. If
the USER parameter is selected, the AMPLITUDE parameter has no effect and
should not be used.

The MASS FLOW parameter specifies that the *BOUNDARY keyword is
used to define mass flow rates in convective problems. A mass flow rate can
only be applied to the first degree of freedom of the midside node of network
elements.

Next, the FIXED parameter freezes the deformation from the previous step,
or, if there is no previous step, sets it to zero.

Finally, the SUBMODEL parameter specifies that the displacements in the
nodes listed underneath will be obtained by interpolation from a global model.
To this end these nodes have to be part of a *SUBMODEL,TYPE=NODE card.
On the latter card the result file (frd file) of the global model is defined. The use
of the SUBMODEL parameter requires the STEP or the DATA SET parameter.

In case the global calculation was a *STATIC calculation the STEP parame-
ter specifies the step in the global model which will be used for the interpolation.
If results for more than one increment within the step are stored, the last incre-
ment is taken.

In case the global calculation was a *FREQUENCY calculation the DATA
SET parameter specifies the mode in the global model which will be used for
the interpolation. It is the number preceding the string MODAL in the .frd-file
and it corresponds to the dataset number if viewing the .frd-file with CalculiX
GraphiX. Notice that the global frequency calculation is not allowed to contain
preloading nor cyclic symmetry.

Notice that the displacements interpolated from the global model are not
transformed, no matter what coordinate system is applied to the nodes in the
submodel. Consequently, if the displacements of the global model are stored
in a local coordinate system, this local system also applies to the submodel
nodes in which these displacements are interpolated. So the submodel nodes
in which the displacements of the global model are interpolated, inherit the
coordinate system in which the displacements of the global model were stored.
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The SUBMODEL parameter and the AMPLITUDE parameter are mutually
exclusive.

If more than one *BOUNDARY card occurs in the input deck, the following
rule applies: if the *BOUNDARY is applied to the same node AND in the same
direction as in a previous application then the previous value and previous
amplitude are replaced.

A distinction is made whether the conditions are homogeneous (fixed condi-
tions), inhomogeneous (prescribed displacements) or of the submodel type.

8.4.1 Homogeneous Conditions

Homogeneous conditions should be placed before the first *STEP keyword card.

First line:

• *BOUNDARY

• Enter any needed parameters and their value.

Following line:

• Node number or node set label

• First degree of freedom constrained

• Last degree of freedom constrained. This field may be left blank if only
one degree of freedom is constrained.

Repeat this line if needed.

Example:

*BOUNDARY

73,1,3

fixes the degrees of freedom one through three (global if no transformation
was defined for node 73, else local) of node 73.

Example files: achteld.

8.4.2 Inhomogeneous Conditions

Inhomogeneous conditions can be defined between a *STEP card and an *END
STEP card only.

First line:

• *BOUNDARY
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• Enter any needed parameters and their value.

Following line:

• Node number or node set label

• First degree of freedom constrained

• Last degree of freedom constrained. This field may be left blank if only
one degree of freedom is constrained.

• Actual magnitude of the prescribed displacement

Repeat this line if needed.

Example:

*BOUNDARY

Nall,2,2,.1

assigns to degree of freedom two of all nodes belonging to node set Nall the
value 0.1.

Example:

*BOUNDARY,MASS FLOW

73,1,1,31.7

applies a mass flow rate of 31.7 to node 73. To have any effect, this node
must be the midside node of a network element.

Example files: achteld.

8.4.3 Submodel

Submodel conditions can be defined between a *STEP card and an *END STEP
card only.

First line:

• *BOUNDARY,SUBMODEL

• use the STEP or DATA SET parameter to specify the step or mode in the
global model

Following line:

• Node number or node set label

• First degree of freedom to be interpolated from the global model
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• Last degree of freedom to be interpolated from the global model

Repeat this line if needed.

Example:

*BOUNDARY,SUBMODEL

73,1,3

specifies that all displacements in node 73 should be obtained by interpola-
tion from the global model.

Example files: .

8.5 *BOUNDARYF

Keyword type: step
This option is used to prescribe boundary conditions for 3D-fluids calcula-

tions. This includes static temperature, velocity and static pressure.
The following degrees of freedom are being used:

• 1: velocity in the local x-direction

• 2: velocity in the local y-direction

• 3: velocity in the local z-direction

• 8: static pressure

• 11: static temperature

If no *TRANSFORM card applied to the node at stake, the local directions
coincide with the global ones.

Optional parameters are AMPLITUDE, TIME DELAY, and USER. Their
meaning is the same as for the *BOUNDARY card.

The main differences with the *BOUNDARY card are:

• the *BOUNDARYF card can only be used within a step

• for fluids the boundary conditions are applied to element faces and not to
nodes. The face labels are exactly the same as for the *SURFACE card.

In order to apply a fluid boundary condition to a surface the element set
label underneath may be replaced by a surface name. In that case the face type
label takes the value “S” without any number following.

Thus, the cards run like:

First line:

• *BOUNDARYF
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• Enter any needed parameters and their value.

Following line:

• Element number or element set label

• Local face label of the element

• First degree of freedom constrained

• Last degree of freedom constrained. This field may be left blank if only
one degree of freedom is constrained.

• Actual magnitude of the prescribed displacement (default is zero)

Repeat this line if needed. For the local face numbering the reader is referred
to the *DLOAD card.

Example:

*BOUNDARYF

22,S3,2,2,.1

assigns to degree of freedom two of local face 3 of element 22 the value 0.1.
If no transformation applies this degree of freedom corresponds to the velocity
in global y-direction.

8.6 *BUCKLE

Keyword type: step
This procedure is used to determine the buckling load of a structure. The

load active in the last non-perturbative *STATIC step, if any, will be taken as
preload if the perturbation parameter is specified on the *STEP card. All loads
previous to a perturbation step are removed at the start of the step; only the
load specified within the buckling step is scaled till buckling occurs. Right now,
only the stress stiffness due to the buckling load is taken into account and not
the large deformation stiffness it may cause.

Buckling leads to an eigenvalue problem whose lowest eigenvalue is the scalar
the load in the buckling step has to be multiplied with to get the buckling load.
Thus, generally only the lowest eigenvalue is needed. This value is also called
the buckling factor and it is always stored in the .dat file.

SOLVER is the only parameter. It specifies which solver is used to determine
the stress stiffness due to the buckling load and to perform a decomposition of
the linear equation system. This decomposition is done only once. It is repeat-
edly used in the iterative procedure determining the eigenvalues (the buckling
factor). The following solvers can be selected:

• the SGI solver

• PaStiX
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• PARDISO

• SPOOLES [3, 4].

• TAUCS

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, no eigenvalue
analysis can be performed.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

First line:

• *BUCKLE

Second line:

• Number of buckling factors desired (usually 1).

• Accuracy desired (default: 0.01).

• # Lanczos vectors calculated in each iteration (default: 4 * #eigenvalues).

• Maximum # of iterations (default: 1000).

It is rarely needed to change the defaults.
The eigenvalues are automatically stored in file jobname.dat.

Example:

*BUCKLE

2

calculates the lowest two buckling modes and the corresponding buckling
factors. For the accuracy, the number of Lanczos vectors and the number of
iterations the defaults are taken.

Example files: beam8b,beamb.
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8.7 *CFD

Keyword type: step

This procedure is used to perform a three-dimensional computational fluid
dynamics (CFD) calculation.

There are seven optional parameters: STEADY STATE, TIME RESET, TO-
TAL TIME AT START, COMPRESSIBLE, TURBULENCEMODEL, SCHEME
and SIMPLEC.

The parameter STEADY STATE indicates that only the steady state should
be calculated. If this parameter is absent, the calculation is assumed to be time
dependent and a transient analysis is performed.

The initial time increment and time step period are interpreted mechanical
time increment and mechanical time step. For each mechanical time increment
a CFD calculation is performed consisting of several CFD time increments.
Therefore, the initial CFD time increment cannot exceed the initial mechanical
time increment. CFD time increments are usually much smaller than the me-
chanical time increments. The CFD calculation is performed up to the end of
the mechanical time increment (if the calculation is transient) or up to steady
state conditions (if the CFD calculation is a steady state calculation).

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter
underneath the *CFD keyword). Consequently, if the time at the end of the
previous step is 10. and the present time period is 1., the total time at the end of
the present step is 11. If the TIME RESET parameter is used, the total time at
the beginning of the present step is 9. and at the end of the present step it will
be 10. This is sometimes useful if transient coupled temperature-displacement
calculations are preceded by a stationary heat transfer step to reach steady
state conditions at the start of the transient coupled temperature-displacement
calculations. Using the TIME RESET parameter in the stationary step (the
first step in the calculation) will lead to a zero total time at the start of the
subsequent instationary step.

The parameter TOTAL TIME AT START can be used to set the total time
at the start of the step to a specific value.

The parameter COMPRESSIBLE specifies that the fluid is compressible.
Default is incompressible.

For 3D fluid calculations the parameter TURBULENCE MODEL defines
the turbulence model to be used. The user can choose among NONE (laminar
calculations; this is default), K-EPSILON, K-OMEGA, BSL and SST [51].

The parameter SCHEME is only important for compressible fluids. It selects
the scheme to be used to calculate the facial quantities from the element center
quantities for the convective terms in the governing equations. Right now,
the user can choose between upwind difference (SCHEME=UD, default) and
modified smart (SCHEME=MODSMART). Upwind difference has more false
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diffusion, however, the stability is better. Modified smart is a so called high
resolution scheme [61]. It has less false diffusion but may lead to divergence in
some cases. If modified smart does not diverge, it will give better results. For
incompressible fluids a Gamma scheme [36] is used. This cannot be influenced
by the user. It is also a high resolution scheme.

Finally, the parameter SIMPLEC indicates, if selected, that the SIMPLEC
algorithm is to be used rather than the standard SIMPLE. Right now, the
SIMPLEC scheme can only be selected for compressible flow. It usually leads
to faster convergence [61].

First line:

• *CFD

• Enter any needed parameters and their values.

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

• Initial time increment for CFD applications (default 1.e-2). If left free, a
proper initial increment is calculated.

Example: couette1

*CFD

.1,1.,,,0.01

defines a CFD step. The second line indicates that the initial time increment
is .1, the total step time is 1 and the CFD time increment is 0.01.

Example files: couette1per.

8.8 *CFLUX

Keyword type: step
This option allows concentrated heat fluxes to be applied to any node in

the model which is not fixed by a single or multiple point constraint. Optional
parameters are OP, AMPLITUDE, TIME DELAY, USER and ADD. OP can
take the value NEW or MOD. OP=MOD is default and implies that the con-
centrated fluxes applied to different nodes in previous steps are kept. Specifying
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a flux in a node for which a flux was defined in a previous step replaces this
value. A flux specified in a node for which a flux was already defined within the
same step is added to this value. OP=NEW implies that all concentrated fluxes
applied in previous steps are removed. If multiple *CFLUX cards are present
in a step this parameter takes effect for the first *CFLUX card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the flux values are scaled (mainly used for nonlinear static and dy-
namic calculations). Thus, in that case the values entered on the *CFLUX card
are interpreted as reference values to be multiplied with the (time dependent)
amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time. In subsequent steps this value
is kept constant unless it is explicitly redefined or the amplitude is defined using
TIME=TOTAL TIME in which case the amplitude keeps its validity.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

If the USER parameter is selected the concentrated flux values are deter-
mined by calling the user subroutine cflux.f, which must be provided by the
user. This applies to all nodes listed beneath the *CFLUX keyword. Any flux
values specified following the temperature degree of freedom are not taken into
account. If the USER parameter is selected, the AMPLITUDE parameter has
no effect and should not be used.

Finally, the ADD parameter allows the user to specify that the flux should
be added to previously defined fluxes in the same node, irrespective whether
these fluxes were defined in the present step or in a previous step.

The use of the *CFLUX card makes sense for heat transfer calculations or
coupled thermo-mechanical calculations only. Heat fluxes are applied to degree
of freedom 11.

If more than one *CFLUX card occurs within the input deck the following
rules apply:

If a *CFLUX card is applied to the same node AND in the same direction
as in a previous application, then

• if the previous application was in the same step the *CFLUX value is
added, else it is replaced

• the new amplitude (including none) overwrites the previous amplitude

First line:

• *CFLUX

• Enter any needed parameters and their value.
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Following line:

• Node number or node set label.

• Degree of freedom (11).

• Magnitude of the flux

Repeat this line if needed.

Example:

*CFLUX,OP=NEW,AMPLITUDE=A1

10,11,15.

removes all previous concentrated heat fluxes and applies a flux with mag-
nitude 15. and amplitude A1 for degree of freedom 11 (this is the temperature
degree of freedom) of node 10.

Example files: oneel20cf.

8.9 *CHANGE FRICTION

Keyword type: step

With this option one can redefine the contact friction value within a step.
There is one required parameter INTERACTION, denoting the name of the
*SURFACE INTERACTION the friction of which one would like to change.
This card must be followed by a *FRICTION card to become effective.

First and only line:

• *CHANGE FRICTION

• enter the required parameter INTERACTION and its parameter.

Example:

*CHANGE FRICTION,INTERACTION=IN1

indicates that the friction value of surface interaction IN1 is to be changed
to the value underneath the following *FRICTION card.

Example files: friction2
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8.10 *CHANGE MATERIAL

Keyword type: step
With this option one can redefine material properties within a step. There

is one required parameter NAME, denoting the name of the *MATERIAL.
Right now, only plastic data of an elastically isotropic material with explicitly
defined isotropic or kinematic hardening data can be changed. This card must
be followed by a *CHANGE PLASTIC card to have any effect.

First and only line:

• *CHANGE MATERIAL

• enter the required parameter NAME and its parameter.

Example:

*CHANGE MATERIAL,NAME=PL

indicates that the plastic data of material PL are to be changed to the values
underneath the following *CHANGE PLASTIC card.

Example files: beampiso2

8.11 *CHANGE PLASTIC

Keyword type: step
With this option one can redefine plastic data of an elastically isotropic

material with explicitly defined isotropic or kinematic hardening data within a
step. Combined hardening or user-defined hardening data are not allowed.

There is one optional parameter HARDENING. Default is HARDENING=ISOTROPIC,
the only other value is HARDENING=KINEMATIC for kinematic hardening.
All constants may be temperature dependent.

For the selection of plastic output variables the reader is referred to Section
6.8.7.

First line:

• *CHANGE PLASTIC

• Enter the HARDENING parameter and its value, if needed

Following sets of lines define the isotropic hardening curve for HARDEN-
ING=ISOTROPIC and the kinematic hardening curve for HARDENING=KINEMATIC:
First line in the first set:

• Von Mises stress.

• Equivalent plastic strain.
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• Temperature.

Use as many lines in the first set as needed to define the complete hardening
curve for this temperature.

Use as many sets as needed to define complete temperature dependence.
Notice that it is not allowed to use more plastic strain data points or temperature
data points than the amount used for the first definition of the plastic behavior
for this material (in the *PLASTIC card.

The raison d’être for this card is its ability to switch from purely plastic be-
havior to creep behavior and vice-versa. The viscoplastic for isotropic materials
in CalculiX is an overstress model, i.e. creep only occurs above the yield stress.
For a lot of materials this is not realistic. It is observed in blades and vanes
that at high temperatures creep occurs at stresses well below the yield stress.
By using the *CHANGE PLASTIC card the yield stress can be lowered to zero
in a creep (*VISCO) step following a inviscid (*STATIC) plastic deformation
step.

Example:

*CHANGE PLASTIC

0.,0.

0.,1.e10

defines a material with yield stress zero.

Example files: beampiso2

8.12 *CHANGE SURFACE BEHAVIOR

Keyword type: step
With this option one can redefine the contact surface behavior within a

step. There is one required parameter INTERACTION, denoting the name of
the *SURFACE INTERACTION the surface behavior of which one would like
to change. This card must be followed by a *SURFACE BEHAVIOR card to
become effective.

First and only line:

• *CHANGE SURFACE BEHAVIOR

• enter the required parameter INTERACTION and its parameter.

Example:

*CHANGE SURFACE BEHAVIOR,INTERACTION=IN1

indicates that the surface behavior value of surface interaction IN1 is to be
changed to the value underneath the following *SURFACE BEHAVIOR card.

Example files: changesurfbeh
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8.13 *CHANGE SOLID SECTION

Keyword type: step
This option is used to change material properties within a step for 3D,

plane stress, plane strain or axisymmetric element sets. The parameters ELSET
and MATERIAL are required, the parameter ORIENTATION is optional. The
parameter ELSET defines the element set to which the material specified by
the parameter MATERIAL applies. The parameter ORIENTATION allows
to assign local axes to the element set. If activated, the material properties
are applied to the local axis. This is only relevant for non isotropic material
behavior.

It is not allowed to change the thickness, which is important for plane stress
and plane strain elements. This is because these elements are expanded in three
dimensional elements within the first step. So no second line is allowed.

Changing material properties may be used to activate or deactivate elements
by assigning properties close to those of air to one material and the real prop-
erties to another material and switching between these.

First line:

• *CHANGE SOLID SECTION

• Enter any needed parameters.

Example:

*CHANGE SOLID SECTION,MATERIAL=EL,ELSET=Eall,ORIENTATION=OR1

reassigns material EL with orientation OR1 to all elements in (element) set
Eall.

Example files: changesolidsection.

8.14 *CLEARANCE

Keyword type: model definition
With this option a clearance can be defined between the slave and master

surface of a contact pair. It only applies to face-to-face contact (penalty or
mortar). If this option is active, the actual clearance or overlapping based on
the distance between the integration point on the slave surface and its orthogonal
projection on the master surface is overwritten by the value specified here. There
are three required parameters: MASTER, SLAVE and VALUE. With MASTER
one specifies the master surface, with SLAVE the slave surface and with VALUE
the value of the clearance. Only one value per contact pair is allowed.

First and only line:

• *CLEARANCE
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• enter the required parameters and their values.

Example:

*CLEARANCE,MASTER=SURF1,SLAVE=SURF2,VALUE=0.1

indicates that the clearance between master surface SURF1 and slave surface
SURF2 should be 0.1 length units. SURF1 and SURF2 must be used on one
and the same *CONTACT PAIR card.

Example files:

8.15 *CLOAD

Keyword type: step
This option allows concentrated forces to be applied to any node in the model

which is not fixed by a single or multiple point constraint. Optional parameters
are OP, AMPLITUDE, TIME DELAY, USER, LOAD CASE, SECTOR, SUB-
MODEL, STEP, DATA SET and OMEGA0. OP can take the value NEW or
MOD. OP=MOD is default and implies that the concentrated loads applied to
different nodes in previous steps are kept. Specifying a force in a node for which
a force was defined in a previous step replaces this value. A force specified in a
node and direction for which a force was already defined within the same step
is added to this value. OP=NEW implies that all concentrated loads applied
in previous steps are removed. If multiple *CLOAD cards are present in a step
this parameter takes effect for the first *CLOAD card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the force values are scaled (mainly used for nonlinear static and dy-
namic calculations). Thus, in that case the values entered on the *CLOAD card
are interpreted as reference values to be multiplied with the (time dependent)
amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time. In subsequent steps this value
is kept constant unless it is explicitly redefined or the amplitude is defined using
TIME=TOTAL TIME in which case the amplitude keeps its validity.

The AMPLITUDE parameter applies to all loads specified by the same
*CLOAD card. This means that, by using several *CLOAD cards, different
amplitudes can be applied to the forces in different coordinate directions in one
and the same node. An important exception to this rule are nodes in which
a transformation applies (by using the *TRANSFORM card): an amplitude
defined for such a node applies to ALL coordinate directions. If several are
defined, the last one applies.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.
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If the USER parameter is selected the concentrated load values are deter-
mined by calling the user subroutine cload.f, which must be provided by the
user. This applies to all nodes listed beneath the *CLOAD keyword. Any load
values specified following the degree of freedom are not taken into account. If
the USER parameter is selected, the AMPLITUDE parameter has no effect and
should not be used.

The LOADCASE parameter is only active in *STEADY STATE DYNAMICS
calculations. LOAD CASE = 1 means that the loading is real or in-phase.
LOAD CASE = 2 indicates that the load is imaginary or equivalently phase-
shifted by 90◦. Default is LOAD CASE = 1.

The SECTOR parameter can only be used in *MODAL DYNAMIC and
*STEADY STATE DYNAMICS calculations with cyclic symmetry. The datum
sector (the sector which is modeled) is sector 1. The other sectors are numbered
in increasing order in the rotational direction going from the slave surface to
the master surface as specified by the *TIE card. Consequently, the SECTOR
parameters allows to apply a point load to any node in any sector. However,
the only coordinate systems allowed in a node in which a force is applied in a
sector different from the datum sector are restricted to the global Carthesian
system and a local cylindrical system. If the global coordinate system applies,
the force defined by the user (in the global system) is simply copied to the
appropriate sector without changing its direction. The user must make sure
the direction of the force is the one needed in the destination sector. If a local
cylindrical system applies, this system must be identical with the one defined
underneath the *CYCLIC SYMMETRY MODEL card. In that case, the force
defined in the datum sector is rotated towards the destination sector, i.e. the
radial, circumferential and axial part of the force is kept.

The SUBMODEL parameter specifies that the forces in the specified de-
grees of freedom of the nodes listed underneath will be obtained by interpo-
lation from a global model. To this end these nodes have to be part of a
*SUBMODEL,TYPE=NODE card. On the latter card the result file (frd file)
of the global model is defined. The use of the SUBMODEL parameter requires
the STEP or the DATA SET parameter.

In case the global calculation was a *STATIC calculation the STEP parame-
ter specifies the step in the global model which will be used for the interpolation.
If results for more than one increment within the step are stored, the last incre-
ment is taken.

In case the global calculation was a *FREQUENCY calculation the DATA
SET parameter specifies the mode in the global model which will be used for
the interpolation. It is the number preceding the string MODAL in the .frd-file
and it corresponds to the dataset number if viewing the .frd-file with CalculiX
GraphiX. Notice that the global frequency calculation is not allowed to contain
preloading nor cyclic symmetry.

Notice that the forces interpolated from the global model are not trans-
formed, no matter what coordinate system is applied to the nodes in the sub-
model. Consequently, if the forces of the global model are stored in a local co-
ordinate system, this local system also applies to the submodel nodes in which



412 8 INPUT DECK FORMAT

these forces are interpolated. So the submodel nodes in which the forces of
the global model are interpolated, inherit the coordinate system in which the
forces of the global model were stored. The SUBMODEL parameter and the
AMPLITUDE parameter are mutually exclusive.

Notice that the interpolation of the forces from a global model onto a sub-
model is only correct if the global and submodel mesh coincide. Else, force
equilibrium is violated. Therefore, the option to interpolate forces on sub-
models only makes sense if it is preceded by a submodel calculation (the same
submodel) with displacement interpolation and force output request. Summa-
rizing, in order to create a force-driven calculation of a submodel, knowing the
displacement results in the global model one would proceed as follows:

• perform a submodel calculation with displacement boundary conditions
obtained by interpolation from the global model; request the output of
the forces in the nodes on the boundary of the submodel in frd-format (let
us call this file submodel.frd).

• repeat the submodel calculation but now with force boundary conditions
obtained by interpolation from the previous submodel calculation (i.e.
replace the global file in the submodel input deck by submodel.frd and
the *BOUNDARY,SUBMODEL card by a *CLOAD,SUBMODEL card).

Applications of this technique include force-driven fracture mechanics calcu-
lations.

Finally, the OMEGA0 parameter (notice that the last character is the num-
ber zero, not the letter O) specifies the value of ω0 in a *GREEN step. It is a
required parameter in a *GREEN step.

If more than one *CLOAD card occurs within the input deck the following
rules apply:

If a *CLOAD card is applied to the same node AND in the same direction
as in a previous application, then

• if the previous application was in the same step the *CLOAD value is
added, else it is replaced

• the new amplitude (including none) overwrites the previous amplitude

First line:

• *CLOAD

• Enter any needed parameters and their value.

Following line:

• Node number or node set label.

• Degree of freedom.
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• Magnitude of the load

Repeat this line if needed.

Example:

*CLOAD,OP=NEW,AMPLITUDE=A1,TIME DELAY=20.

1000,3,10.3

removes all previous point load forces and applies a force with magnitude
10.3 and amplitude A1 (shifted in positive time direction by 20 time units) for
degree of freedom three (global if no transformation was defined for node 1000,
else local) of node 1000.

Example files: achtelp, beamdelay.

8.16 *COMPLEX FREQUENCY

Keyword type: step
This procedure card is used to determine frequencies taking into account

Coriolis forces (cf. Section 6.9.3). It must be preceded by a *FREQUENCY
step in which the eigenvalues and eigenmodes are calculated without Coriolis (do
not forget to use the option STORAGE=YES in the frequency step, ensuring
that the eigenmodes and eigenvalues are stored in a .eig file). The frequency step
does not have to be in the same input deck. There is one required parameter
CORIOLIS.

Finally, the number of eigenfrequencies requested should not exceed the
corresponding number in the frequency step.

First line:

• *COMPLEX FREQUENCY

• use the required parameter CORIOLIS

Second line:

• Number of eigenfrequencies desired.

Example:

*COMPLEX FREQUENCY,CORIOLIS

10

requests the calculation of the 10 lowest eigenfrequencies and corresponding
eigenmodes.

Example files: rotor.
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8.17 *CONDUCTIVITY

Keyword type: model definition, material
This option is used to define the conductivity coefficients of a material.

There is one optional parameter TYPE. Default is TYPE=ISO, other values are
TYPE=ORTHO for orthotropic materials and TYPE=ANISO for anisotropic
materials. All constants may be temperature dependent. The unit of the con-
ductivity coefficients is energy per unit of time per unit of length per unit of
temperature.

First line:

• *CONDUCTIVITY

• Enter the TYPE parameter and its values, if needed

Following line for TYPE=ISO:

• κ.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for TYPE=ORTHO:

• κ11.

• κ22.

• κ33.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for TYPE=ANISO:

• κ11.

• κ22.

• κ33.

• κ12.

• κ13.

• κ23.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
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Example:

*CONDUCTIVITY

50.,373.

100.,573.

tells you that the conductivity coefficient in a body made of this material is
50 at T = 373 and 100 at T = 573. Below T = 373 its value is set to 50, above
T = 573 it is set to 100 and in between linear interpolation is applied.

Example files: beamhtbo, oneel20fi.

8.18 *CONSTRAINT

Keyword type: step

With *CONSTRAINT one can define constraints in a sensitivity step. It can
only be used for design variables of type COORDINATE. Furthermore, exactly
one objective function has to be defined within the same sensitivity step (using
the *OBJECTIVE keyword).

A constraint is an inequality expressing a condition on the objective function.
The inequality can be of type “smaller than or equal” (LE) or “larger than
or equal” (GE). The reference value for the inequality is to be specified by a
relative portion of an absolute value (the latter in the units used by the user).
For instance, suppose the user introduces an absolute value of 20 and a relative
value of 0.9 for a LE constraint on the mass. Than the mass is not allowed
to exceed 0.9 × 20 = 18 mass units. If the absolute value is zero, the initial
value is taken, e.g. for the mass this corresponds to the mass at the start of the
calculation.

Right now, the following constraints are allowed:

• DISPLACEMENT: the square root of the sum of the square of the dis-
placements in all nodes of the structure or of a subset if a node set is
defined

• EIGENFREQUENCY: all eigenfrequencies calculated in a previous (ac-
tually, the eigenvalues, which are the square of the eigenfrequencies).
*FREQUENCY step

• MASS: mass of the total structure or of a subset if an element set is defined

• STRAIN ENERGY: internal energy of the total structure or of a subset
if an element set is defined

• STRESS: the maximum von Mises stress of the total structure or of a
subset if a node set is defined. The maximum is approximated by the
Kreisselmeier-Steinhauser function
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f =
1

ρ
ln
∑

i

eρ
σi
σ̄ , (782)

where σi is the von Mises stress in node i, ρ and σ̄ are user-defined pa-
rameters. The higher ρ the closer f is to the actual maximum (a value
of 10 is recommended; the higher this value, the sharper the turns in the
function). σ̄ is the target stress, it should not be too far away from the
actual maximum.

• THICKNESS: the maximum thickness across a node set w.r.t. an opposite
node set.

• FIXGROWTH: the maximum thickness increase across a node set (only
LE allowed).

• FIXSHRINKAGE: the maximum thickness decrease across a node set
(only GE allowed).

First line:

• *CONSTRAINT.

Second line:

• the constraint

• an element or node set, if appropriate

• LE for “smaller than or equal”, GE for “larger than or equal”

• a relative value for the constraint, or, for the THICKNESS constraint, the
opposite node set

• an absolute value for the constraint

• ρ for the Kreisselmeier-Steinhauser function (only for the stress as con-
straint)

• σ̄ for the Kreisselmeier-Steinhauser function (only for the stress as con-
straint)

Repeat this line if needed.

Example:

*CONSTRAINT.

MASS,E1,LE,,3.

specifies that the mass of element set E1 should not exceed 3 in the user’s
units.

Example files: .
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8.19 *CONTACT DAMPING

Keyword type: model definition
With this option a damping constant can be defined for contact elements. It

is one of the optional cards one can use within a *SURFACE INTERACTION
definition. Contact damping is available for implicit *DYNAMIC calculations
only. For explicit *DYNAMIC calculations it has not been implemented yet.

The contact damping is applied in normal direction to the master surface
of the contact pair. The resulting damping force is the product of the damping
coefficient with the area times the local normal velocity difference between the
master and slave surface. With the optional parameter TANGENT FRACTION
the user can define what fraction of the damping coefficient should be used
in tangential direction, default is zero. For a nonzero tangential damping a
tangential force results from the product of the tangential damping constant
multiplied with the area times the local tangential velocity difference vector. In
CalculiX, contact damping is implemented for small deformations.

First line:

• *CONTACT DAMPING

• enter the TANGENT FRACTION parameter if needed

Second line:

• Damping constant.

No temperature dependence is allowed

Example:

*SURFACE INTERACTION,NAME=SI1

*SURFACE BEHAVIOR,PRESSURE-OVERCLOSURE=LINEAR

1.e7

*CONTACT DAMPING

1.e-4

defines a contact damping with value 10−4 for all contact pairs using the
surface interaction SI1.

Example files: contdamp1, contdamp2.

8.20 *CONTACT FILE

Keyword type: step
This option is used to print selected nodal contact variables in file job-

name.frd for subsequent viewing by CalculiX GraphiX. The following variables
can be selected (the label is square brackets [] is the one used in the .frd file; for
frequency calculations with cyclic symmetry both a real and an imaginary part
may be stored, in all other cases only the real part is stored):
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• CDIS [CONTACT(real), CONTACTI(imaginary)]: Relative contact dis-
placements (for node-to-face contact in frequency calculations with cyclic
symmetry only for the base sector); entities: [COPEN],[CSLIP1],[CSLIP2].

• CSTR [CONTACT(real), CONTACTI(imaginary)]: Contact stresses (for
node-to-face contact in frequency calculations with cyclic symmetry only
for the base sector); entities: [CPRESS],[CSHEAR1][CSHEAR2].

• CELS [CELS]: Contact energy

• PCON [PCONTAC; entity: O=opening, SL=slip, P=pressure, SH=shear
stress]: Magnitude and phase of the relative contact displacements and
contact stresses in a frequency calculation with cyclic symmetry. PCON
can only be requested for face-to-face penalty contact.

Since contact is modeled by nonlinear springs the contact energy corresponds
to the spring energy. All variables are stored at the slave nodes.

The relative contact displacements constitute a vector with three compo-
nents. The first component is the clearance (entity [COPEN]), i.e. the distance
between the slave node and the master surface. Only negative values are stored;
they correspond to a penetration of the slave node into the master surface. Pos-
itive values (i.e. a proper clearance) are set to zero. The second and third
component (entities [CSLIP1],[CSLIP2]) represent the projection of the relative
displacement between the two contact surfaces onto the master surface. To this
end two local tangential unit vectors are defined on the master surface; the first
is the normalized projection of a vector along the global x-axis on the master
surface. If the global x-axis is nearly orthogonal to the master surface, the pro-
jection of a vector along the global z-axis is taken. The second is the vector
product of a vector locally normal to the master surface with the first tangential
unit vector. Now, the components of the projection of the relative displacement
between the two contact surfaces onto the master surface with respect to the
first and the second unit tangential vector are the second and third component
of CDIS, respectively. They are only calculated if a friction coefficient has been
defined underneath *FRICTION.

In the same way the contact stresses constitute a vector, the first component
of which is the contact pressure (entity [CPRESS]), while the second and third
component are the components of the shear stress vector exerted by the slave
surface on the master surface with respect to the first and second unit tangential
vector, respectively (entities [CSHEAR1], [CSHEAR2]).

The selected variables are stored for the complete model, but are only
nonzero in the slave nodes of contact definitions.

The first occurrence of a *CONTACT FILE keyword card within a step
wipes out all previous nodal contact variable selections for file output. If no
*CONTACT FILE card is used within a step the selections of the previous step
apply. If there is no previous step, no nodal contact variables will be stored.

There are four optional parameters: FREQUENCY, TIME POINTS, LAST
ITERATIONS and CONTACT ELEMENTS. The parameters FREQUENCY
and TIME POINTS are mutually exclusive.
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FREQUENCY applies to nonlinear calculations where a step can consist
of several increments. Default is FREQUENCY=1, which indicates that the
results of all increments will be stored. FREQUENCY=N with N an integer
indicates that the results of every Nth increment will be stored. The final results
of a step are always stored. If you only want the final results, choose N very
big. The value of N applies to *OUTPUT,*ELEMENT OUTPUT, *EL FILE,
*ELPRINT, *NODE OUTPUT, *NODE FILE, *NODE PRINT, *SECTION PRINT,
*CONTACT OUTPUT, *CONTACT FILE and *CONTACT PRINT. If the
FREQUENCY parameter is used for more than one of these keywords with con-
flicting values of N, the last value applies to all. A frequency parameter stays
active across several steps until it is overwritten by another FREQUENCY value
or the TIME POINTS parameter.

With the parameter TIME POINTS a time point sequence can be refer-
enced, defined by a *TIME POINTS keyword. In that case, output will be
provided for all time points of the sequence within the step and additionally
at the end of the step. No other output will be stored and the FREQUENCY
parameter is not taken into account. Within a step only one time point se-
quence can be active. If more than one is specified, the last one defined on any
of the keyword cards *EL FILE, *ELPRINT, *NODE FILE, *NODE PRINT,
*SECTION PRINT, *CONTACT FILE and *CONTACT PRINT will be ac-
tive. The TIME POINTS option should not be used together with the DI-
RECT option on the procedure card. The TIME POINTS parameters stays
active across several steps until it is replaced by another TIME POINTS value
or the FREQUENCY parameter.

The parameter LAST ITERATIONS leads to the storage of the displace-
ments in all iterations of the last increment in a file with name ResultsFor-
LastIterations.frd (can be opened with CalculiX GraphiX). This is useful for
debugging purposes in case of divergence. No such file is created if this param-
eter is absent.

Finally, the parameter CONTACT ELEMENTS stores the contact elements
which have been generated in each iteration in a file with the name jobname.cel.
When opening the frd file with CalculiX GraphiX these files can be read with
the command “read jobname.cel inp” and visualized by plotting the elements
in the sets contactelements stα inβ atγ itδ, where α is the step number, β the
increment number, γ the attempt number and δ the iteration number.

Notice that CDIS and CSTR results are stored together, i.e. specifying CDIS
will automatically store CSTR too and vice versa.

First line:

• *CONTACT FILE

• Enter any needed parameters and their values.

Second line:

• Identifying keys for the variables to be printed, separated by commas.
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Example:

*CONTACT FILE,TIME POINTS=T1

CDIS,CSTR

requests the storage of the relative contact displacements and contact stresses
in the .frd file for all time points defined by the T1 time points sequence.

Example files: cubef2f2.

8.21 *CONTACT OUTPUT

Keyword type: step
This option is used to print selected nodal contact variables in file job-

name.frd for subsequent viewing by CalculiX GraphiX. The options and its use
are identical with the *CONTACT FILE keyword, however, the resulting .frd
file is a mixture of binary and ASCII (the .frd file generated by using *CON-
TACT FILE is completely ASCII). This has the advantage that the file is smaller
and can be faster read by cgx.

If FILE and OUTPUT cards are mixed within one and the same step the
last such card will determine whether the .frd file is completely in ASCII or a
mixture of binary and ASCII.

Example:

*CONTACT OUTPUT,TIME POINTS=T1

CDIS,CSTR

requests the storage of the relative contact displacements and contact stresses
in the .frd file for all time points defined by the T1 time points sequence.

Example files: .

8.22 *CONTACT PAIR

Keyword type: model definition
This option is used to express that two surfaces can make contact. There

are two required parameters: INTERACTION and TYPE, and two optional
parameters: SMALL SLIDING and ADJUST. The dependent surface is called
the slave surface, the independent surface is the master surface. Surfaces are
defined using the *SURFACE keyword card. The dependent surface can be
defined as a nodal surface (option TYPE=NODE on the *SURFACE keyword)
or as an element face surface (default for the *SURFACE card), whereas the
independent surface has to be defined as an element face surface. If you are using
quadratic elements, or if you select face-to-face contact, however, the slave (=
dependent) surface has to be defined based on element faces too and not on
nodes.
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If the master surface is made up of edges of axisymmetric elements make sure
that none of the edges contains nodes on the axis of symmetry. Indeed, such
edges are expanded into collapsed quadrilaterals the normals on which cannot
be determined in the usual way.

The INTERACTION parameter takes the name of the surface interaction
(keyword *SURFACE INTERACTION) which applies to the contact pair. The
surface interaction defines the nature of the contact (hard versus soft contact..)

The TYPE parameter can take the value NODE TO SURFACE, SUR-
FACE TO SURFACE, MORTAR, LINMORTAR or PGLINMORTAR. NODE
TO SURFACE triggers node-to-face penalty contact, SURFACE TO SURFACE
face-to-face penalty contact. MORTAR triggers the mortar method with stan-
dard dual shape functions for the Lagrange multipliers, LINMORTAR the mor-
tar method with linear dual shape functions and PGLINMORTAR the Petrov-
Galerkin method in which the usual shape functions are used to describe the
variation of the Lagrange multiplier. For details the reader is referred to Section
6.7.7 and [80]-[83]. If the reader wants to apply mortar contact, it is suggested
to start with MORTAR contact and to use LINMORTAR or PGLINMORTAR
only if MORTAR fails. Notice that although several *CONTACT PAIR cards
can be used within one and the same input deck, all must be of the same type. It
is not allowed to mix NODE TO SURFACE, SURFACE TO SURFACE MOR-
TAR, LINMORTAR and PGLINMORTAR contact within one and the same
input deck.

The SMALL SLIDING parameter only applies to node-to-face penalty con-
tact. If it is not active, the contact is large sliding. This means that the pairing
between the nodes belonging to the dependent surface and faces of the inde-
pendent surface is performed anew in every iteration. If the SMALL SLIDING
parameter is active, the pairing is done once at the start of every increment and
kept during the complete increment. SMALL SLIDING usually converges better
than LARGE SLIDING, since changes in the pairing can deteriorate the con-
vergence rate. For face-to-face contact (SURFACE TO SURFACE, MORTAR,
LINMORTAR or PGLINMORTAR) small sliding is active by default.

The ADJUST parameter allows the user to move selected slave nodes at
the start of the calculation (i.e. at the start of the first step) such that they
make contact with the master surface. This is a change of coordinates, i.e. the
geometry of the structure at the start of the calculation is changed. This can be
helpful if due to inaccuracies in the modeling a slave node which should lie on
the master surface at the start of the calculation actually does not. Especially
in static calculations this can lead to a failure to detect contact in the first
increment and large displacements (i.e. acceleration due to a failure to establish
equilibrium). These large displacements may jeopardize convergence in any
subsequent iteration. The ADJUST parameter can be used with a node set
as argument or with a nonnegative real number. If a node set is selected, all
nodes in the set are adjusted at the start of the calculation. If a real number is
specified, all nodes for which the clearance is smaller or equal to this number are
adjusted. Penetration is interpreted as a negative clearance and consequently
all penetrating nodes are always adjusted, no matter how small the adjustment
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size (which must be nonnegative). Notice that large adjustments can lead to
deteriorated element quality. The adjustments are done along a vector through
the slave node and locally orthogonal to the master surface.

First line:

• *CONTACT PAIR

• enter the required parameter INTERACTION and any optional parame-
ters.

Following line:

• Name of the slave surface (can be nodal or element face based).

• Name of the master surface (must be based on element faces).

Repeat this line if needed.

Example:

*CONTACT PAIR,INTERACTION=IN1,ADJUST=0.01

dep,ind

defines a contact pair consisting of the surface dep as dependent surface and
the element face surface ind as independent surface. The name of the surface
interaction is IN1. All slave nodes for which the clearance is smaller than or
equal to 0.01 will be moved onto the master surface.

Example files: contact1, contact2.

8.23 *CONTACT PRINT

Keyword type: step
This option is used to print selected nodal and/or integration point and/or

surface variables in file jobname.dat. The following variables can be selected:

• Relative contact displacements (key=CDIS)

• Contact stresses (key=CSTR)

• Contact spring energy (key=CELS)

• Total number of contact elements (key=CNUM)

• Total force on a slave surface (key=CF)

• Total normal force on a slave surface (key=CFN)

• Total shear force on a slave surface (key=CFS)
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Contact quantities CDIS, CSTR and CELS are stored for all active slave
nodes in the model for node-to-face penalty contact and for all active inte-
gration points in the slave face for face-to-face penalty contact. The relative
contact displacements and the stresses consist of one component normal to the
master surface and two components tangential to it. Positive values of the
normal components represent the normal material overlap and the pressure, re-
spectively. For the direction of the tangential unit vectors used to calculate
the relative tangential displacement and shear stresses the user is referred to
*CONTACT FILE. The energy is a scalar quantity.

The contact quantity CNUM is one scalar listing the total number of contact
elements in the model.

The quantities CF, CFN and CFS represent the total force, total normal
force and total shear force acting on the slave surface, respectively, for a selected
face-to-face penalty contact pair. In addition, moments of these forces about
the global origin, the location of the center of gravity and the area of the contact
area and the moment about the center of gravity are printed.

There are five parameters, FREQUENCY, TIME POINTS, TOTALS, SLAVE
and MASTER. FREQUENCY and TIME POINTS are mutually exclusive.

The parameter FREQUENCY is optional, and applies to nonlinear cal-
culations where a step can consist of several increments. Default is FRE-
QUENCY=1, which indicates that the results of all increments will be stored.
FREQUENCY=N with N an integer indicates that the results of every Nth
increment will be stored. The final results of a step are always stored. If
you only want the final results, choose N very big. The value of N applies to
*OUTPUT,*ELEMENT OUTPUT, *EL FILE, *ELPRINT, *NODE OUTPUT,
*NODE FILE, *NODE PRINT, *SECTION PRINT,*CONTACT OUTPUT, *CONTACT FILE
and *CONTACT PRINT. If the FREQUENCY parameter is used for more than
one of these keywords with conflicting values of N, the last value applies to all.
A frequency parameter stays active across several steps until it is overwritten
by another FREQUENCY value or the TIME POINTS parameter.

With the parameter TIME POINTS a time point sequence can be referenced,
defined by a *TIME POINTS keyword. In that case, output will be provided for
all time points of the sequence within the step and additionally at the end of the
step. No other output will be stored and the FREQUENCY parameter is not
taken into account. Within a step only one time point sequence can be active.
If more than one is specified, the last one defined on any of the keyword cards
*NODE FILE, *EL FILE, *NODE PRINT, *EL PRINT or *FACE PRINT will
be active. The TIME POINTS option should not be used together with the
DIRECT option on the procedure card. The TIME POINTS parameters stays
active across several steps until it is replaced by another TIME POINTS value
or the FREQUENCY parameter.

The first occurrence of a *CONTACT PRINT keyword card within a step
wipes out all previous contact variable selections for print output. If no *CON-
TACT PRINT card is used within a step the selections of the previous step
apply, if any.

The parameter TOTALS only applies to the energy. If TOTALS=YES the
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sum of the contact spring energy for all contact definitions is printed in addi-
tion to their value for each active slave node (node-to-face contact) or active
slave face integration point (face-to-face penalty contact) separately. If TO-
TALS=ONLY is selected the sum is printed but the individual contributions
are not. If TOTALS=NO (default) the individual contributions are printed,
but their sum is not.

If the model contains axisymmetric elements the spring energy applies to a
segment of 2◦. So for the total spring energy this value has to be multiplied by
180.

The parameters SLAVE and MASTER are used to define a contact pair.
They are only needed for the output variables CF, CFN and CFS. They have to
correspond to the face based master of slave surface of an existing contact pair.

First line:

• *CONTACT PRINT

Second line:

• Identifying keys for the variables to be printed, separated by commas.

Example:

*CONTACT PRINT

CDIS

requests the storage of the relative displacements in all slave nodes in the
.dat file.

Example files: beampkin, beamrb, contact5.

8.24 *CONTROLS

Keyword type: step
This option is used to change the iteration control parameters. It should only

be used by those users who know what they are doing and are expert in the
field. A detailed description of the convergence criteria is given in Section 6.10.
There are two, mutually exclusive parameter: PARAMETERS and RESET.
The RESET parameter resets the control parameters to their defaults. The
parameter PARAMETERS is used to change the defaults. It can take the value
TIME INCREMENTATION, FIELD, LINE SEARCH, NETWORK, CFD or
CONTACT. If the TIME INCREMENTATION value is selected, the number
of iterations before certain actions are taken (e.g. the number of divergent
iterations before the increment is reattempted) can be changed and effect of
these actions (e.g. the increment size is divided by two). The FIELD parameter
can be used to change the convergence criteria themselves.

LINE SEARCH can be used to change the line search parameters (only for
face-to-face penalty contact). The line search parameter scales the correction to
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the solution calculated by the Newton-Raphson algorithm such that the residual
force is orthogonal to the correction. This requires the solution of a nonlinear
equation, and consequently an iterative procedure. In CalculiX this procedure
is approximated by a linear connection between:

• the scalar product of the residual force from the last iteration with the
solution correction in the present iteration (corresponds to a line search
parameter of zero) and

• the scalar product of the residual force in the present iteration with the
solution correction in the present iteration (corresponds to a line search
parameter of one).

For details of the line seach algorithm the reader is referred to [95].
With the NETWORK parameter the convergence criteria for network iter-

ations can be changed. The parameters c1t, c1f and c1p express the fraction of
the mean energy balance, mass balance and element balance terms the energy
balance residual, the mass balance residual and the element balance residual
is not allowed to exceed, respectively. The parameters c2t, c2f , c2p and c2a
is the fraction of the change in temperature, mass flow, pressure and geome-
try since the beginning of the increment the temperature, mass flow, pressure
and geometry change in the actual network iteration is not allowed to exceed,
respectively.

With the CFD parameter the maximum number of iterations in certain fluid
loops can be influenced. A fluid calculation within CalculiX is triggered at the
start of a new mechanical increment. This increment is subdivided into fluid
increments based on the physical fluid properties. For each fluid increment iter-
ations are performed. Usually, iterations are performed until convergence of the
fluid increment or until the maximum allowed number of iterations is reached.
This is the first parameter iitt (“transient”). In fluid calculations the unknowns
in the equation systems are the quantities (velocity..) at the element centers.
The values at the face centers and the gradients are calculated based on these
element center quantities. In case the mesh is not orthogonal, iterations have
to be performed. The number of these iterations is expressed by iitg (“geome-
try”) and iitp (taking non-orthogonality into account in the pressure correction
equation, “pressure”). This is the second and third parameter. For a perfectly
rectangular grid these values can be set to zero. Finally, the parameter jit spec-
ifies how many coupled pressure-temperature iterations have to be performed.
For incompressible flow the default value of 1 should not be changed. For invis-
cid compressible flow this value may have to be increased up to 4, whereas for
viscid compressible flow this value has rarely to be changed.

Finally, the CONTACT parameter is used to change defaults in the face-to-
face penalty contact convergence algorithm (cf. Section 6.10.2). This relates
to

• the maximum relative difference in number of contact elements to allow
for convergence (delcon). The corresponding absolute difference, which
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may not be exceeded is defined as the number of contact elements in the
previous iteration times delcon.

• the fraction of contact elements which is removed in an aleatoric way
before repeting an increment in case of a local mimimum in the solution
(alea)

• the integer factor by which the normal spring stiffness (in case of linear
pressure-overclosure) and stick slope are reduced in case of divergence or
too slow convergence (kscalemax)

• the maximum number of iterions per increment (itf2f).

First line:

• *CONTROLS

• Enter the PARAMETERS parameter and its value, or the RESET pa-
rameter.

There are no subsequent lines if the parameter RESET is selected.
Following lines if PARAMETERS=TIME INCREMENTATION is selected:
Second line:

• I0 iteration after which a check is made whether the residuals increase in
two consecutive iterations (default: 4). If so, the increment is reattempted
with Df times its size.

• IR iteration after which a logarithmic convergence check is performed in
each iteration (default: 8). If more than IC iterations are needed, the
increment is reattempted with DC its size.

• IP iteration after which the residual tolerance Rαp is used instead of Rαn
(default: 9).

• IC maximum number of iterations allowed (default: 16).

• IL number of iterations after which the size of the subsequent increment
will be reduced (default: 10).

• IG maximum number of iterations allowed in two consecutive increments
for the size of the next increment to be increased (default: 4).

• IS Currently not used.

• IA Maximum number of cutbacks per increment (default: 5). A cutback
is a reattempted increment.

• IJ Currently not used.

• IT Currently not used.
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Third line:

• Df Cutback factor if the solution seems to diverge(default: 0.25).

• DC Cutback factor if the logarithmic extrapolation predicts too many
iterations (default: 0.5).

• DB Cutback factor for the next increment if more than IL iterations were
needed in the current increment (default: 0.75).

• DA Cutback factor if the temperature change in two subsequent incre-
ments exceeds DELTMX (default: 0.85).

• DS Currently not used.

• DH Currently not used.

• DD Factor by which the next increment will be increased if less than IG
iterations are needed in two consecutive increments (default: 1.5).

• WG Currently not used.

Following line if PARAMETERS=FIELD is selected:
Second line:

• Rαn Convergence criterion for the ratio of the largest residual to the av-
erage force (default: 0.005). The average force is defined as the average
over all increments in the present step of the instantaneous force. The
instantaneous force in an increment is defined as the mean of the absolute
value of the nodal force components within all elements.

• Cαn Convergence criterion for the ratio of the largest solution correction
to the largest incremental solution value (default: 0.01).

• qα0 Initial value at the start of a new step of the time average force (default:
the time average force from the previous steps or 0.01 for the first step).

• qαu user-defined average force. If defined, the calculation of the average
force is replaced by this value.

• Rαp Alternative residual convergence criterion to be used after IP iterations
instead of Rαn (default: 0.02).

• ǫα Criterion for zero flux relative to qα (default: 10−5).

• Cαǫ Convergence criterion for the ratio of the largest solution correction to
the largest incremental solution value in case of zero flux (default: 10−3).

• Rαl Convergence criterion for the ratio of the largest residual to the average
force for convergence in a single iteration (default: 10−8).

Following line if PARAMETERS=LINE SEARCH is selected:
Second line:
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• not used.

• slsmax Maximum value of the line search parameter (default: 1.01).

• slsmin Minimum value of the line search parameter (default: 0.25).

• not used.

• not used.

Following line if PARAMETERS=NETWORK is selected:
Second line:

• c1t (default: 5 · 10−7).

• c1f (default: 5 · 10−7).

• c1p (default: 5 · 10−7).

• c2t (default: 5 · 10−7).

• c2f (default: 5 · 10−7).

• c2p (default: 5 · 10−7).

• c2a (default: 5 · 10−7).

Third line:

• a1t (default: 10
20).

• a1f (default: 1020).

• a1p (default: 1020).

• a2t (default: 10
20).

• a2f (default: 1020).

• a2p (default: 1020).

• a2ac (default: 10
20).

Following line if PARAMETERS=CFD is selected:
Second line:

• iitt (default: 20).

• iitg (default: 0).

• iitp (default: 1).

• jit (default: 1).
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Following line if PARAMETERS=CONTACT is selected:
Second line:

• delcon (≥ 0; default: 0.001).

• alea (0 ≤ alea ≤ 1; default: 0.1).

• kscalemax (≥ 1, integer; default: 100).

• itf2f (≥ 1, integer; default: 60).

Example:

*CONTROLS,PARAMETERS=FIELD

1.e30,1.e30,0.01,,0.02,1.e-5,1.e-3,1.e-8

leads to convergence in just one iteration since nearly any residuals are ac-
cepted for convergence (Rαn = 1030 and Cαn = 1030.

Example files: beammrco.

8.25 *CORRELATION LENGTH

Keyword type: step
This option is used to define the correlation length to be used to calculate

the random fields in a *ROBUST DESIGN analysis. It has the unit of length
and is a measure for how connected the outer geometry is. A small correlation
length means that the surface finish of the structure allows for high frequency
geometric deviations such as very local dents. A large correlation length allows
only for low frequency deviations, i.e. any deviations are rather smooth and
extend over a larger area. A small correlation length will require a larger set of
random field vectors to represent the geometric tolerances to a given accuracy.

First line:

• *CORRELATION LENGTH

Second line:

• correlation length

Example:

*CORRELATION LENGTH

20.

specifies a correlation length of 20 length units.

Example files: beamprand.
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8.26 *COUPLED TEMPERATURE-DISPLACEMENT

Keyword type: step
This procedure is used to perform a coupled thermomechanical analysis. A

thermomechanical analysis is a nonlinear calculation in which the displacements
and temperatures are simultaneously solved. In this way the reciprocal action of
the temperature on the displacements and the displacements on the temperature
can be taken into account. At the present state, the influence of the temperature
on the displacements is calculated through the thermal expansion, the effect of
the displacements on the temperature is limited to radiation effects. In addition,
the influence of the network fluid pressure on the deformation of a structure and
the influence of the structural deformation on the network fluid mass flow can
be considered. Other heating effects, e.g. due to plasticity, or not yet taken into
account. This card is also correct for CFD-calculations with heat transfer.

There are eight optional parameters: SOLVER, DIRECT, ALPHA, STEADY
STATE, DELTMX, TIME RESET, TOTAL TIME AT START and COM-
PRESSIBLE.

SOLVER determines the package used to solve the ensuing system of equa-
tions. The following solvers can be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

• the iterative solver by Rank and Ruecker [70], which is based on the algo-
rithms by Schwarz [74].

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!
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What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the pre-conditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVECHOLESKY triggers Incomplete Cholesky pre-conditioning.
Cholesky pre-conditioning leads to a better convergence and maybe to shorter
execution times, however, it requires additional storage roughly corresponding
to the non-zeros in the matrix. If you are short of memory, diagonal scal-
ing might be your last resort. The iterative methods perform well for truly
three-dimensional structures. For instance, calculations for a hemisphere were
about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

The parameter DIRECT indicates that automatic incrementation should be
switched off. The increments will have the fixed length specified by the user on
the second line.

The parameter ALPHA takes an argument between -1/3 and 0. It controls
the dissipation of the high frequency response: lower numbers lead to increased
numerical damping ([56]). The default value is -0.05.

The parameter STEADY STATE indicates that only the steady state should
be calculated. If this parameter is absent, the calculation is assumed to be time
dependent and a transient analysis is performed. For a transient analysis the
specific heat of the materials involved must be provided. In a steady state
analysis any loading is applied using linear ramping, in a transient analysis step
loading is applied.

The parameter DELTMX can be used to limit the temperature change in
two subsequent increments. If the temperature change exceeds DELTMX the
increment is restarted with a size equal to DA times DELTMX divided by the
temperature change. The default for DA is 0.85, however, it can be changed by
the *CONTROLS keyword. DELTMX is only active in transient calculations.
Default value is 1030.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter
underneath the *COUPLED TEMPERATURE-DISPLACEMENT keyword).
Consequently, if the time at the end of the previous step is 10. and the present
time period is 1., the total time at the end of the present step is 11. If the
TIME RESET parameter is used, the total time at the beginning of the present
step is 9. and at the end of the present step it will be 10. This is sometimes
useful if transient coupled temperature-displacement calculations are preceded
by a stationary heat transfer step to reach steady state conditions at the start of
the transient coupled temperature-displacement calculations. Using the TIME
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RESET parameter in the stationary step (the first step in the calculation) will
lead to a zero total time at the start of the subsequent instationary step.

The parameter TOTAL TIME AT START can be used to set the total time
at the start of the step to a specific value.

Finally, the parameter COMPRESSIBLE is only used in 3-D CFD calcula-
tions. It specifies that the fluid is compressible. Default is incompressible.

First line:

• *COUPLED TEMPERATURE-DISPLACEMENT

• Enter any needed parameters and their values.

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

• Initial time increment for CFD applications (default 1.e-2)

Example:

*COUPLED TEMPERATURE-DISPLACEMENT

.1,1.

defines a thermomechanical step and selects the SPOOLES solver as linear
equation solver in the step (default). The second line indicates that the initial
time increment is .1 and the total step time is 1.

Example files: thermomech.

8.27 *COUPLING

Keyword type: model definition
This option is used to generate a kinematic or a distributing coupling. It

must be followed by the keyword *KINEMATIC or *DISTRIBUTING.
The parameters REF NODE, SURFACE and CONSTRAINT NAME are

mandatory, the parameter ORIENTATION is optional.
With REF NODE a reference node is chosen, the degrees of freedom of which

are used to define the constraint. In the reference node six degrees of freedom
are available: 1 to 3 for translations in the x-, y- and z- direction and 4 to 6 for
rotations about the x-, y- and z- axis. For *KINEMATIC couplings the location
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of the reference node determines the center of the rigid motion and is therefore
important. For *DISTRIBUTING couplings the motion takes place about the
center of gravity of the SURFACE and the coordinates of the reference node
are not relevant. However, for *DISTRIBUTING coupling the reference node
should not be one of the nodes of the surface to which the constraint applies.

With SURFACE the nodes are selected to which the constraint applies (so-
called coupling nodes). This surface must be face-based.

The parameter CONSTRAINT NAME is used to assign a name to the cou-
pling condition. This name is not used so far.

Finally, with the ORIENTATION parameter one can assign a local coor-
dinate system to the coupling constraint. Notice that this does not induce a
change of coordinate system in the reference node (for this a *TRANSFORM
card is needed). For distributing couplings only rectangular local systems are
allowed, for kinematic couplings both rectangular and cylindrical systems are
alllowed, cf. *ORIENTATION.

First line:

• *COUPLING

• Enter any needed parameters.

Example:

*COUPLING,REF NODE=200,SURFACE=SURF,CONSTRAINT NAME=C1,ORIENTATION=OR1

defines a coupling constraint with name C1 for the nodes belonging to the
surface SURF. The reference node is node 200 and an orientation OR1 was
applied.

Example files: coupling1.

8.28 *CREEP

Keyword type: model definition, material
This option is used to define the creep properties of a viscoplastic mate-

rial. There is one optional parameter LAW. Default is LAW=NORTON, the
only other value is LAW=USER for a user-defined creep law. The Norton law
satisfies:

ǫ̇ = Aσntm (783)

where ǫ is the equivalent creep strain, σ is the true Von Mises stress an
t is the total time. For LAW=USER the creep law must be defined in user
subroutine creep.f (cf. Section 9.1).

All constants may be temperature dependent. The card should be preceded
by a *ELASTIC card within the same material definition, defining the elastic
properties of the material. If for LAW=NORTON the temperature data points
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under the *CREEP card are not the same as those under the *ELASTIC card,
the creep data are interpolated at the *ELASTIC temperature data points. If
a *PLASTIC card is defined within the same material definition, it should be
placed after the *ELASTIC and before the *CREEP card. If no *PLASTIC
card is found, a zero yield surface without any hardening is assumed.

If the elastic data is isotropic, the large strain viscoplastic theory treated in
[78] and [79] is applied. If the elastic data is orthotropic, the infinitesimal strain
model discussed in Section 6.8.13 is used. If a *PLASTIC card is used for an
orthotropic material, the LAW=USER option is not available.

First line:

• *CREEP

• Enter the LAW parameter and its value, if needed

Following lines are only needed for LAW=NORTON (default): First line:

• A.

• n.

• m.

• Temperature.

Use as many lines as needed to define the complete temperature dependence.

Example:

*CREEP

1.E-10,5.,0.,100.

2.E-10,5.,0.,200.

defines a creep law with A=10−10, n=5 and m=0 for T(temperature)=100.
and A=2 · 10−10 and n=5 for T(temperature)=200.

Example files: beamcr.

8.29 *CYCLIC HARDENING

Keyword type: model definition,material
This option is used to define the isotropic hardening curves of an incremen-

tally plastic material with combined hardening. All constants may be tempera-
ture dependent. The card should be preceded by an *ELASTIC card within the
same material definition, defining the isotropic elastic properties of the material.

If the elastic data is isotropic, the large strain viscoplastic theory treated
in [78] and [79] is applied. If the elastic data is orthotropic, the infinitesimal
strain model discussed in Section 6.8.13 is used. Accordingly, for an elasti-
cally orthotropic material the hardening can be at most linear. Furthermore,
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if the temperature data points for the hardening curves do not correspond to
the *ELASTIC temperature data points, they are interpolated at the latter
points. Therefore, for an elastically isotropic material, it is advisable to define
the hardening curves at the same temperatures as the elastic data.

Please note that, for each temperature, the (von Mises stress,equivalent plas-
tic strain) data have to be entered in ascending order of the equivalent plastic
strain.

First line:

• *CYCLIC HARDENING

Following sets of lines defines the isotropic hardening curve: First line in the
first set:

• Von Mises stress.

• Equivalent plastic strain.

• Temperature.

Use as many lines in the first set as needed to define the complete hardening
curve for this temperature.

Use as many sets as needed to define complete temperature dependence.

Example:

*CYCLIC HARDENING

800.,0.,100.

1000.,.1,100.

900.,0.,500.

1050.,.11,500.

defines two (stress,plastic strain) data points at T=100. and two data points
at T=500. Notice that the temperature must be listed in ascending order. The
same is true for the plastic strain within a temperature block.

Example files: beampik.

8.30 *CYCLIC SYMMETRY MODEL

Keyword type: model definition
This keyword is used to define

• the number of sectors and the axis of symmetry in a cyclic symmetric
structure for use in a cyclic symmetry calculation (structural or 3D-fluid).

• the translational vector between the master and slave surface for cylic
periodic 3D-fluid calculations.
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It must be preceded by two *SURFACE cards defining the nodes belonging
to the left and right boundary of the sector and a *TIE card linking those
surfaces. The axis of symmetry is defined by two points a and b, defined in
global Cartesian coordinates.

For structural calculations there are five parameters, N, NGRAPH, TIE,
ELSET and CHECK. The parameter N, specifying the number of sectors, is
required, TIE is required if more than one cyclic symmetry tie is defined.

The parameter NGRAPH is optional and indicates for how many sectors the
solutions should be stored in .frd format. Setting NGRAPH=N for N sectors
stores the solution for the complete structure for subsequent plotting purposes.
Default is NGRAPH=1. The rotational direction for the multiplication of the
datum sector is from the dependent surface (slave) to the independent surface
(master).

The parameter TIE specifies the name of the tie constraint to which the
cyclic symmetry model definition applies. It need not be specified if only one
*TIE card has been defined.

The element set specified by ELSET specifies the elements to which the
parameter NGRAPH should be applied. Default if only one *TIE card was
used is the complete model.

The last parameter, CHECK, specifies whether CalculiX should compare
the sector angle based on its geometry with its value based on N. If the devi-
ation exceeds 0.01 radians the program issues an error message and stops. If
CHECK=NO is specified, the check is not performed, else it is. If the user
wants to find eigenmodes with fractional nodal diameters, i.e. vibrations for
which the phase shift is smaller than the sector angle, a value of N has to be
specified which exceeds the number of sectors in the model. In that case the
check should be turned off. Notice that in the case of the check being turned
off the sector angle based on the geometry is still calculated for other purposes,
it is just not compared to the sector angle based on the value of N.

Several *CYCLIC SYMMETRY MODEL cards within one input deck defin-
ing several cyclic symmetries within one and the same model are allowed. This,
however, always is an approximation, since several cyclic symmetries within one
model cannot really exist. Good results are only feasible if the values of N for the
different *CYCLIC SYMMETRY MODEL cards do not deviate substantially.

The *CYCLIC SYMMETRY MODEL card triggers the creation of cyclic
symmetry multiple point constraints between the slave and master side. If the
nodes do not match on a one-to-one basis a slave node is connected to a master
face. To this end the master side is triangulated. The resulting triangulation
is stored in file TriMasterCyclicSymmetryModel.frd and can be viewed with
CalculiX GraphiX.

For 3D-fluid calculations there are two parameters, N and TIE. The pa-
rameter N, specifying the number of sectors, is required for calculations with a
rotational cyclic symmetry (FLUID CYCLIC parameter on the tie card). The
parameter TIE is required for both calculations with rotational cyclic symmetry
and translational cylic symmetry (FLUID PERIODIC parameter on the *TIE
card). For 3D-fluid calculations the slave and master surface must consist of
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matching faces.

First line for all but fluid periodic calculations:

• *CYCLIC SYMMETRY MODEL

• Enter the required parameters N and TIE (the latter only if more than
one cyclic symmetry tie is defined) and their value.

Second line for all but fluid periodic calculations:

• X-coordinate of point a.

• Y-coordinate of point a.

• Z-coordinate of point a.

• X-coordinate of point b.

• Y-coordinate of point b.

• Z-coordinate of point b.

First line for fluid periodic calculations:

• *CYCLIC SYMMETRY MODEL

• Enter the required parameter TIE and its value.

Second line for fluid periodic calculations:

• X-coordinate of a vector pointing from the slave to the master surface.

• Y-coordinate of a vector pointing from the slave to the master surface.

• Z-coordinate of a vector pointing from the slave to the master surface.

Example:

*CYCLIC SYMMETRY MODEL, N=12, NGRAPH=3

0.,0.,0.,1.,0.,0.

defines a cyclic symmetric structure consisting of 30◦ sectors and axis of
symmetry through the points (0.,0.,0.) and (1.,0.,0.). The solution will be
stored for three connected sectors (120◦).

Example files: segment, fullseg, couette1per, couettecyl4.



438 8 INPUT DECK FORMAT

8.31 *DAMPING

Keyword type: model definition, if structural damping: material

This card is used to define Rayleigh damping for implicit and explicit dy-
namic calculations (*DYNAMIC) and structural damping for steady state dy-
namics calculations (*STEADY STATE DYNAMICS).

For Rayleigh damping there are two required parameters: ALPHA and
BETA.

Rayleigh damping is applied in a global way, i.e. the damping matrix [C] is
taken to be a linear combination of the stiffness matrix [K] and the mass matrix
[M ]:

[C] = α [M ] + β [K] . (784)

The damping force satisfies:

{F} = [C] {v}, (785)

where {v} is the velocity vector. For Rayleigh damping only one *DAMPING
card can be used in the input deck. It applies to the whole model.

For explicit dynamic calculations only mass proportional damping is allowed,
i.e. β must be zero.

For structural damping the damping is a material characteristic. Each mate-
rial can have its own damping value. There is one required parameter STRUC-
TURAL, defining the value ζ of the damping. For structural damping the
element damping force is displacement dependent and satisfies:

{F}e = iζe [K]e {x}e, (786)

where i =
√
−1, [K]e is the element stiffness matrix, and {x}e is the element

displacement vector. ζe is the structural damping value for the material of
element e (default is zero). The global damping force is assembled from the
element damping forces.

First line:

• *DAMPING

• Enter ALPHA and BETA and their values for Rayleigh damping or STRUC-
TURAL and its value for structural damping.

Example:

*DAMPING,ALPHA=5000.,BETA=2.e-3

indicates that a damping matrix is created by multiplying the mass matrix
with 5000. and adding it to the stiffness matrix multiplied by 2 · 10−4
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Example:

*DAMPING,STRUCTURAL=0.03

defines a structural damping value of 0.03 (3 %). This card must be part of
a material description.

Example files: beamimpdy1, beamimpdy2.

8.32 *DASHPOT

Keyword type: model definition
With this option the force-velocity relationship can be defined for dashpot

elements. Dashpot elements only make sense for dynamic calculations (implicit
*DYNAMIC, *MODAL DYNAMIC and *STEADY STATE DYNAMICS). For
explicit *DYNAMIC calculations they have not been implemented yet. There is
one required parameter ELSET. With this parameter the element set is referred
to for which the dashpot behavior is defined. This element set should contain
dashpot elements of type DASHPOTA only.

The dashpot constant can depend on frequency and temperature. Frequency
dependence only makes sense for *STEADY STATE DYNAMICS calculations.

First line:

• *DASHPOT

• Enter the parameter ELSET and its value

Second line: enter a blank line
For each temperature a set of lines can be entered. First line in the first set:

• Dashpot constant.

• Frequency (only for steady state dynamics calculations, else blank).

• Temperature.

Use as many lines in the first set as needed to define the complete frequency
dependence of the dashpot constant (if applicable) for this temperature. Use as
many sets as needed to define complete temperature dependence.

Example:

*DASHPOT,ELSET=Eall

1.e-5

defines a dashpot constant with value 10−5 for all elements in element set
Eall and all temperatures.
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Example:

*DASHPOT,ELSET=Eall

1.e-5,1000.,273.

1.e-6,2000.,273.

1.e-4,,373.

defines a dashpot constant with value 10−5 at a frequency of 1000 and with
value 10−6 at a frequency of 2000, both at a temperature of 273. At a temper-
ature of 373 the dashpot constant is frequency independent and takes the value
10−4. These constants apply to all dashpot elements in set Eall.

Example files: dashpot1, dashpot2, dashpot3.

8.33 *DEFORMATION PLASTICITY

Keyword type: model definition, material
This option defines the elasto-plastic behavior of a material by means of the

generalized Ramberg-Osgood law. The one-dimensional model takes the form:

Eǫ = σ + α

( |σ|
σ0

)n−1

σ (787)

where ǫ is the logarithmic strain and σ the Cauchy stress. In the present imple-
mentation, the Eulerian strain is used, which is very similar to the logarithmic
strain (about 1.3 % difference dat 20 % engineering strain). All coefficients may
be temperature dependent.

First line:

• *DEFORMATION PLASTICITY

Following line:

• Young’s modulus (E).

• Poisson’s ratio (ν).

• Yield stress (σ0)

• Exponent (n).

• Yield offset (α).

• Temperature.

Repeat this line if needed to define complete temperature dependence.
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Example:

*DEFORMATION PLASTICITY

210000.,.3,800.,12.,0.4

defines a Ramberg-Osgood law. No temperature dependence is introduced.

Example files: beampl.

8.34 *DENSITY

Keyword type: model definition, material
With this option the mass density of a material can be defined. The mass

density is required for a frequency analysis (*FREQUENCY), for a dynamic
analysis (*DYNAMIC or *HEAT TRANSFER) and for a static analysis with
gravity loads (GRAV) or centrifugal loads (CENTRIF). The density can be
temperature dependent.

First line:

• *DENSITY

Following line:

• Mass density.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*DENSITY

7.8E-9

defines a density with value 7.8× 10−9 for all temperatures.

Example files: achtelc, segment1, segment2, beamf.

8.35 *DEPVAR

Keyword type: model definition, material
This keyword is used to define the number of internal state variables for a

user-defined material. They are initialized to zero at the start of the calculation
and can be used within a material user subroutine. There are no parameters.
This card must be preceded by a *USER MATERIAL card.

First line:
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• *DEPVAR

Second line:

• Number of internal state variables.

Example:

*DEPVAR

12

defines 12 internal state variables for the user-defined material at stake.

Example files: .

8.36 *DESIGN VARIABLES

Keyword type: model definition
This option is used to define the design variables for a sensitivity study.

The parameter TYPE is required and can take the value COORDINATE or
ORIENTATION. In case of COORDINATE a second line is needed to define
the nodes whose coordinates are to be changed. These nodes should be part of
the surface of the structure (a change in position of nodes internal to the struc-
ture does not change the geometry). They will be varied in a direction locally
orthogonal to the structure (in-surface motions do not change the geometry).
In the case of ORIENTATION the sensitivity of all orientations expressed by
*ORIENTATION cards is calculated successively.

This keywork card should only occur once in the input deck. If it occurs
more than once only the first occurrence is taken into account.

First line:

• *DESIGN VARIABLES

• Enter the TYPE parameter and its value.

Following line if TYPE=COORDINATE:

• Node set containing the design variables.

Example:

*DESIGN VARIABLES,TYPE=COORDINATE

N1

defines the set N1 as the node set containing the design variables.

Example files: sensitivity I.
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8.37 *DFLUX

Keyword type: step
This option allows the specification of distributed heat fluxes. These include

surface flux (energy per unit of surface per unit of time) on element faces and
volume flux in bodies (energy per unit of volume per unit of time).

In order to specify which face the flux is entering or leaving the faces are
numbered. The numbering depends on the element type.

For hexahedral elements the faces are numbered as follows (numbers are
node numbers):

• Face 1: 1-2-3-4

• Face 2: 5-8-7-6

• Face 3: 1-5-6-2

• Face 4: 2-6-7-3

• Face 5: 3-7-8-4

• Face 6: 4-8-5-1

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1

for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-4

• Face 4: 4-1
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• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for triangular plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-1

• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for quadrilateral shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-4

• Face 6: 4-1

for triangular shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-1

The labels NEG and POS can only be used for uniform flux and are introduced
for compatibility with ABAQUS. Notice that the labels 1 and 2 correspond to
the brick face labels of the 3D expansion of the shell (Figure 85).

for beam elements:

• Face 1: in negative 1-direction

• Face 2: in positive 1-direction

• Face 3: in positive 2-direction

• Face 5: in negative 2-direction
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The beam face numbers correspond to the brick face labels of the 3D expansion
of the beam (Figure 90).

The surface flux is entered as a uniform flux with distributed flux type label
Sx where x is the number of the face. For flux entering the body the magnitude
of the flux is positive, for flux leaving the body it is negative. If the flux
is nonuniform the label takes the form SxNUy and a user subroutine dflux.f
must be provided specifying the value of the flux. The label can be up to 20
characters long. In particular, y can be used to distinguish different nonuniform
flux patterns (maximum 16 characters).

For body generated flux (energy per unit of time per unit of volume) the
distributed flux type label is BF for uniform flux and BFNUy for nonuniform
flux. For nonuniform flux the user subroutine dflux must be provided. Here too,
y can be used to distinguish different nonuniform body flux patters (maximum
16 characters).

Optional parameters are OP, AMPLITUDE and TIME DELAY. OP takes
the value NEW or MOD. OP=MOD is default and implies that the surface fluxes
on different faces in previous steps are kept. Specifying a distributed flux on a
face for which such a flux was defined in a previous step replaces this value, if a
flux was defined for the same face within the same step it is added. OP=NEW
implies that all previous surface flux is removed. If multiple *DFLUX cards are
present in a step this parameter takes effect for the first *DFLUX card only.

The AMPLITUDE parameter allows for the specification of an amplitude by
which the flux values are scaled (mainly used for dynamic calculations). Thus,
in that case the values entered on the *DFLUX card are interpreted as reference
values to be multiplied with the (time dependent) amplitude value to obtain the
actual value. At the end of the step the reference value is replaced by the actual
value at that time. In subsequent steps this value is kept constant unless it is
explicitly redefined or the amplitude is defined using TIME=TOTAL TIME in
which case the amplitude keeps its validity. The AMPLITUDE parameter has
no effect on nonuniform fluxes.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

Notice that in case an element set is used on any line following *DFLUX
this set should not contain elements from more than one of the following groups:
{plane stress, plane strain, axisymmetric elements}, {beams, trusses}, {shells,
membranes}, {volumetric elements}.

In order to apply a distributed flux to a surface the element set label under-
neath may be replaced by a surface name. In that case the “x” in the flux type
label takes the value zero.

If more than one *DFLUX card occurs within the input deck the following
rules apply:

If a *DFLUX with label S1 up to S6 or BF is applied to an element for which
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a *DFLUX with the SAME label was already applied before, then

• if the previous application was in the same step the flux value is added,
else it is replaced

• the new amplitude (including none) overwrites the previous amplitude

First line:

• *DFLUX

• Enter any needed parameters and their value

Following line for surface flux:

• Element number or element set label.

• Distributed flux type label.

• Actual magnitude of the load (power per unit of surface).

Repeat this line if needed.
Following line for body flux:

• Element number or element set label.

• Distributed flux type label (BF or BFNU).

• Actual magnitude of the load (power per unit of volume).

Repeat this line if needed.

Example:

*DFLUX,AMPLITUDE=A1

20,S1,10.

assigns a flux entering the surface with magnitude 10 times the value of
amplitude A1 to surface 1 of element 20.

Example:

*DFLUX

15,BF,10.

assigns a body flux with magnitude 10. to element 15.

Example files: oneel20df,beamhtbf.
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8.38 *DISTRIBUTING

Keyword type: model definition
With this keyword distributing constraints can be established between the

nodes belonging to an element surface and a reference node. A distributing
constraint specifies that a force or a moment in the reference node is distributed
among the nodes belonging to the element surface. The weights are calculated
from the area within the surface the reference node corresponds with.

The *DISTRIBUTING card must be immediately preceded by a *COUPLING
keyword card, specifying the reference node and the element surface. If no ORI-
ENTATION was specified on the *COUPLING card, the degrees of freedom
apply to the global rectangular system, if an ORIENTATION was used, they
apply to the local system. For a *DISTRIBUTING constraint the local system
cannot be cylindrical.

The degrees of freedom to which the distributing constraint should apply,
have to be specified underneath the *DISTRIBUTING card. They should be-
long to the range 1 to 6. Degrees of freedom 1 to 3 correspond to translations
along the local axes, if any, else the global axes are taken. Degrees of freedom 4
to 6 correspond to rotations about the local axes (4 about the local x-axis and so
on), if any, else the global axes are taken. No matter what the user specifies, the
translations are always distributed (degree of freedom 1 to 3). Consequently,
the only freedom the user has is to decide whether any additional rotational
degrees of freedom should be distributed.

The degrees of freedom in the reference node can be constrained by a *BOUNDARY
card, or a corresponding force/moment can be applied by a *CLOAD card.
The displacements in the reference node can be obtained by selecting U on the
*NODE PRINT card. The rotation about the reference node cannot be printed.
In order to obtain the force and/or moment in the reference node the user should
use *SECTION PRINT to obtain the global force and moment on the selected
surface.

A *DISTRIBUTING coupling is usually selected in order to distribute a force
or moment area-weighted among the nodes of a surface. In case of a bending
moment or torque the rotation takes place about the center of gravity of the
surface. Nodes close to the center of gravity usually deteriorate the convergence.

In CalculiX, the *DISTRIBUTING contraint is linear, i.e. the coefficients
of the constraint are not updated during the calculation.

First line:

• *DISTRIBUTING

Following line:

• first degree of freedom (only 1 to 6 allowed)

• last degree of freedom (only 1 to 6 allowed); if left blank the last degree
of freedom coincides with the first degree of freedom.
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Repeat this line if needed to constrain other degrees of freedom.

Example:

*ORIENTATION,NAME=OR1,SYSTEM=RECTANGULAR

0.,1.,0.,0.,0.,1.

*COUPLING,REF NODE=262,SURFACE=SURF,CONSTRAINT NAME=C1,ORIENTATION=OR1

*DISTRIBUTING

4,4

*NSET,NSET=N1

262

...

*STEP

*STATIC

*CLOAD

262,4,1.

specifies a moment of size 1. about the local x-axis, which happens to coincide
with the global y-axis.

Example files: coupling7, cyl.

8.39 *DISTRIBUTING COUPLING

Keyword type: model definition
This option is used to apply translational loading (force or displacement)

on a set of nodes in a global sense (for rotations and/or moments the reader
is referred to the mean rotation MPC, Section 9.7.1). There is one required
parameter: ELSET. With the parameter ELSET an element set is referred
to, which should contain exacty one element of type DCOUP3D. This type of
element contains only one node, which is taken as the reference node of the
distributing coupling. This node should not be used elsewhere in the model. In
particular, it should not belong to any element. The coordinates of this node
are immaterial. The distributing coupling forces or the distributing coupling
displacements should be applied to the reference node with a *CLOAD card or
a *BOUNDARY card, respectively.

Underneath the keyword card the user can enter the nodes on which the
load is to be distributed, together with a weight. Internally, for each coordinate
direction a multiple point constraint is generated between these nodes with the
weights as coefficients. The last term in the equation is the reference node
with as coefficient the negative of the sum of all weights. The more nodes are
contained in the distributing coupling condition the longer the equation. This
leads to a large, fully populated submatrix in the system of equations leading
to long solution times. Therefore, it is recommended not to include more than
maybe 50 nodes in a distributing coupling condition.

The first node underneath the keyword card is taken as dependent node n
the MPC. Therefore, this node should not be repeated in any other MPC or
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at the first location in any other distributing coupling definition. It can be
used as independent node in another distributing coupling (all but the first
position), though, although certain limitations exist due to the mechanism by
which the MPC’s are substituted into each other. Basically, not all dependent
nodes in distributing couplings should be used as independent nodes as well.
For example:

*DISTRIBUTING COUPLING,ELSET=E1

LOAD,1.

*DISTRIBUTING COUPLING,ELSET=E2

LOAD2,1.

*NSET,NSET=LOAD

5,6,7,8,22,25,28,31,100

*NSET,NSET=LOAD2

8,28,100,31

will work while

*DISTRIBUTING COUPLING,ELSET=E1

LOAD,1.

*DISTRIBUTING COUPLING,ELSET=E2

LOAD2,1.

*NSET,NSET=LOAD

5,6,7,8,22,25,28,31,100

*NSET,NSET=LOAD2

8,28,100,31,5

will not work because the dependent nodes 5 and 8 are used as independent
nodes as well in EACH of the distributing coupling definitions. An error message
will result in the form:

*ERROR in cascade: zero coefficient on the

dependent side of an equation

dependent node: 5

First line:

• *DISTRIBUTING COUPLING

• Enter the ELSET parameter and its value

Following line:

• Node number or node set

• Weight

Repeat this line if needed.
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Example:

*DISTRIBUTING COUPLING,ELSET=E1

3,1.

100,1.

51,1.

428,1.

*ELSET,ELSET=E1

823

*ELEMENT,TYPE=DCOUP3D

823,4000

defines a distributing coupling between the nodes 3, 100, 51 and 428, each
with weight 1. The reference node is node 4000. A point force of 10 in direction
1 can be applied to this distributing coupling by the cards:

*CLOAD

4000,1,10.

while a displacement of 0.5 is obtained with

*BOUNDARY

4000,1,1,0.5

Example files: distcoup.

8.40 *DISTRIBUTION

Keyword type: model definition
The *DISTRIBUTION keyword can be used to define elementwise local co-

ordinate systems. In each line underneath the keyword the user lists an element
number or element set and the coordinates of the points “a” and “b” describing
the local system according to Figure 174 or 175 depending on whether the lo-
cal system is rectangular or cylindrical. However, the first line underneath the
*DISTRIBUTION keyword is reserved for the default local system and the ele-
ment or element set entry should be left empty. There is one required parameter
NAME specifying the name (maximum 80 characters) of the distribution.

Whether the local system is rectangular or cylindrical is determined by the
*ORIENTATION card using the distribution. The local orientations defined
underneath the *DISTRIBUTION card do not become active unless:

• the distribution is referred to by an *ORIENTATION card

• this *ORIENTATION card is used on a *SOLID SECTION card.

So far, a distribution can only be used in connection with a *SOLID SECTION
card and not by any other SECTION cards (such as *SHELL SECTION, *BEAM
SECTION etc.).

Two restrictions apply to the use of a distribution:
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• an element should not be listed underneath more than one *DISTRIBU-
TION card

• a distribution cannot be used by more than one *ORIENTATION card.

First line:

• *DISTRIBUTION

• Enter the required parameter NAME.

Second line:

• empty

• X-coordinate of point a.

• Y-coordinate of point a.

• Z-coordinate of point a.

• X-coordinate of point b.

• Y-coordinate of point b.

• Z-coordinate of point b.

Following lines

• element label or element set label

• X-coordinate of point a.

• Y-coordinate of point a.

• Z-coordinate of point a.

• X-coordinate of point b.

• Y-coordinate of point b.

• Z-coordinate of point b.

Example:

*DISTRIBUTION,NAME=DI

,1.,0.,0.,0.,1.,0.

E1,0.,0.,1.,0.,1.,0.

defines a distribution with name DI. The default local orientation is defined
by a=(1,0,0) and b=(0,1,0). The local orientation for the elements in set E1 is
described by a=(0,0,1) and b(0,1,0).

Example files: beampo4.
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8.41 *DLOAD

Keyword type: step
This option allows the specification of distributed loads. These include con-

stant pressure loading on element faces, edge loading on shells and mass loading
(load per unit mass) either by gravity forces or by centrifugal forces.

For surface loading the faces of the elements are numbered as follows (for
the node numbering of the elements see Section 3.1):

for hexahedral elements:

• face 1: 1-2-3-4

• face 2: 5-8-7-6

• face 3: 1-5-6-2

• face 4: 2-6-7-3

• face 5: 3-7-8-4

• face 6: 4-8-5-1

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1

for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-4

• Face 4: 4-1
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for triangular plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-1

for beam elements:

• Face 1: pressure in 1-direction

• Face 2: pressure in 2-direction

For shell elements no face number is needed since there is only one kind of
loading: pressure in the opposite direction of the normal on the shell.

The surface loading is entered as a uniform pressure with distributed load
type label Px where x is the number of the face. Thus, for pressure loading the
magnitude of the load is positive, for tension loading it is negative. For nonuni-
form pressure the label takes the form PxNUy, and the user subroutine dload.f
must be provided. The label can be up to 20 characters long. In particular,
y can be used to distinguish different nonuniform loading patterns (maximum
16 characters). A typical example of a nonuniform loading is the hydrostatic
pressure. Another option is to assign the pressure of a fluid node to an element
side. In that case the label takes the form PxNP, where NP stands for network
pressure. The fluid node must be an corner node of a network element. Instead
of a concrete pressure value the user must provide the fluid node number.

Edge loading is only provided for shell elements. Its units are force per unit
length. The label is EDNORx where x can take a value between one and three
for triangular shells and between one and four for quadrilateral shells. This
type of loading is locally orthogonal to the edge. Internally, it is replaced by
a pressure load, since shell elements in CalculiX are expanded into volumetric
elements. The numbering is as follows:

for triangular shell elements:

• Edge 1: 1-2

• Edge 2: 2-3

• Edge 3: 3-1

for quadrilateral shell elements:

• Edge 1: 1-2

• Edge 2: 2-3

• Edge 3: 3-4

• Edge 4: 4-1
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For centrifugal loading (label CENTRIF) the rotational speed square (ω2)
and two points on the rotation axis are required, for gravity loading with known
gravity vector (label GRAV) the size and direction of the gravity vector are to be
given. Whereas more than one centrifugal load for one and the same set is not
allowed, several gravity loads can be defined, provided the direction of the load
varies. If the gravity vector is not known it can be calculated based on the mo-
mentaneous mass distribution of the system (label NEWTON). This requires the
value of the Newton gravity constant by means of a *PHYSICAL CONSTANTS
card.

The limit of one centrifugal load per set does not apply to linear dynamic
(*MODAL DYNAMIC) and steady state (*STEADY STATE DYNAMICS) cal-
culations. Here, the limit is two. In this way a rotating eccentricity can be
modeled. Prerequisite for the centrifugal loads to be interpreted as distinct is
the choice of distinct rotation axes.

Optional parameters are OP, AMPLITUDE, TIME DELAY, LOAD CASE
and SECTOR. OP takes the value NEW or MOD. OP=MOD is default. For
surface loads it implies that the loads on different faces are kept from the pre-
vious step. Specifying a distributed load on a face for which such a load was
defined in a previous step replaces this value, if a load was defined on the same
face within the same step it is added. OP=NEW implies that all previous
surface loading is removed. For mass loading the effect is similar. If multiple
*DLOAD cards are present in a step this parameter takes effect for the first
*DLOAD card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the force values are scaled (mainly used for dynamic calculations).
Thus, in that case the values entered on the *DLOAD card are interpreted as
reference values to be multiplied with the (time dependent) amplitude value to
obtain the actual value. At the end of the step the reference value is replaced
by the actual value at that time. In subsequent steps this value is kept constant
unless it is explicitly redefined or the amplitude is defined using TIME=TOTAL
TIME in which case the amplitude keeps its validity. For nonuniform loading
the AMPLITUDE parameter has no effect.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

The LOADCASE parameter is only active in *STEADY STATE DYNAMICS
calculations with harmonic loading. LOAD CASE = 1 means that the loading
is real or in-phase. LOAD CASE = 2 indicates that the load is imaginary or
equivalently phase-shifted by 90◦. Default is LOAD CASE = 1.

The SECTOR parameter can only be used in *MODAL DYNAMIC and
*STEADY STATE DYNAMICS calculations with cyclic symmetry. The datum
sector (the sector which is modeled) is sector 1. The other sectors are numbered
in increasing order in the rotational direction going from the slave surface to



8.41 *DLOAD 455

the master surface as specified by the *TIE card. Consequently, the SECTOR
parameters allows to apply a distributed load to any element face in any sector.

Notice that in case an element set is used on any line following *DLOAD
this set should not contain elements from more than one of the following groups:
{plane stress, plane strain, axisymmetric elements}, {beams, trusses}, {shells,
membranes}, {volumetric elements}.

If more than one *DLOAD card occurs within the input deck, or a *DLOAD
and at least one *DSLOAD card, the following rules apply:

If a *DLOAD or *DSLOAD with label P1 up to P6 or EDNOR1 up to
EDNOR4 or BF is applied to an element for which a *DLOAD or *DSLOAD
with the SAME label was already applied before, then

• if the previous application was in the same step the load value is added,
else it is replaced

• the new amplitude (including none) overwrites the previous amplitude

If a *DLOAD with label CENTRIF is applied to the same set AND with
the same rotation axis as in a previous application, then

• If the prevous application was in the same step, the CENTRIF value is
added, else it is replaced

• the new amplitude (including none) overwrites the previous amplitude

If a *DLOAD with label GRAV is applied to the same set AND with the
same gravity direction vector as in a previous application, then

• If the prevous application was in the same step, the GRAV value is added,
else it is replaced

• the new amplitude (including none) overwrites the previous amplitude

First line:

• *DLOAD

• Enter any needed parameters and their value

Following line for surface loading:

• Element number or element set label.

• Distributed load type label.

• Actual magnitude of the load (for Px type labels) or fluid node number
(for PxNU type labels)

Repeat this line if needed.
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Example:

*DLOAD,AMPLITUDE=A1

Se1,P3,10.

assigns a pressure loading with magnitude 10. times the amplitude curve of
amplitude A1 to face number three of all elements belonging to set Se1.

Example files: beamd.

Following line for centrifugal loading:

• Element number or element set label.

• CENTRIF

• rotational speed square (ω2)

• Coordinate 1 of a point on the rotation axis

• Coordinate 2 of a point on the rotation axis

• Coordinate 3 of a point on the rotation axis

• Component 1 of the normalized direction of the rotation axis

• Component 2 of the normalized direction of the rotation axis

• Component 3 of the normalized direction of the rotation axis

Repeat this line if needed.

Example:

*DLOAD

Eall,CENTRIF,100000.,0.,0.,0.,1.,0.,0.

Example files: achtelc, disk2.
assigns centrifugal loading with ω2 = 100000. about an axis through the

point (0.,0.,0.) and with direction (1.,0.,0.) to all elements.

Following line for gravity loading with known gravity vector:

• Element number or element set label.

• GRAV

• Actual magnitude of the gravity vector.

• Coordinate 1 of the normalized gravity vector
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• Coordinate 2 of the normalized gravity vector

• Coordinate 3 of the normalized gravity vector

Repeat this line if needed. Here ”gravity” really stands for any acceleration
vector.

Example:

*DLOAD

Eall,GRAV,9810.,0.,0.,-1.

assigns gravity loading in the negative z-direction with magnitude 9810. to
all elements.

Example files: achtelg, cube2.

Following line for gravity loading based on the momentaneous mass distri-
bution:

• Element number or element set label.

• NEWTON

Repeat this line if needed. Only elements loaded by a NEWTON type loading
are taken into account for the gravity calculation.

Example:

*DLOAD

Eall,NEWTON

triggers the calculation of gravity forces due to all mass belonging to the
element of element set Eall.

Example files: cubenewt.

8.42 *DSLOAD

Keyword type: step
This option allows for (a) the specification of section stresses on the boundary

of submodels, cf. the *SUBMODEL card and (b) the application of a pressure
on a facial surface.

For submodels there are two required parameters: SUBMODEL and either
STEP or DATA SET. Underneath the *DSLOAD card faces are listed for which
a section stress will be calculated by interpolation from the global model. To
this end these faces have to be part of a *SUBMODEL card, TYPE=SURFACE.
The latter card also lists the name of the global model results file.
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In case the global calculation was a *STATIC calculation the STEP parame-
ter specifies the step in the global model which will be used for the interpolation.
If results for more than one increment within the step are stored, the last incre-
ment is taken.

In case the global calculation was a *FREQUENCY calculation the DATA
SET parameter specifies the mode in the global model which will be used for
the interpolation. It is the number preceding the string MODAL in the .frd-file
and it corresponds to the dataset number if viewing the .frd-file with CalculiX
GraphiX. Notice that the global frequency calculation is not allowed to contain
preloading nor cyclic symmetry.

The distributed load type label convention is the same as for the *DLOAD
card. Notice that

• the section stresses are applied at once at the start of the step, no matter
the kind of procedure the user has selected. For instance, the loads in a
*STATIC procedure are usually ramped during the step. This is not the
case of the section stresses.

• the section stresses are interpolated from the stress values at the nodes
of the global model. These latter stresses have been extrapolated in the
global model calculation from the stresses at the integration points. There-
fore, the section stresses are not particular accurate and generally the
global equilibrium of the submodel will not be well fulfilled, resulting in
stress concentrations near the nodes which are fixed in the submodel.
Therefore, the use of section stresses is not recommended. A better pro-
cedure is the application of nodal forces (*CLOAD) at the intersection.
These nodal forces may be obtained by performing a preliminary submodel
calculation with displacement boundary conditions and requesting nodal
force output.

For the application of a pressure on a facial surface there is one optional param-
eter AMPLITUDE specifying the name of the amplitude by which the pressure
is to be multiplied (cf. *AMPLITUDE). The load label for pressure is P.

If more than one *DSLOAD card occurs in the input deck, or a *DLOAD
and at least one *DSLOAD card, the rules explained underneath the keyword
*DLOAD also apply here.

First line:

• *DSLOAD

• For submodels: enter the parameter SUBMODEL (no argument) and
STEP with its argument

Following line for surface loading on submodels:

• Element number or element set label.

• Distributed load type label.
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Repeat this line if needed.
Following line for pressure application on a surface:

• Surface name.

• Load label (the only available right now is P for pressure)

• Pressure.

Repeat this line if needed.

Example:

*DSLOAD,SUBMODEL,STEP=4

Se1,P3

specifies hat on face 3 of all elements belonging to set Se1 the section stress
is to be determined by interpolation from step 4 in the global model.

Example files: .

8.43 *DYNAMIC

Keyword type: step
This procedure is used to calculate the response of a structure subject to

dynamic loading using a direct integration procedure of the equations of motion.
This card is also correct for transient incompressible flow calculations without
heat transfer.

There are five optional parameters: DIRECT, ALPHA, EXPLICIT, SOLVER
and RELATIVE TO ABSOLUTE. The parameter DIRECT specifies that the
user-defined initial time increment should not be changed. In case of no conver-
gence with this increment size, the calculation stops with an error message. If
this parameter is not set, the program will adapt the increment size depending
on the rate of convergence. The parameter ALPHA takes an argument between
-1/3 and 0. It controls the dissipation of the high frequency response: lower
numbers lead to increased numerical damping ([56]). The default value is -0.05.

The parameter EXPLICIT can take the following values:

• 0: implicit structural computation, semi-implicit fluid computation

• 1: implicit structural computation, explicit fluid computation

• 2: explicit structural computation, semi-implicit fluid computation

• 3: explicit structural computation, explicit fluid computation

If the value is lacking, 3 is assumed. If the parameter is lacking altogether,
a zero value is assumed.

The parameter SOLVER determines the package used to solve the ensuing
system of equations. The following solvers can be selected:
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• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

• the iterative solver by Rank and Ruecker [70], which is based on the algo-
rithms by Schwarz [74].

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the pre-conditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVE CHOLESKY triggers Incomplete Cholesky pre-conditioning.
Cholesky pre-conditioning leads to a better convergence and maybe to shorter
execution times, however, it requires additional storage roughly corresponding
to the non-zeros in the matrix. If you are short of memory, diagonal scal-
ing might be your last resort. The iterative methods perform well for truly
three-dimensional structures. For instance, calculations for a hemisphere were
about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

Finally, the parameter RELATIVE TO ABSOLUTE can be used if the co-
ordinate system in the previous step was attached to a rotating system and the
coordinate system in the present dynamic step should be absolute. In that case,
the velocity of the rotating system is added to the relative velocity obtained at
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the end of the previous step in all nodes belonging to elements in which cen-
trifugal loading was defined. Thereafter, the centrifugal loading is deactivated.
For instance, suppose that you start a calculation with a *STATIC step with
a centrifugal load, i.e. all quantities are determined in the relative, rotating
system. In a subsequent dynamic step you want to continue the calculation
in the absolute system. In that case you need the parameter RELATIVE TO
ABSOLUTE.

In a dynamic step, loads are by default applied by their full strength at the
start of the step. Other loading patterns can be defined by an *AMPLITUDE
card.

First line:

• *DYNAMIC

• enter any parameters and their values, if needed.

Second line:

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified.

• Time period of the step.

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

• Initial time increment for CFD applications (default 1.e-2)

Examples:

*DYNAMIC,DIRECT,EXPLICIT

1.E-7,1.E-5

defines an explicit dynamic procedure with fixed time increment 10−7 for a
step of length 10−5.

*DYNAMIC,ALPHA=-0.3,SOLVER=ITERATIVE CHOLESKY

1.E-7,1.E-5,1.E-9,1.E-6

defines an implicit dynamic procedure with variable increment size. The nu-
merical damping was increased (α = −0.3 instead of the default α = −0.05, and
the iterative solver with Cholesky pre-conditioning was selected. The starting
increment has a size 10−7, the subsequent increments should not have a size
smaller than 10−9 or bigger than 10−6. The step size is 10−5.

Example files: beamnldy, beamnldye, beamnldyp, beamnldype.
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8.44 *ELASTIC

Keyword type: model definition, material
This option is used to define the elastic properties of a material. There is one

optional parameter TYPE. Default is TYPE=ISO, other values are TYPE=ORTHO
and TYPE=ENGINEERINGCONSTANTS for orthotropic materials and TYPE=ANISO
for anisotropic materials. All constants may be temperature dependent. For
orthotropic and fully anisotropic materials, the coefficients DIJKL satisfy the
equation:

SIJ = DIJKLEKL, I, J,K, L = 1..3 (788)

where SIJ is the second Piola-Kirchhoff stress and EKL is the Lagrange
deformation tensor (nine terms on the right hand side for each equation). For
linear calculations, these reduce to the generic stress and strain tensors.

An isotropic material can be defined as an anisotropic material by defining
D1111 = D2222 = D3333 = λ + 2µ, D1122 = D1133 = D2233 = λ and D1212 =
D1313 = D2323 = µ, where λ and µ are the Lamé constants [19].

First line:

• *ELASTIC

• Enter the TYPE parameter and its value, if needed

Following line for TYPE=ISO:

• Young’s modulus.

• Poisson’s ratio.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Following lines, in a pair, for TYPE=ORTHO: First line of pair:

• D1111.

• D1122.

• D2222.

• D1133.

• D2233.

• D3333.

• D1212.

• D1313.
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Second line of pair:

• D2323.

• Temperature.

Repeat this pair if needed to define complete temperature dependence.

Following lines, in a pair, for TYPE=ENGINEERING CONSTANTS: First
line of pair:

• E1.

• E2.

• E3.

• ν12.

• ν13.

• ν23.

• G12.

• G13.

Second line of pair:

• G23.

• Temperature.

Repeat this pair if needed to define complete temperature dependence.

Following lines, in sets of 3, for TYPE=ANISO: First line of set:

• D1111.

• D1122.

• D2222.

• D1133.

• D2233.

• D3333.

• D1112.

• D2212.

Second line of set:
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• D3312.

• D1212.

• D1113.

• D2213.

• D3313.

• D1213.

• D1313.

• D1123.

Third line of set:

• D2223.

• D3323.

• D1223.

• D1323.

• D2323.

• Temperature.

Repeat this set if needed to define complete temperature dependence.

Example:

*ELASTIC,TYPE=ORTHO

500000.,157200.,400000.,157200.,157200.,300000.,126200.,126200.,

126200.,294.

defines an orthotropic material for temperature T=294. Since the definition
includes values for only one temperature, they are valid for all temperatures.

Example files: aniso, beampo1.

8.45 *ELECTRICAL CONDUCTIVITY

Keyword type: model definition, material
This option is used to define the electrical conductivity of a material. There

are no parameters. The material is supposed to be isotropic. The constant may
be temperature dependent. The unit of the electrical conductivity coefficient is
one divided by the unit of resistivity (in SI-units: ohm) times the unit of length.

First line:
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• *ELECTRICAL CONDUCTIVITY

Following line:

• σ.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*ELECTRICAL CONDUCTIVITY

5.96E7

tells you that the electrical conductivity coefficient is 5.96E7, independent of
temperature (if SI-units are used this is the electrical conductivity of copper).

Example files: induction.

8.46 *ELECTROMAGNETICS

Keyword type: step
This procedure is used to perform a electromagnetic analysis. If transient, it

may be combined with a heat analysis. In that case the calculation is nonlinear
since the material properties depend on the solution, i.e. the temperature.

There are nine optional parameters: SOLVER, DIRECT, MAGNETOSTAT-
ICS, DELTMX, TIME RESET and TOTAL TIME AT START, NO HEAT
TRANSFER, FREQUENCY and OMEGA.

SOLVER determines the package used to solve the ensuing system of equa-
tions. The following solvers can be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

• the iterative solver by Rank and Ruecker [70], which is based on the algo-
rithms by Schwarz [74].

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
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equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the pre-conditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVE CHOLESKY triggers Incomplete Cholesky pre-conditioning.
Cholesky pre-conditioning leads to a better convergence and maybe to shorter
execution times, however, it requires additional storage roughly corresponding
to the non-zeros in the matrix. If you are short of memory, diagonal scal-
ing might be your last resort. The iterative methods perform well for truly
three-dimensional structures. For instance, calculations for a hemisphere were
about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

The parameter DIRECT indicates that automatic incrementation should be
switched off. The increments will have the fixed length specified by the user on
the second line.

The parameter MAGNETOSTATICS indicates that only the steady state
should be calculated. Since the magnetic field does not change, no heat is
produced and a heat transfer analysis does not make sense. The loading (coil
current in the shell elements) is applied by its full strength. If the MAGNETO-
STATICS parameter is absent, the calculation is assumed to be time dependent
and a transient analysis is performed. A transient analysis triggers by default
a complementary heat transfer analysis, thus the temperature dependence of
the properties of the materials involved must be provided. Here too, the coil
currents are by default applied by their full strength at the start of the step.
Other loading patterns can be defined by an *AMPLITUDE card.

The parameter DELTMX can be used to limit the temperature change in
two subsequent increments. If the temperature change exceeds DELTMX the
increment is restarted with a size equal to DA times DELTMX divided by the
temperature change. The default for DA is 0.85, however, it can be changed by
the *CONTROLS keyword. DELTMX is only active in transient calculations.
Default value is 1030.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
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If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter
underneath the *HEAT TRANSFER keyword). Consequently, if the time at the
end of the previous step is 10. and the present time period is 1., the total time
at the end of the present step is 11. If the TIME RESET parameter is used, the
total time at the beginning of the present step is 9. and at the end of the present
step it will be 10. This is sometimes useful if transient heat transfer calculations
are preceded by a stationary heat transfer step to reach steady state conditions
at the start of the transient heat transfer calculations. Using the TIME RESET
parameter in the stationary step (the first step in the calculation) will lead to
a zero total time at the start of the subsequent instationary step.

The parameter TOTAL TIME AT START can be used to set the total time
at the start of the step to a specific value.

Next, the parameter NO HEAT TRANSFER may be used in a transient
analysis to indicate that no heat generated by the Eddy currents should be
calculated. However, an external temperature field may be defined using the
*TEMPERATURE card.

Finally, the parameters FREQUENCY and OMEGA are used to obtain the
steady state answer of the electromagnetic fields due to an alternating current.
OMEGA is the frequency of the current. The answer consists of a real part
(stored first) and an imaginary part (stored last) of the electric and magnetic
field.

First line:

• *ELECTROMAGNETICS

• Enter any needed parameters and their values.

Second line:

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

Example:

*ELECTROMAGNETICS,DIRECT

.1,1.
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defines a static step and selects the SPOOLES solver as linear equation solver
in the step (default). The second line indicates that the initial time increment
is .1 and the total step time is 1. Furthermore, the parameter DIRECT leads
to a fixed time increment. Thus, if successful, the calculation consists of 10
increments of length 0.1.

Example files: induction, induction2, induction3.

8.47 *ELEMENT

Keyword type: model definition
With this option elements are defined. There is one required parameter,

TYPE and one optional parameter, ELSET. The parameter TYPE defines the
kind of element which is being defined. The following types can be selected:

• General 3D solids

– C3D4 (4-node linear tetrahedral element)

– C3D6 (6-node linear triangular prism element)

– C3D8 (3D 8-node linear hexahedral element)

– C3D8I (3D 8-node linear hexahedral element with incompatible modes)

– C3D8R (the C3D8 element with reduced integration)

– C3D10 (10-node quadratic tetrahedral element)

– C3D10T (10-node quadratic tetrahedral element with linearly inter-
polated initial temperatures)

– C3D15 (15-node quadratic triangular prism element)

– C3D20 (3D 20-node quadratic hexahedral element)

– C3D20R (the C3D20 element with reduced integration)

• General CFD fluid elements

– F3D4 (4-node linear tetrahedral element)

– F3D6 (6-node linear triangular prism element)

– F3D8 (8-node linear hexahedral element)

• “ABAQUS” 3D solids for heat transfer (names are provided for compati-
bility)

– DC3D4: identical to C3D4

– DC3D6: identical to C3D6

– DC3D8: identical to C3D8

– DC3D10: identical to C3D10

– DC3D15: identical to C3D15
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– DC3D20: identical to C3D20

• Shell elements

– S3 (3-node triangular shell element)

– S4 (4-node quadratic shell element)

– S4R (the S4 element with reduced integration)

– S6 (6-node triangular shell element)

– S8 (8-node quadratic shell element)

– S8R (the S8 element with reduced integration)

– Membrane elements

– M3D3 (3-node triangular membrane element)

– M3D4 (4-node quadratic membrane element)

– M3D4R (the S4 element with reduced integration)

– M3D6 (6-node triangular membrane element)

– M3D8 (8-node quadratic membrane element)

– M3D8R (the S8 element with reduced integration)

• Plane stress elements

– CPS3 (3-node triangular plane stress element)

– CPS4 (4-node quadratic plane stress element)

– CPS4R (the CPS4 element with reduced integration)

– CPS6 (6-node triangular plane stress element)

– CPS8 (8-node quadratic plane stress element)

– CPS8R (the CPS8 element with reduced integration)

• Plane strain elements

– CPE3 (3-node triangular plane strain element)

– CPE4 (4-node quadratic plane strain element)

– CPE4R (the CPE4 element with reduced integration)

– CPE6 (6-node triangular plane strain element)

– CPE8 (8-node quadratic plane strain element)

– CPE8R (the CPS8 element with reduced integration)

• Axisymmetric elements

– CAX3 (3-node triangular axisymmetric element)

– CAX4 (4-node quadratic axisymmetric element)
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– CAX4R (the CAX4 element with reduced integration)

– CAX6 (6-node triangular axisymmetric element)

– CAX8 (8-node quadratic axisymmetric element)

– CAX8R (the CAX8 element with reduced integration)

• Beam elements

– B21 (2-node 2D beam element)

– B31 (2-node 3Dbeam element)

– B31R (the B31 element with reduced integration)

– B32 (3-node beam element)

– B32R (the B32 element with reduced integration)

• Truss elements

– T2D2 (2-node 2D truss element)

– T3D2 (2-node 3D truss element)

– T3D3 (3-node 3D truss element)

• Special elements

– D (3-node network element)

– GAPUNI (2-node unidirectional gap element)

– DASHPOTA (2-node 3D dashpot)

– SPRING1 (1-node 3D spring)

– SPRING2 (2-node 3D spring with fixed direction of action)

– SPRINGA (2-node 3D spring with solution-dependent direction of
action)

– DCOUP3D (distributing coupling element)

– MASS (mass element)

– Uxxxx (user element)

Notice that the S8, S8R, CPS8, CPS8R, CPE8, CPE8R, CAX8, CAX8R,
B32 and B32R element are internally expanded into 20-node brick elements.
Please have a look at Section 6.2 for details and decision criteria which element
to take. The element choice determines to a large extent the quality of the
results. Do not take element choice lightheartedly! The parameter ELSET is
used to assign the elements to an element set. If the set already exists, the
elements are ADDED to the set.

First line:

• *ELEMENT
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• Enter any needed parameters and their values.

Following line:

• Element number.

• Node numbers forming the element. The order of nodes around the ele-
ment is given in section 2.1. Use continuation lines for elements having
more than 15 nodes (maximum 16 entries per line).

Repeat this line if needed.

Example:

*ELEMENT,ELSET=Eall,TYPE=C3D20R

1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20

defines one 20-node element with reduced integration and stores it in set
Eall.

Example files: beam8p, beam10p, beam20p.

8.48 *ELEMENT OUTPUT

Keyword type: step

This option is used to save selected element variables averaged at the nodal
points in a frd file (extension .frd) for subsequent viewing by CalculiX GraphiX.
The options and its use are identical with the *EL FILE keyword, however, the
resulting .frd file is a mixture of binary and ASCII (the .frd file generated by
using *EL FILE is completely ASCII). This has the advantage that the file is
smaller and can be faster read by cgx.

If FILE and OUTPUT cards are mixed within one and the same step the
last such card will determine whether the .frd file is completely in ASCII or a
mixture of binary and ASCII.

Example:

*ELEMENT OUTPUT

S,PEEQ

requests that the (Cauchy) stresses and the equivalent plastic strain is stored
in .frd format for subsequent viewing with CalculiX GraphiX.

Example files: cubespring.
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8.49 *EL FILE

Keyword type: step
This option is used to save selected element variables averaged at the nodal

points in a frd file (extension .frd) for subsequent viewing by CalculiX GraphiX.
The following element variables can be selected (the label is square brackets []
is the one used in the .frd file; for frequency calculations with cyclic symmetry
both a real and an imaginary part may be stored, in all other cases only the
real part is stored):

• CEEQ [PE]: equivalent creep strain (is converted internally into PEEQ
since the viscoplastic theory does not distinguish between the two; conse-
quently, the user will find PEEQ in the frd file, not CEEQ)

• E [TOSTRAIN (real),TOSTRAII (imaginary)]: strain. This is the total
Lagrangian strain for (hyper)elastic materials and incremental plasticity
and the total Eulerian strain for deformation plasticity.

• ECD [CURR]: electrical current density. This only applies to electromag-
netic calculations.

• ENER [ENER]: the energy density.

• ERR [ERROR (real), ERRORI (imaginary)]: error estimator for struc-
tural calculations (cf. Section 6.12). Notice that ERR and ZZS are mutu-
ally exclusive.

• HER [HERROR (real), HERRORI (imaginary)]: error estimator for heat
transfer calculations(cf. Section 6.12).

• HFL [FLUX]: heat flux in structures.

• HFLF [FLUX]: heat flux in CFD-calculations.

• MAXE [MSTRAIN]: maximum of the absolute value of the worst principal
strain at all times for *FREQUENCY calculations with cyclic symmetry.
It is stored for nodes belonging to the node set with name STRAINDO-
MAIN. This node set must have been defined by the user with the *NSET
command. The worst principal strain is the maximum of the absolute
value of the principal strains times its original sign.

• MAXS [MSTRESS]: maximum of the absolute value of the worst principal
stress at all times for *FREQUENCY calculations with cyclic symmetry.
It is stored for nodes belonging to the node set with name STRESSDO-
MAIN. This node set must have been defined by the user with the *NSET
command. The worst principal stress is the maximum of the absolute
value of the principal stresses times its original sign.

• ME [MESTRAIN (real), MESTRAII (imaginary)]: strain. This is the
mechanical Lagrangian strain for (hyper)elastic materials and incremental
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plasticity and the mechanical Eulerian strain for deformation plasticity
(mechanical strain = total strain - thermal strain).

• PEEQ [PE]: equivalent plastic strain.

• PHS [PSTRESS]: stress: magnitude and phase (only for *STEADY STATE DYNAMICS
calculations and *FREQUENCY calculations with cyclic symmetry).

• S [STRESS (real), STRESSI (imaginary)]: true (Cauchy) stress in struc-
tures. For beam elements this tensor is replaced by the section forces
if SECTION FORCES is selected. Selection of S automatically triggers
output of the error estimator ERR, unless NOE is selected after S (either
immediately following S, or with some other output requests in between,
irrespective whether these output requests are on the same keyword card
or on different keyword cards).

• SF [STRESS]: total stress in CFD-calculations.

• SVF [VSTRES]: viscous stress in CFD-calculations.

• SDV [SDV]: the internal state variables.

• ZZS [ZZSTR (real), ZZSTRI (imaginary)]: Zienkiewicz-Zhu improved stress
[97], [98](cf. Section 6.12). Notice that ZZS and ERR are mutually exclu-
sive.

The selected variables are stored for the complete model. Due to the averag-
ing process jumps at material interfaces are smeared out unless you model the
materials on both sides of the interface independently and connect the coinciding
nodes with MPC’s.

For frequency calculations with cyclic symmetry the eigenmodes are gener-
ated in pairs (different by a phase shift of 90 degrees). Only the first one of
each pair is stored in the frd file. If S is selected (the stresses) two load cases
are stored in the frd file: a loadcase labeled STRESS containing the real part
of the stresses and a loadcase labeled STRESSI containing the imaginary part
of the stresses. For all other variables only the real part is stored.

The key ENER triggers the calculation of the internal energy. If it is absent
no internal energy is calculated. Since in nonlinear calculations the internal
energy at any time depends on the accumulated energy at all previous times,
the selection of ENER in nonlinear calculations (geometric or material nonlin-
earities) must be made in the first step.

The first occurrence of an *EL FILE keyword card within a step wipes out
all previous element variable selections for file output. If no *EL FILE card
is used within a step the selections of the previous step apply. If there is no
previous step, no element variables will be stored.

There are ten optional parameters: FREQUENCY, FREQUENCYF, GLOBAL,
OUTPUT, OUTPUTALL, SECTION FORCES, TIME POINTS, NSET, LAST
ITERATIONS and CONTACT ELEMENTS. The parameters FREQUENCY
and TIME POINTS are mutually exclusive.
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FREQUENCY applies to nonlinear calculations where a step can consist
of several increments. Default is FREQUENCY=1, which indicates that the
results of all increments will be stored. FREQUENCY=N with N an integer
indicates that the results of every Nth increment will be stored. The final results
of a step are always stored. If you only want the final results, choose N very
big. The value of N applies to *OUTPUT,*ELEMENT OUTPUT, *EL FILE,
*ELPRINT, *NODE OUTPUT, *NODE FILE, *NODE PRINT, *SECTION PRINT
,*CONTACT OUTPUT, *CONTACT FILE and *CONTACT PRINT. If the
FREQUENCY parameter is used for more than one of these keywords with con-
flicting values of N, the last value applies to all. A frequency parameter stays
active across several steps until it is overwritten by another FREQUENCY value
or the TIME POINTS parameter.

The 3D fluid analogue of FREQUENCY is FREQUENCYF. In coupled cal-
culations FREQUENCY applies to the thermomechanical output, FREQUEN-
CYF to the 3D fluid output.

With the parameter GLOBAL you tell the program whether you would like
the results in the global rectangular coordinate system or in the local element
system. If an *ORIENTATION card is applied to the element at stake, this card
defines the local system. If no *ORIENTATION card is applied to the element,
the local system coincides with the global rectangular system. Default value for
the GLOBAL parameter is GLOBAL=YES, which means that the results are
stored in the global system. If you prefer the results in the local system, specify
GLOBAL=NO.

The parameter OUTPUT can take the value 2D or 3D. This has only effect
for 1d and 2d elements such as beams, shells, plane stress, plane strain and ax-
isymmetric elements AND provided it is used in the first step. If OUTPUT=3D,
the 1d and 2d elements are stored in their expanded three-dimensional form.
In particular, the user has the advantage to see his/her 1d/2d elements with
their real thickness dimensions. However, the node numbers are new and do not
relate to the node numbers in the input deck. Once selected, this parameter is
active in the complete calculation. If OUTPUT=2D the fields in the expanded
elements are averaged to obtain the values in the nodes of the original 1d and 2d
elements. In particular, averaging removes the bending stresses in beams and
shells. Therefore, default for beams and shells is OUTPUT=3D, for plane stress,
plane strain and axisymmetric elements it is OUTPUT=2D. If OUTPUT=3D
is selected, the parameter NSET is deactivated.

The parameter OUTPUT ALL specifies that the data has to be stored for
all nodes, including those belonging to elements which have been deactivated.
Default is storage for nodes belonging to active elements only.

The selection of SECTION FORCES makes sense for beam elements only.
Furthermore, SECTION FORCES and OUTPUT=3D are mutually exclusive
(if both are used the last prevails). If selected, the stresses in the beam nodes
are replaced by the section forces. They are calculated in a local coordinate
system consisting of the 1-direction n1, the 2-direction n2 and 3-direction or
tangential direction t (Figure 90). Accordingly, the stress components now have
the following meaning:
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• xx: Shear force in 1-direction

• yy: Shear force in 2-direction

• zz: Normal force

• xy: Torque

• xz: Bending moment about the 2-direction

• yz: Bending moment about the 1-direction

For all elements except the beam elements the parameter SECTIONFORCES
has no effect. If SECTION FORCES is not selected the stress tensor is averaged
across the beam section.

With the parameter TIME POINTS a time point sequence can be referenced,
defined by a *TIME POINTS keyword. In that case, output will be provided for
all time points of the sequence within the step and additionally at the end of the
step. No other output will be stored and the FREQUENCY parameter is not
taken into account. Within a step only one time point sequence can be active.
If more than one is specified, the last one defined on any of the keyword cards
*NODE FILE, *EL FILE, *NODE PRINT or *EL PRINT will be active. The
TIME POINTS option should not be used together with the DIRECT option on
the procedure card. The TIME POINTS parameters stays active across several
steps until it is replaced by another TIME POINTS value or the FREQUENCY
parameter.

The specification of a node set with the parameter NSET limits the output
to the nodes contained in the set. Remember that the frd file is node based,
so element results are also stored at the nodes after extrapolation from the
integration points. For cyclic symmetric structures the usage of the parameter
NGRAPH on the *CYCLIC SYMMETRY MODEL card leads to output of the
results not only for the node set specified by the user (which naturally belongs to
the base sector) but also for all corresponding nodes of the sectors generated by
the NGRAPH parameter. Notice that for cyclic symmetric structures in modal
dynamic and steady state dynamics calculations the use of NSET is mandatory.
In that case the stresses will only be correct at those nodes belonging to elements
for which ALL nodal displacements were requested (e.g. by a *NODE FILE
card).

The parameter LAST ITERATIONS leads to the storage of the displace-
ments in all iterations of the last increment in a file with name ResultsFor-
LastIterations.frd (can be opened with CalculiX GraphiX). This is useful for
debugging purposes in case of divergence. No such file is created if this param-
eter is absent.

Finally, the parameter CONTACT ELEMENTS stores the contact elements
which have been generated in each iteration in a file with the name jobname.cel.
When opening the frd file with CalculiX GraphiX these files can be read with
the command “read jobname.cel inp” and visualized by plotting the elements
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in the sets contactelements stα inβ atγ itδ, where α is the step number, β the
increment number, γ the attempt number and δ the iteration number.

Starting with version 2.14 of CalculiX the selection of “S” (stress) automati-
cally triggers the output the stress error estimator “ERR” as well. This can only
be avoided by selecting NOE in a position after S (either immediately following
S, or with some other output requests in between, irrespective whether these
output requests are on the same keyword card or on different keyword cards).

First line:

• *EL FILE

• Enter any needed parameters and their values.

Second line:

• Identifying keys for the variables to be printed, separated by commas.

Example:

*EL FILE

S,PEEQ

requests that the (Cauchy) stresses and the equivalent plastic strain is stored
in .frd format for subsequent viewing with CalculiX GraphiX.

Example files: beamt, fullseg, segment1, segdyn.

8.50 *EL PRINT

Keyword type: step
This option is used to print selected element variables in an ASCII file with

the name jobname.dat. Some of the element variables are printed in the inte-
gration points, some are whole element variables. The following variables can
be selected:

• Integration point variables

– true (Cauchy) stress in structures (key=S).

– viscous stress in CFD calculations (key=SVF).

– strain (key=E). This is the total Lagrangian strain for (hyper)elastic
materials and incremental plasticity and the total Eulerian strain for
deformation plasticity.

– strain (key=ME). This is the mechanical Lagrangian strain for (hy-
per)elastic materials and incremental plasticity and the mechanical
Eulerian strain for deformation plasticity (mechanical strain = total
strain - thermal strain).



8.50 *EL PRINT 477

– equivalent plastic strain (key=PEEQ)

– equivalent creep strain (key=CEEQ; is converted internally into PEEQ
since the viscoplastic theory does not distinguish between the two;
consequently, the user will find PEEQ in the dat file, not CEEQ)

– the energy density (key=ENER)

– the internal state variables (key=SDV)

– heat flux (key=HFL). This also applies to CFD-calculations involving
heat transfer.

– global coordinates (key=COORD).

• Whole element variables

– the internal energy (key=ELSE)

– the kinetic energy (key=ELKE)

– the volume (key=EVOL)

– the mass and the mass moments of inertia about the global axes Ixx,
Iyy, Izz , Ixy, Ixz and Iyz, where

Ixx =

∫

V0

x2dm (789)

and similar for the other expressions. If TOTALS=YES or TO-
TALS=ONLY is selected the center of gravity and the mass moments
of inertia about the global axes through the center of gravity are cal-
culated too (key=EMAS).

– the heating power (key=EBHE)

– the rotational speed square (ω2) (key=CENT)

The keys ENER and ELSE trigger the calculation of the internal energy.
If they are absent no internal energy is calculated. Since in nonlinear calcula-
tions the internal energy at any time depends on the accumulated energy at all
previous times, the selection of ENER and/or ELSE in nonlinear calculations
(geometric or material nonlinearities) must be made in the first step.

There are six parameters, ELSET, FREQUENCY, FREQUENCYF, TO-
TALS, GLOBAL and TIME POINTS. The parameter ELSET is required, defin-
ing the set of elements for which these stresses should be printed. If this card is
omitted, no values are printed. Several *EL PRINT cards can be used within
one and the same step.

The parameters FREQUENCY and TIME POINTS are mutually exclusive.
The FREQUENCY parameter is optional and applies to nonlinear calcula-

tions where a step can consist of several increments. Default is FREQUENCY=1,
which indicates that the results of all increments will be stored. FREQUENCY=N
with N an integer indicates that the results of every Nth increment will be stored.
The final results of a step are always stored. If you only want the final results,
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choose N very big. The value of N applies to *OUTPUT,*ELEMENT OUTPUT,
*EL FILE, *ELPRINT, *NODE OUTPUT, *NODE FILE, *NODE PRINT, *SECTION PRINT,*CONT
*CONTACT FILE and *CONTACT PRINT. If the FREQUENCY parameter
is used for more than one of these keywords with conflicting values of N, the
last value applies to all. A frequency parameter stays active across several steps
until it is overwritten by another FREQUENCY value or the TIME POINTS
parameter.

The 3D fluid analogue of FREQUENCY is FREQUENCYF. In coupled cal-
culations FREQUENCY applies to the thermomechanical output, FREQUEN-
CYF to the 3D fluid output.

The optional parameter TOTALS only applies to whole element variables.
If TOTALS=YES the sum of the variables for the whole element set is printed in
addition to their value for each element in the set separately. If TOTALS=ONLY
is selected the sum is printed but the individual element contributions are not.
If TOTALS=NO (default) the individual contributions are printed, but their
sum is not.

With the parameter GLOBAL (optional) you tell the program whether you
would like the results in the global rectangular coordinate system or in the
local element system. If an *ORIENTATION card is applied to the element at
stake, this card defines the local system. If no *ORIENTATION card is applied
to the element, the local system coincides with the global rectangular system.
Default value for the GLOBAL parameter is GLOBAL=NO, which means that
the results are stored in the local system. If you prefer the results in the global
system, specify GLOBAL=YES. If the results are stored in the local system the
first 10 characters of the name of the applicable orientation are listed at the end
of the line.

With the parameter TIME POINTS a time point sequence can be refer-
enced, defined by a *TIME POINTS keyword. In that case, output will be
provided for all time points of the sequence within the step and additionally
at the end of the step. No other output will be stored and the FREQUENCY
parameter is not taken into account. Within a step only one time point se-
quence can be active. If more than one is specified, the last one defined on any
of the keyword cards *NODE FILE, *EL FILE, *NODE PRINT, *EL PRINT
or *SECTION PRINT will be active. The TIME POINTS option should not
be used together with the DIRECT option on the procedure card. The TIME
POINTS parameters stays active across several steps until it is replaced by
another TIME POINTS value or the FREQUENCY parameter.

The first occurrence of an *EL FILE keyword card within a step wipes out
all previous element variable selections for print output. If no *EL FILE card
is used within a step the selections of the previous step apply, if any.

First line:

• *EL PRINT

• Enter the parameter ELSET and its value.
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Second line:

• Identifying keys for the variables to be printed, separated by commas.

Example:

*EL PRINT,ELSET=Copper

E

requests to store the strains at the integration points in the elements of set
Copper in the .dat file.

Example files: beampt, beamrb, beamt4.

8.51 *ELSET

Keyword type: model definition
This option is used to assign elements to an element set. The parameter

ELSET containing the name of the set is required (maximum 80 characters),
whereas the parameter GENERATE (without value) is optional. If present,
element ranges can be expressed by their initial value, their final value, and
an increment. If a set with the same name already exists, it is reopened and
complemented. The name of a set is case insensitive. Internally, it is modified
into upper case and a ’E’ is appended to denote it as element set.

The following names are reserved (i.e. cannot be used by the user for other
purposes than those for which they are reserved):

• FLUIDBLOCK: for block CFD-calculations

First line:

• *ELSET

• Enter any needed parameters and their values.

Following line if the GENERATE parameter is omitted:

• List of elements and/or sets of elements previously defined to be assigned
to this element set (maximum 16 entries per line).

Repeat this line if needed.
Following line if the GENERATE parameter is included:

• First element in set.

• Last element in set.

• Increment in element numbers between elements in the set. Default is 1.

Repeat this line if needed.
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Example:

*ELSET,ELSET=E1,GENERATE

20,25

*ELSET,ELSET=E2

E1,50,51

assigns the elements with numbers 20, 21, 22, 23, 24 and 25 to element set
E1 and the elements with numbers 20, 21, 22, 23, 24, 25 (= set E1), 50 and 51
to element set E2.

Example files: segment, beampo1, beampset.

8.52 *END STEP

Keyword type: step
This option concludes the definition of a step.

First and only line:

• *END STEP

Example:

*END STEP

concludes a step. Each *STEP card must at some point be followed by an
*END STEP card.

Example files: beamstraight, beamt.

8.53 *EQUATION

Keyword type: model definition (no REMOVE parameter) and step (only for
REMOVE)

With this option, a linear equation constraint between arbitrary displace-
ment components at any nodes where these components are active can be im-
posed. The equation is assumed to be homogeneous, and all variables are to be
written on the left hand side of the equation. The first variable is considered to
be the dependent one, and is subsequently eliminated from the equation, i.e. the
corresponding degree of freedom does not show up in the stiffness matrix. This
reduces the size of the matrix. A degree of freedom in a node can only be used
once as the dependent node in an equation or in a SPC. For CFD-applications
it is important for the stability of the calculation that the coefficient of the de-
pendent degree of freedom is as large as possible compared to the coefficients
of the independent degrees of freedom. For instance, setting the radial veloc-
ity orthogonal to the z-axis to zero corresponds to a MPC linking the x- and
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y-component of the velocity. The component with the largest coefficient should
be chosen as dependent degree of freedom.

There are two optional parameters: REMOVE and REMOVE ALL. The pa-
rameter REMOVE can be used to remove equations corresponding with selected
dependent degrees of freedom. These are listed underneath the *EQUATION
keyword by node number, first degree of freedom and last degree of freedom.
This triggers the deletion of all equations for which the dependent degree of
freedom corresponds to the range from the first to the last degree of freedom of
the selected node. If the last degree of freedom was omitted, it equals the first
degree of freedom.

The parameter REMOVE ALL is used to remove all equations. Notice that
the latter option removes all linear and nonlinear equations, irrespective whether
they were defined with a *EQUATION card, a *MPC card or whether they were
generated internally. Use of the REMOVE or the REMOVE ALL parameter
usually makes sense only in step 2 or higher.

First line:

• *EQUATION

• one of the optional parameters, if applicable

Following lines in the absence of the REMOVE and REMOVE ALL param-
eter, in a set: First line of set:

• Number of terms in the equation.

Following lines of set (maximum 12 entries per line):

• Node number of the first variable.

• Degree of freedom at above node for the first variable.

• Value of the coefficient of the first variable.

• Node number of the second variable.

• Degree of freedom at above node for the second variable.

• Value of the coefficient of the second variable.

• Etc..

Continue, giving node number, degree of freedom, value of the coefficient, etc.
Repeat the above line as often as needed if there are more than four terms in the
*EQUATION. Specify exactly four terms per line for each constraint, except for
the last line which may have less than four terms.

Following lines if the REMOVE parameter was selected:

• Node number or Node set label
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• First degree of freedom

• Last degree of freedom (optional)

Repeat this line if needed.
If the REMOVE ALL parameter was selected no additional lines are neces-

sary.

Example:

*EQUATION

3

3,2,2.3,28,1,4.05,17,1,-8.22

defines an equation of the form 2.3v3+4.05u28−8.22u17 = 0, where u, v and
w are the displacement for degree of freedom one, two and three, respectively.

Example:

*EQUATION,REMOVE

10,1,3

removes all equations for which the dependent degree of freedom corresponds
to the degrees of freedom 1, 2 or 3 of node 10.

Example files: achtel2, achtel29, achtel9, achtelcas, beamnlmpc, equrem1,
equrem2, equrem3.

8.54 *EXPANSION

Keyword type: model definition, material
This option is used to define the thermal expansion coefficients of a material.

They are interpreted as total expansion coefficients with respect to a reference
temperature Tref , i.e. the thermal strain ǫth of a material at a final temperature
T and with initial temperature T0 is determined by

ǫth = α(T )(T − Tref)− α(To)(To − Tref), (790)

where α(T ) is the thermal coefficient at a temperature T. There are two
optional parameters TYPE and ZERO. Default for TYPE is TYPE=ISO, other
values are TYPE=ORTHO for orthotropic materials and TYPE=ANISO for
anisotropic materials. All constants may be temperature dependent. The pa-
rameter ZERO is used to determine the reference temperature, default is 0.

First line:

• *EXPANSION
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• Enter the TYPE and ZERO parameters and their values, if needed

Following line for TYPE=ISO:

• α.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for TYPE=ORTHO:

• α11.

• α22.

• α33.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Following line for TYPE=ANISO:

• α11.

• α22.

• α33.

• α12.

• α13.

• α23.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*EXPANSION,ZERO=273.

12.E-6,373.

20.E-6,573.

tells you that the thermal strain in a body made of this material is 100.×
12.×10−6 = 12.×10−4 if heated from T=273 to T=373, and 300×20×10−6 =
60× 10−4 if heated from T=273 to T=573.

Example files: beamt, beamt2.
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8.55 *FILM

Keyword type: step
This option allows the specification of film heat transfer. This is convective

heat transfer of a surface at temperature T and with film coefficient h to the
environment at temperature T0. The environmental temperature T0 is also
called the sink temperature. The convective heat flux q satisfies:

q = h(T − T0). (791)

In order to specify which face the flux is entering or leaving the faces are
numbered. The numbering depends on the element type.

For hexahedral elements the faces are numbered as follows (numbers are
node numbers):

• Face 1: 1-2-3-4

• Face 2: 5-8-7-6

• Face 3: 1-5-6-2

• Face 4: 2-6-7-3

• Face 5: 3-7-8-4

• Face 6: 4-8-5-1

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1

and for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3
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• Face 3: 3-4

• Face 4: 4-1

• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for triangular plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-1

• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for quadrilateral shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-4

• Face 6: 4-1

for triangular shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-1

The labels NEG and POS can only be used for uniform, non-forced convection
and are introduced for compatibility with ABAQUS. Notice that the labels 1
and 2 correspond to the brick face labels of the 3D expansion of the shell (Figure
85).

for beam elements:

• Face 1: in negative 1-direction

• Face 2: in positive 1-direction
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• Face 3: in positive 2-direction

• Face 5: in negative 2-direction

The beam face numbers correspond to the brick face labels of the 3D expansion
of the beam (Figure 90).

Film flux characterized by a uniform film coefficient is entered by the dis-
tributed flux type label Fx where x is the number of the face, followed by the
sink temperature and the film coefficient. If the film coefficient is nonuniform
the label takes the form FxNUy and a user subroutine film.f must be provided
specifying the value of the film coefficient and the sink temperature. The label
can be up to 20 characters long. In particular, y can be used to distinguish
different nonuniform film coefficient patterns (maximum 16 characters).

In case the element face is adjacent to a moving fluid the temperature of
which is also unknown (forced convection), the distributed flux type label is
FxFC where x is the number of the face. It is followed by the fluid node number
it exchanges convective heat with and the film coefficient. To define a nonuni-
form film coefficient the label FxFCNUy must be used and a subroutine film.f
defining the film coefficient be provided. The label can be up to 20 charac-
ters long. In particular, y can be used to distinguish different nonuniform film
coefficient patterns (maximum 14 characters).

Optional parameters are OP, AMPLITUDE, TIME DELAY, FILM AMPLI-
TUDE and FILM TIME DELAY. OP takes the value NEW or MOD. OP=MOD
is default and implies that the film fluxes on different faces are kept over all steps
starting from the last perturbation step. Specifying a film flux on a face for
which such a flux was defined in a previous step replaces this value. OP=NEW
implies that all previous film flux is removed. If multiple *FILM cards are
present in a step this parameter takes effect for the first *FILM card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the sink temperature is scaled (mainly used for dynamic calculations).
Thus, in that case the sink temperature values entered on the *FILM card
are interpreted as reference values to be multiplied with the (time dependent)
amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time. In subsequent steps this
value is kept constant unless it is explicitly redefined or the amplitude is defined
using TIME=TOTAL TIME in which case the amplitude keeps its validity. The
AMPLITUDE parameter has no effect on nonuniform and forced convective
fluxes.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

The FILM AMPLITUDE parameter allows for the specification of an am-
plitude by which the film coefficient is scaled (mainly used for dynamic calcula-
tions). Thus, in that case the film coefficient values entered on the *FILM card
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are interpreted as reference values to be multiplied with the (time dependent)
amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time, for use in subsequent steps.
The FILM AMPLITUDE parameter has no effect on nonuniform fluxes.

The FILM TIME DELAY parameter modifies the FILM AMPLITUDE pa-
rameter. As such, FILM TIME DELAY must be preceded by an FILM AM-
PLITUDE name. FILM TIME DELAY is a time shift by which the FILM
AMPLITUDE definition it refers to is moved in positive time direction. For
instance, a FILM TIME DELAY of 10 means that for time t the amplitude is
taken which applies to time t-10. The FILM TIME DELAY parameter must
only appear once on one and the same keyword card.

Notice that in case an element set is used on any line following *FILM this
set should not contain elements from more than one of the following groups:
{plane stress, plane strain, axisymmetric elements}, {beams, trusses}, {shells,
membranes}, {volumetric elements}.

In order to apply film conditions to a surface the element set label underneath
may be replaced by a surface name. In that case the “x” in the flux type label
takes the value zero.

If more than one *FILM card occurs in the input deck the following rules
apply: if the *FILM is applied to the same node and the same face as in a
previous application then the prevous value and previous amplitude (including
film amplitude) are replaced.

First line:

• *FILM

• Enter any needed parameters and their value

Following line for uniform, explicit film conditions:

• Element number or element set label.

• Film flux type label (Fx).

• Sink temperature.

• Film coefficient.

Repeat this line if needed.
Following line for nonuniform, explicit film conditions:

• Element number or element set label.

• Film flux type label (FxNUy).

Repeat this line if needed.
Following line for forced convection with uniform film conditions:

• Element number or element set label.
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• Film flux type label (FxFC).

• Fluid node.

• Film coefficient.

Repeat this line if needed.
Following line for forced convection with nonuniform film conditions:

• Element number or element set label.

• Film flux type label (FxFCNUy).

• Fluid node.

Repeat this line if needed.

Example:

*FILM

20,F1,273.,.1

assigns a film flux to face 1 of element 20 with a film coefficient of 0.1 and
a sink temperature of 273.

Example files: oneel20fi.

8.56 *FILTER

Keyword type: step
With *FILTER the sensitivities can be modified to obtain a more smooth

result.
There are four optional parameters: TYPE, BOUNDARY WEIGHTING,

EDGE PRESERVATION and DIRECTION WEIGHTING.
The filter itself is a monotonically decreasing function within a sphere at the

node at stake taking the value 1 at the center of the sphere and 0 at its boundary.
The TYPE of filter can be LINEAR, QUADRATIC, CUBIC or GAUSS. If no
TYPE is specified, no filtering will be active.

With BOUNDARY WEIGHTING=YES the sensitivities near the boundary
between the design space and the nodes not belonging to the design space are
gradually decreased to zero. The distance across which this happens can be
specified by the user. Default is no boundary weighting. If the BOUNDARY
WEIGHTING parameter is active but no boundary weighting distance is given
(or zero) the filter radius is taken is boundary weighting distance.

The EDGE PRESERVATION=YES parameter indicates that sharp corners
at the boundary of the design space should be kept. This means that for the
calculation of the normal on the design space, only the faces internal to the
design space are used. Default is no edge preservation.
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Finally, DIRECTION WEIGHTING=YES indicates that the values within
the filter radius should be weighted with the scalar product of the local normal
with the normal at the center of the filter.

First line:

• *FILTER and any appropriate parameters.

Second line (only necessary if TYPE and/or BOUNDARY WEIGHTING
was selected):

• the filter radius

• the boundary weighting distance

Example:

*FILTER

3.

defines a filter radius of 3 length units. Boundary weighting, edge preserva-
tion and direction weighting are not active.

Example files: beam sens freq coord1.

8.57 *FLUID CONSTANTS

Keyword type: model definition, material
With this option the specific heat at constant pressure and the dynamic

viscosity of a gas or liquid can be defined. These properties are required for
fluid dynamic network calculations. They can be temperature dependent.

First line:

• *FLUID CONSTANTS

Following line:

• Specific heat at constant pressure.

• Dynamic viscosity.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*FLUID CONSTANTS

1.032E9,71.1E-13,100.

defines the specific heat and dynamic viscosity for air at 100 K in a unit
system using N, mm, s and K: cp = 1.032 × 109mm2/s2K and µ = 71.1 ×
10−13Ns/mm2.

Example files: linearnet, branch1, branch2.
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8.58 *FLUID SECTION

Keyword type: model definition
This option is used to assign material properties to network element sets.

The parameters ELSET and MATERIAL are required, the parameters TYPE,
OIL and CONSTANTS are optional. The parameter ELSET defines the net-
work element set to which the material specified by the parameter MATERIAL
applies.

The parameter TYPE is only necessary in fluid dynamic networks in which
the pressure and/or the mass flow are unknown in at least one node. In that
case, the type of fluid section must be selected from the list in section 6.2.37
and the appropriate constants describing the section must be specified in the
line(s) underneath the *FLUID SECTION keyword card, eight per line, except
for the last line which can contain less.

The parameter OIL defines the material parameters used in two-phase flow
in gas pipes, restrictors and branches. Its argument must be the name of a
material defined using the *MATERIAL card.

Finally, with the parameter CONSTANTS the number of parameters needed
to describe the type of fluid section can be specified. This parameter is only
necessary for user-defined fluid section types. They start with “U” and can
only be defined for compressible network elements. For further information the
reader is referred to Section 6.4.25.

First line:

• *FLUID SECTION

• Enter any needed parameters.

Following line (only necessary if TYPE was used):

• First constant

• Second constant

• etc (maximum eight constants on this line)

Repeat this line if more than eight constants are needed to describe the fluid
section.

Example:

*FLUID SECTION,MATERIAL=NITROGEN,ELSET=Eall

assigns material NITROGEN to all elements in (element) set Eall.

Example:

*FLUID SECTION,MATERIAL=AIR,ELSET=Eall,TYPE=ORIFICE_PK_MS

3.14,0.1,2.,0.01,0.1
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assigns material AIR to all elements in set Eall. The type of fluid section is
an orifice with the cd coefficient calculated following the formulas by Parker and
Kercher [65], modified for the influence of the rotational velocity by McGreehan
and Schotsch [49]. The area of the orifice is 3.14, the length is 0.1, the diameter
is 2., the inlet corner radius is 0.01 and the pipe diameter ratio is 0.1.

Example files: furnace, beamhtfc, branch1.

8.59 *FREQUENCY

Keyword type: step
This procedure is used to determine eigenfrequencies and the corresponding

eigenmodes of a structure. The frequency range of interest can be specified by
entering its lower and upper value. However, internally only as many frequen-
cies are calculated as requested in the first field beneath the *FREQUENCY
keyword card. Accordingly, if the highest calculated frequency is smaller than
the upper value of the requested frequency range, there is no guarantee that
all eigenfrequencies within the requested range were calculated. If the PER-
TURBATION parameter is used in the *STEP card, the load active in the last
*STATIC step, if any, will be taken as preload. Otherwise, no preload will be
active.

There are four optional parameters SOLVER, STORAGE, GLOBAL and
CYCMPC. SOLVER specifies which solver is used to perform a decomposition
of the linear equation system. This decomposition is done only once. It is
repeatedly used in the iterative procedure determining the eigenvalues. The
following solvers can be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

• MATRIXSTORAGE. This is not really a solver. Rather, it is an option
allowing the user to store the stiffness and mass matrix.

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, no eigenvalue
analysis can be performed.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
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capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

If the MATRIXSTORAGE option is used, the stiffness and mass matrices are
stored in files jobname.sti and jobname.mas, respectively. These are ASCII files
containing the nonzero entries (occasionally, they can be zero; however, none of
the entries which are not listed are nonzero). Each line consists of two integers
and one real: the row number, the column number and the corresponding value.
The entries are listed column per column. In addition, a file jobname.dof is
created. It has as many entries as there are rows and columns in the stiffness
and mass matrix. Each line contains a real number of the form “a.b”. Part a is
the node number and b is the global degree of freedom corresponding to selected
row. Notice that the program stops after creating these files. No further steps
are treated. Consequently, *FREQUENCY, MATRIXSTORAGE only makes
sense as the last step in a calculation.

The parameter STORAGE indicates whether the eigenvalues, eigenmodes,
mass and stiffness matrix should be stored in binary form in file jobname.eig
for further use in a *MODAL DYNAMICS, *STEADY STATE DYNAMICS
or *SENSITIVITY procedure. Default is STORAGE=NO. Specify STOR-
AGE=YES if storage is requested.

The parameters GLOBAL and CYCMPC only make sense in the presence
of SOLVER=MATRIXSTORAGE. GLOBAL indicates whether the matrices
should be stored in global coordinates, irrespective of whether a local coor-
dinates system for any of the nodes in the structure was defined. Default is
GLOBAL=YES. For GLOBAL=NO the matrices are stored in local coordi-
nates and the directions in file jobname.dof are local directions. Notice that
the GLOBAL=NO only works if no single or multiple point constrains were
defined and one and the same coordinate system was defined for ALL nodes in
the structure. The second parameter (CYCMPC) specifies whether any cyclic
multiple point constraints should remain active while assembling the stiffness
and mass matrix before storing them. Default is CYCMPC=ACTIVE. CY-
CMPC=INACTIVE means that all cyclic MPC’s and any other MPC’s contain-
ing dependent nodes belonging to cyclic MPC’s are removed before assembling
the matrices. The CYCMPC parameter only makes sense if GLOBAL=YES,
since only then are MPC’s allowed.

For the iterative eigenvalue procedure ARPACK [44] is used. The eigenfre-
quencies are always stored in file jobname.dat.

At the start of a frequency calculation all single point constraint boundary
conditions, which may be zero due to previous steps, are set to zero.

First line:



8.60 *FRICTION 493

• *FREQUENCY

Second line:

• Number of eigenfrequencies desired.

• Lower value of requested eigenfrequency range (in cycles/time; default:0).

• Upper value of requested eigenfrequency range (in cycles/time; default:
∞).

Example:

*FREQUENCY

10

requests the calculation of the 10 lowest eigenfrequencies and corresponding
eigenmodes.

Example files: beam8f, beamf.

8.60 *FRICTION

Keyword type: model definition, surface interaction and step
With this option the friction behavior of a surface interaction can be defined.

The friction behavior is optional for contact analyses. There are no parameters.
The frictional behavior defines the relationship between the shear stress in

the contact area and the relative tangential displacement between the slave and
the master surface. It is characterized by a linear range with tangent λ (stick
slope) for small relative displacements (stick) followed by a horizontal upper
bound (slip) given by µp, where µ is the friction coefficient and p the local
pressure (Figure 145). µ is dimensionless and usually takes values between 0.1
and 0.5, λ has the dimension of force per volume and should be chosen to be
about 100 times smaller than the spring constant. If no value for λ is specified
a default is taken equal to the first elastic constant of the first encountered
material in the input deck divided by 2.

For face-to-face penalty contact with PRESSURE-OVERCLOSURE=TIED
the value of the friction coefficient is irrelevant.

First line:

• *FRICTION

Following line for all types of analysis except modal dynamics:

• µ(> 0).

• λ(> 0).
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Example:

*FRICTION

0.2,5000.

defines a friction coefficient of 0.2 and a stick slope of 5000.

Example files: friction1, friction2.

8.61 *GAP

Keyword type: model definition
This option is used to define a gap geometry. The parameter ELSET is

required and defines the set of gap elements to which the geometry definition
applies. Right now, all gap elements must be of the GAPUNI type and can be
defined by an *ELEMENT card. The gap geometry is defined by its clearance
d and direction n (a vector of length 1). Let the displacement vector of the first
node of a GAPUNI element be u1 and the displacement vector of the second
node u2. Then, the gap condition is defined by:

d+ n · (u2 − u1) ≥ 0. (792)

The gap condition is internally simulated by a nonlinear spring of the type
used in node-to-face contact with a linear pressure-overclosure curve, cf. Figure
144 in which the pressure is to be replaced by the force. The defaults for the
spring stiffness (in units of force/displacement) and the tensile force at −∞ are
1012 and 10−3, respectively. They can be changed by the user.

First line:

• *GAP

• Enter the ELSET parameter and its value.

Second line :

• gap clearance

• first component of the normalized gap direction

• second component of the normalized gap direction

• third component of the normalized gap direction

• not used

• spring stiffness (default 1012 [force]/[length])

• tensile force at −∞ (default 10−3 [force]).
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Example:

*GAP,ELSET=E1

0.5,0.,1.,0.

defines a clearance of 0.5 and the global y-axis as gap direction for all gap
elements contained in element set E1.

Example files: gap.

8.62 *GAP CONDUCTANCE

Keyword type: model definition, surface interaction
This option allows for the definition of the conductance across a contact

pair. The conductance is the ratio of the heat flow across the contact location
and the temperature difference between the corresponding slave and master
surface (unit: [energy]/([time]*[area]*[temperature])). The gap conductance
is a property of the nonlinear contact spring elements generated during con-
tact. This means that heat flow will only take place at those slave nodes, at
which a contact spring element was generated. Whether or not a contact spring
element is generated depends on the pressure-overclosure relationship on the
*SURFACE BEHAVIOR card.

• for node-to-face contact:

– if the pressure-overclosure relationship is linear or tabular a con-
tact spring element is generated if the gap clearance does not exceed
c0
√
A, where A is the representative area at the slave node, or 10−10 if

this area is zero (can happen for 2-dimensional elements). Default for
c0 is 10−3, its value can be changed for a linear pressure-overclosure
relationship.

– if the pressure-overclosure relationship is exponential a contact spring
area is generated if the gap clearance does not exceed c0 (cf. *SUR-
FACE BEHAVIOR).

• for face-to-face contact:

– if the pressure-overclosure relationship is tied a contact spring ele-
ment is generated no matter the size of the clearance

– else a contact spring element is generated if the clearance is non-
positive.

The conductance coefficient can be defined as a function of the contact pres-
sure and the mean temperature of slave and master surface. Alternatively, the
conductance can be coded by the user in the user subroutine gapcon.f, cf Sec-
tion 9.4.11. In the latter case the option USER must be used on the *GAP
CONDUCTANCE card.

First line:
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• *GAP CONDUCTANCE

• Enter the parameter USER if appropriate

Following sets of lines define the conductance coefficients in the absence of
the USER parameter: First line in the first set:

• Conductance.

• Contact pressure.

• Temperature.

Use as many lines in the first set as needed to define the conductance versus
pressure curve for this temperature.

Use as many sets as needed to define complete temperature dependence.

Example:

*GAP CONDUCTANCE

100.,,273.

defines a conductance coefficient with value 100. for all contact pressures
and all temperatures.

Example files: .

8.63 *GAP HEAT GENERATION

Keyword type: model definition, surface interaction and step
This keyword is used to take heat generation due to frictional contact into

account. It can only be used for face-to-face penalty contact and is only acti-
vated in the presence of slip. The heat flowing into the slave surface amounts
to:

W = fη F · v, (793)

where f is the surface weighting factor, η the heat conversion factor, F the
tangential force and v the differential velocity between master and slave surface.
The heat flowing into the master surface correspondingly amounts to:

W = (1− f)η F · v. (794)

The heat conversion factor specifies the amount of power converted into heat.
The user specifies the heat conversion factor, the surface weighting factor and the
differential tangential velocity (in size). If the latter is set to a number smaller
than zero, the differential velocity is calculated internally from the velocity of
the adjacent surfaces. The ability for the user to specify the differential velocity
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is useful in axisymmetric structures for which the differential velocity is oriented
in circumferential direction (cf. example ring3.inp).

The *GAP HEAT GENERATION keyword must be placed underneath the
*SURFACE INTERACTION card to which it belongs. Furthermore, it can only
be used in *COUPLED and *UNCOUPLEDTEMPERATURE-DISPLACEMENT
calculations. It is only used in face-to-face penalty contact.

There is one optional parameter USER. In the presence of this parameter
the gap heat generation data are obtained from user subroutine fricheat.f (cf.
Section 9.4.12). This user subroutine must have been coded, compiled and
linked by the user before calling CalculiX.

First line:

• *GAP HEAT GENERATION

• Enter USER, if appropriate.

The next line is only needed in the absence of USER:

• heat conversion factor η (0 < η ≤ 1).

• surface weighting factor f (0 ≤ f ≤ 1).

• differential tangential velocity

Example:

*GAP HEAT GENERATION

0.7,0.3,2000.

defines a heat conversion factor of 0.7, a surface weighting factor of 0.3 (i.e.
30 % of the heat goes into the slave surface, 70 % into the master surface) and
a differential tangential velocity of 2000 [L]/[T], where [L] is the unit of length
used by the user and [T] the unit of time.

Example files: ring3.

8.64 *GEOMETRIC TOLERANCES

Keyword type: step
This option allows the specification of the geometric tolerances in a *ROBUST DESIGN

analysis. It can be defined on a node-by-node basis and consists of a mean value
and a standard deviation, both in length units. In a robust design analysis ran-
dom field vectors are generated representing the geometric tolerances up to a
specified accuracy.

There is one required parameter TYPE=NORMAL and there are two op-
tional parameters HOMOGENEOUS and CONSTRAINED. TYPE=NORMAL
specifies that the tolerances are normally distributed. Right now, this is the only
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distribution allowed. The parameter HOMOGENEOUS means that all toler-
ance does not vary across the structure. Finally, the CONTRAINED parameter
enforces a smooth transition between those parts in the structure for which tol-
erances were defined and the remaining parts.

First line:

• *GEOMETRIC TOLERANCES

• Enter any needed parameters and their value

Second line:

• Node number or element set label.

• Mean value of the tolerance.

• Standard deviation of the tolerance.

Repeat this line if needed (only if the tolerances are not homogeneous).

Example:

*GEOMETRIC TOLERANCES,HOMOGENEOUS,TYPE=NORMAL,CONSTRAINED

N1,1.5,3.7

assigns normally distributed tolerances with a mean value of 1.5 length units
and a standard deviation of 3.7 length units to all nodes in set N1. The random
fields are constrained, i.e. a smooth transition of the random field vectors is
requested between the nodes in set N1 and the remaining nodes in the structure.

Example files: beamprand.

8.65 *GREEN

Keyword type: step
This procedure is used to calculate the Green function due to unit forces at

specific nodes in specific global directions. The Green functions are calculated
for each unit force separately. The unit forces are defined by a *CLOAD card
(the force value specified by the user is immaterial, a unit force is taken). For
details the user is referred to Section 6.9.24.

There are two optional parameters: SOLVER and STORAGE. SOLVER
specifies which solver is used to perform a decomposition of the linear equa-
tion system. This decomposition is done only once. It is repeatedly used in
determining all Green functions. The following solvers can be selected:

• the SGI solver

• PaStiX
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• PARDISO

• SPOOLES [3, 4].

• TAUCS

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, a Green func-
tion calculation is not possible.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

The parameter STORAGE indicates whether the scalar frequencies, Green
functions, mass and stiffness matrix should be stored in binary form in file
jobname.eig for further use in a *SENSITIVITY procedure. Default is STOR-
AGE=NO. Specify STORAGE=YES if storage is requested.

First line:

• *GREEN

• Enter SOLVER, if needed, and its value.

Example:

*GREEN,SOLVER=PARDISO

defines a Green function step and selects the PARDISO solver as linear
equation solver. For this to work, the PARDISO solver must have been linked
with CalculiX.

Example files: green1.

8.66 *HEADING

Keyword type: model definition
The heading block allows for a short problem description for identification

and retrieval purposes. This description is reproduced at the top of the output
file.
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First line:

• *HEADING

Following line:

• Description of the problem.

Example:

*HEADING

Cantilever beam under tension and bending.

gives a title to the problem.

Example files: beampt, segment1.

8.67 *HEAT TRANSFER

Keyword type: step
This procedure is used to perform a pure heat transfer analysis. A heat

transfer analysis is always nonlinear since the material properties depend on
the solution, i.e. the temperature.

There are nine optional parameters: SOLVER, DIRECT, STEADY STATE,
FREQUENCY, MODAL DYNAMIC, STORAGE, DELTMX, TIME RESET
and TOTAL TIME AT START.

SOLVER determines the package used to solve the ensuing system of equa-
tions. The following solvers can be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

• the iterative solver by Rank and Ruecker [70], which is based on the algo-
rithms by Schwarz [74].

• MATRIXSTORAGE. This is not really a solver. Rather, it is an option
allowing the user to store the stiffness and mass matrix.

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
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equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the pre-conditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVECHOLESKY triggers Incomplete Cholesky pre-conditioning.
Cholesky pre-conditioning leads to a better convergence and maybe to shorter
execution times, however, it requires additional storage roughly corresponding
to the non-zeros in the matrix. If you are short of memory, diagonal scal-
ing might be your last resort. The iterative methods perform well for truly
three-dimensional structures. For instance, calculations for a hemisphere were
about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

If the MATRIXSTORAGE option is used, the conductivity and capacity
matrices are stored in files jobname.con and jobname.sph (specific heat), re-
spectively. These are ASCII files containing the nonzero entries (occasionally,
they can be zero; however, none of the entries which are not listed are nonzero).
Each line consists of two integers and one real: the row number, the column
number and the corresponding value. The entries are listed column per column.
In addition, a file jobname.dof is created. It has as many entries as there are
rows and columns in the stiffness and mass matrix. Each line contains a real
number of the form “a.b”. Part a is the node number and b is the global degree
of freedom corresponding to selected row (in this case 0 for the thermal degree of
freedom). Notice that the program stops after creating these files. No further
steps are treated. Consequently, *HEAT TRANSFER, MATRIXSTORAGE
only makes sense as the last step in a calculation.

The parameter DIRECT indicates that automatic incrementation should be
switched off. The increments will have the fixed length specified by the user on
the second line.

The parameter STEADY STATE indicates that only the steady state should
be calculated. For such an analysis the loads are by default applied in a linear
way. Other loading patterns can be defined by an *AMPLITUDE card. If the
STEADY STATE parameter is absent, the calculation is assumed to be time
dependent and a transient analysis is performed. For a transient analysis the
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specific heat of the materials involved must be provided and the loads are by
default applied by their full strength at the start of the step.

In a static step, loads are by default applied in a linear way. Other loading
patterns can be defined by an *AMPLITUDE card.

The parameter FREQUENCY indicates that a frequency calculation should
be performed. In a frequency step the homogeneous governing equation is
solved, i.e. no loading applies, and the corresponding eigenfrequencies and
eigenmodes are determined. This option is especially useful if the heat transfer
option is used as an alias for true Helmholtz-type problems, e.g. in acoustics.
The option FREQUENCY cannot (yet) be applied to cyclic symmetry calcula-
tions.

The parameter MODAL DYNAMIC is used for dynamic calculations in
which the response is built as a linear combination of the eigenmodes of the sys-
tem. It must be preceded by a *HEAT TRANSFER, FREQUENCY,STORAGE=YES
procedure, either in the same deck, or in a previous run, either of which leads
to the creation of a file with name jobname.eig containing the eigenvalues and
eigenmodes of the system. AMODAL DYNAMIC procedure is necessarily linear
and ideally suited of problems satisfying the classical wave equation (Helmholtz
problem characterized by a second derivative in time, thus exhibiting a hyper-
bolic behavior), e.g linear acoustics.

The parameter STORAGE indicates whether the eigenvalues, eigenmodes,
mass and stiffness matrix should be stored in binary form in file jobname.eig
for further use in a *MODAL DYNAMICS or *STEADY STATE DYNAMICS
procedure. Default is STORAGE=NO. Specify STORAGE=YES if storage is
requested.

The parameter DELTMX can be used to limit the temperature change in
two subsequent increments. If the temperature change exceeds DELTMX the
increment is restarted with a size equal to DA times DELTMX divided by the
temperature change. The default for DA is 0.85, however, it can be changed by
the *CONTROLS keyword. DELTMX is only active in transient calculations.
Default value is 1030.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter
underneath the *HEAT TRANSFER keyword). Consequently, if the time at the
end of the previous step is 10. and the present time period is 1., the total time
at the end of the present step is 11. If the TIME RESET parameter is used, the
total time at the beginning of the present step is 9. and at the end of the present
step it will be 10. This is sometimes useful if transient heat transfer calculations
are preceded by a stationary heat transfer step to reach steady state conditions
at the start of the transient heat transfer calculations. Using the TIME RESET
parameter in the stationary step (the first step in the calculation) will lead to
a zero total time at the start of the subsequent instationary step.

Finally, the parameter TOTAL TIME AT START can be used to set the
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total time at the start of the step to a specific value.

First line:

• *HEAT TRANSFER

• Enter any needed parameters and their values.

Second line if FREQUENCY nor MODAL DYNAMIC is not selected:

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

Example:

*HEAT TRANSFER,DIRECT

.1,1.

defines a static step and selects the SPOOLES solver as linear equation solver
in the step (default). The second line indicates that the initial time increment
is .1 and the total step time is 1. Furthermore, the parameter DIRECT leads
to a fixed time increment. Thus, if successful, the calculation consists of 10
increments of length 0.1.

Example files: beamhtcr, oneel20fi, oneel20rs.

Second line if FREQUENCY is selected:

• Number of eigenfrequencies desired.

• Lower value of requested eigenfrequency range (in cycles/time; default:0).

• Upper value of requested eigenfrequency range (in cycles/time; default:
∞).

Example:

*HEAT TRANSFER,FREQUENCY

8
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defines a frequency step for the heat transfer equation. The eight lowest
eigenvalues and corresponding eigenmodes are calculated. Notice that for the
heat equation the following relation applies between the eigenvalue λ and eigen-
frequency ω:

λ = −iω. (795)

If, on the other hand, the heat transfer option is used as an alias for the
Helmholtz equation, e.g. for acoustic problems, the same relationship as in
elastodynamics

λ = ω2 (796)

applies.
Second line if MODAL DYNAMIC is selected:

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

Example files: aircolumn.

8.68 *HYPERELASTIC

Keyword type: model definition, material
This option is used to define the hyperelastic properties of a material. There

are two optional parameters. The first one defines the model and can take one of
the following strings: ARRUDA-BOYCE, MOONEY-RIVLIN, NEO HOOKE,
OGDEN, POLYNOMIAL, REDUCED POLYNOMIAL or YEOH. The second
parameter N makes sense for the OGDEN, POLYNOMIAL and REDUCED
POLYMIAL model only, and determines the order of the strain energy poten-
tial. Default is the POLYNOMIAL model with N=1. All constants may be
temperature dependent.

Let Ī1,Ī2 and J be defined by:

Ī1 = III
−1/3
C IC (797)

Ī2 = III
−1/3
C IIC (798)

J = III
1/2
C (799)

where IC , IIC and IIIC are the invariants of the right Cauchy-Green deforma-
tion tensor CKL = xk,Kxk,L. The tensor CKL is linked to the Lagrange strain
tensor EKL by:

2EKL = CKL − δKL (800)

where δ is the Kronecker symbol.
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The Arruda-Boyce strain energy potential takes the form:

U = µ

{
1

2
(Ī1 − 3) +

1

20λ2m
(Ī21 − 9) +

11

1050λ4m
(Ī31 − 27)

+
19

7000λ6m
(Ī41 − 81) +

519

673750λ8m
(Ī51 − 243)

}
(801)

+
1

D

(
J2 − 1

2
− ln J

)

The Mooney-Rivlin strain energy potential takes the form:

U = C10(Ī1 − 3) + C01(Ī2 − 3) +
1

D1
(J − 1)2 (802)

The Mooney-Rivlin strain energy potential is identical to the polynomial strain
energy potential for N = 1.

The Neo-Hooke strain energy potential takes the form:

U = C10(Ī1 − 3) +
1

D1
(J − 1)2 (803)

The Neo-Hooke strain energy potential is identical to the reduced polynomial
strain energy potential for N = 1.

The polynomial strain energy potential takes the form:

U =

N∑

i+j=1

Cij(Ī1 − 3)i(Ī2 − 3)j +

N∑

i=1

1

Di
(J − 1)2i (804)

In CalculiX N ≤ 3.
The reduced polynomial strain energy potential takes the form:

U =

N∑

i=1

Ci0(Ī1 − 3)i +

N∑

i=1

1

Di
(J − 1)2i (805)

In CalculiX N ≤ 3. The reduced polynomial strain energy potential can be
viewed as a special case of the polynomial strain energy potential

The Yeoh strain energy potential is nothing else but the reduced polynomial
strain energy potential for N = 3.

Denoting the principal stretches by λ1, λ2 and λ3 (λ21, λ
2
2 and λ23 are the

eigenvalues of the right Cauchy-Green deformation tensor) and the deviatoric

stretches by λ̄1, λ̄2 and λ̄3, where λ̄i = III
−1/6
C λi, the Ogden strain energy

potential takes the form:

U =

N∑

i=1

2µi
α2
i

(λ̄αi

1 + λ̄αi

2 + λ̄αi

3 − 3) +

N∑

i=1

1

Di
(J − 1)2i. (806)

The input deck for a hyperelastic material looks as follows:

First line:
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• *HYPERELASTIC

• Enter parameters and their values, if needed

Following line for the ARRUDA-BOYCE model:

• µ.

• λm.

• D.

• Temperature

Repeat this line if needed to define complete temperature dependence.
Following line for the MOONEY-RIVLIN model:

• C10.

• C01.

• D1.

• Temperature

Repeat this line if needed to define complete temperature dependence.
Following line for the NEO HOOKE model:

• C10.

• D1.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for the OGDEN model with N=1:

• µ1.

• α1.

• D1.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for the OGDEN model with N=2:

• µ1.

• α1.

• µ2.

• α2.
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• D1.

• D2.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following lines, in a pair, for the OGDEN model with N=3: First line of

pair:

• µ1.

• α1.

• µ2.

• α2.

• µ3.

• α3.

• D1.

• D2.

Second line of pair:

• D3.

• Temperature.

Repeat this pair if needed to define complete temperature dependence.
Following line for the POLYNOMIAL model with N=1:

• C10.

• C01.

• D1.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for the POLYNOMIAL model with N=2:

• C10.

• C01.

• C20.

• C11.

• C02.
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• D1.

• D2.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following lines, in a pair, for the POLYNOMIAL model with N=3: First

line of pair:

• C10.

• C01.

• C20.

• C11.

• C02.

• C30.

• C21.

• C12.

Second line of pair:

• C03.

• D1.

• D2.

• D3.

• Temperature.

Repeat this pair if needed to define complete temperature dependence.
Following line for the REDUCED POLYNOMIAL model with N=1:

• C10.

• D1.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for the REDUCED POLYNOMIAL model with N=2:

• C10.

• C20.

• D1.
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• D2.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for the REDUCED POLYNOMIAL model with N=3:

• C10.

• C20.

• C30.

• D1.

• D2.

• D3.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for the YEOH model:

• C10.

• C20.

• C30.

• D1.

• D2.

• D3.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*HYPERELASTIC,OGDEN,N=1

3.488,2.163,0.

defines an ogden material with one term: µ1 = 3.488, α1 = 2.163, D1=0.
Since the compressibility coefficient was chosen to be zero, it will be replaced
by CalculiX by a small value to ensure some compressibility to guarantee con-
vergence (cfr. page 250).

Example files: beamnh, beamog.
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8.69 *HYPERFOAM

Keyword type: model definition, material
This option is used to define a hyperfoam material. There is one optional

parameters, N. N determines the order of the strain energy potential. Default
is N=1. All constants may be temperature dependent.

The hyperfoam strain energy potential takes the form

U =

N∑

i=1

2µi
α2
i

[
λαi

1 + λαi

2 + λαi

3 − 3 +
1

βi
(J−αiβi − 1)

]
(807)

where λ1, λ2 and λ3 are the principal stretches. The parameters βi are related
to the Poisson coefficients νi by:

βi =
νi

1− 2νi
(808)

and

νi =
βi

1 + 2βi
. (809)

First line:

• *HYPERFOAM

• Enter parameters and their values, if needed

Following line for N=1:

• µ1.

• α1.

• ν1.

• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following line for N=2:

• µ1.

• α1.

• µ2.

• α2.

• ν1.

• ν2.
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• Temperature.

Repeat this line if needed to define complete temperature dependence.
Following lines, in a pair, for N=3: First line of pair:

• µ1.

• α1.

• µ2.

• α2.

• µ3.

• α3.

• ν1.

• ν2.

Second line of pair:

• ν3.

• Temperature.

Repeat this pair if needed to define complete temperature dependence.

Example:

*HYPERFOAM,N=2

0.164861,8.88413,2.302e-5,-4.81798,0.,0.

defines a hyperfoam material with two terms in the series.

Example files: beamhf.

8.70 *INCLUDE

Keyword type: step or model definition
The include statement allows to store part of the input deck in another file.

There is only one required parameter, INPUT, taking the name of the file in
or without double quotes (”). The double quotes are needed if the file name
contains one or more blanks.

First line:

• *INCLUDE

• Enter the parameter and its value.



512 8 INPUT DECK FORMAT

Example:

*INCLUDE,INPUT=/home/guido/test/beam.spc

is at execution time replaced by the contents of file /home/guido/test/beam.spc.

Example files: .

8.71 *INITIAL CONDITIONS

Keyword type: model definition
This option is used to define initial temperatures, initial velocities, initial

stresses and initial plastic strains. There are two parameters: TYPE and USER.
The parameter TYPE is required. It can take the following values:

• TYPE=DISPLACEMENT: initial displacements

• TYPE=FLUID VELOCITY: initial fluid velocities for 3D fluid calcula-
tions

• TYPE=MASS FLOW: initial mass flow for networks

• TYPE=PLASTIC STRAIN: initial inelastic strains

• TYPE=PRESSURE: initial static fluid pressures for 3D fluid calculations

• TYPE=SOLUTION: initial internal variables

• TYPE=STRESS: initial stresses

• TYPE=TEMPERATURE: initial temperatures for structural, network or
3D fluid calculations

• TYPE=TOTAL PRESSURE: initial total pressures for network calcula-
tions

• TYPE=VELOCITY: initial structural velocities (for dynamic calculations)

For shell elements TYPE=TEMPERATURE can be used to define an initial
temperature gradient in addition to an initial temperature. The temperature
applies to nodes in the reference surface, the gradient acts in normal direction.
For beam elements two gradients can be defined: one in 1-direction and one in
2-direction. Default for the gradients is zero.

The plastic strain components defined with this option are subtracted from
the strain components computed from the displacement field. If thermal strains
are relevant they are additionally subtracted. The resulting strain is used to
compute the stress and tangent stiffness matrix using the appropriate constitu-
tive equations.
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The parameter USER can only be used if TYPE=STRESS or TYPE=SOLUTION
is specified. In that case, the user must define the initial stresses or internal
variables by user routine sigini.f or sdvini.f, respectively.

Please note that vector and tensor quantities have to be provided in the
GLOBAL (rectangular) coordinate system, no matter whether an *ORIENTA-
TION card or *TRANSFORM card applies to the corresponding element or
node, respectively.

First line:

• *INITIAL CONDITIONS

• Enter any needed parameters and their values.

Following line for TYPE=DISPLACEMENT:

• Node number or node set label.

• Degree of freedom in the GLOBAL coordinate system.

• Magnitude of the displacement.

Following line for TYPE=PLASTIC STRAIN:

• Element number.

• Integration point number.

• Value of first plastic strain component (xx) in the GLOBAL coordinate
system x-y-z.

• Value of second plastic strain component (yy) in the GLOBAL coordinate
system x-y-z.

• Value of third plastic strain component (zz) in the GLOBAL coordinate
system x-y-z.

• Value of fourth plastic strain component (xy) in the GLOBAL coordinate
system x-y-z.

• Value of fifth plastic strain component (xz) in the GLOBAL coordinate
system x-y-z.

• Value of sixth plastic strain component (yz) in the GLOBAL coordinate
system x-y-z.

Repeat this line if needed. The strain components should be given as Lagrange
strain components for nonlinear calculations and linearized strain components
for linear computations.

Following line for TYPE=PRESSURE, TYPE=TOTAL PRESSURE or TYPE=MASS
FLOW:
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• Node number or node set label.

• Static pressure, total pressure or mass flow value at the node.

Repeat this line if needed.

Following line for TYPE=SOLUTION if USER is not specified:

• Element number.

• Integration point number.

• Value of first internal variable.

• Value of second internal variable.

• Etc.

Repeat this line if needed. Each line should contain exactly 8 entries (including
the element and integration point number in the first line), except for the last
line, which can contain less. For instance, if the number of internal variables is
11, the first line contains 6 and the second 5. If you have 20 internal variables,
the first line contains 6, the second 8 and the third 6. The number of internal
variables must be specified by using the *DEPVAR card.

There is no line following the first one for TYPE=SOLUTION,USER.

Following line for TYPE=STRESS if USER is not specified:

• Element number.

• Integration point number.

• Value of first stress component (xx) in the GLOBAL coordinate system
x-y-z.

• Value of second stress component (yy) in the GLOBAL coordinate system
x-y-z.

• Value of third stress component (zz) in the GLOBAL coordinate system
x-y-z.

• Value of fourth stress component (xy) in the GLOBAL coordinate system
x-y-z.

• Value of fifth stress component (xz) in the GLOBAL coordinate system
x-y-z.

• Value of sixth stress component (yz) in the GLOBAL coordinate system
x-y-z.

• Etc.
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Repeat this line if needed. The stress components should be given in the form
of second Piola-Kirchhoff stresses.

There is no line following the first one for TYPE=STRESS,USER.

Following line for TYPE=TEMPERATURE:

• Node number or node set label.

• Initial temperature value at the node.

• Initial temperature gradient in normal direction (shells) or in 2-direction
(beams).

• Initial temperature gradient in 1-direction (beams).

Repeat this line if needed.

Following line for TYPE=VELOCITY or TYPE=FLUID VELOCITY:

• Node number or node set label.

• Degree of freedom in the GLOBAL coordinate system.

• Magnitude of the velocity.

Examples:

*INITIAL CONDITIONS,TYPE=TEMPERATURE

Nall,273.

assigns the initial temperature T=273. to all nodes in (node) file Nall.

*INITIAL CONDITIONS,TYPE=VELOCITY

18,2,3.15

assigns the initial velocity 3.15 to degree of freedom 2 of node 18.

Example files: beam20t, beamnlt, beamt3, resstress1, resstress2, resstress3,
inistrain.

8.72 *INITIAL STRAIN INCREASE

Keyword type: step
This option is used to define an increase of initial strains. The values are

added to the initial strains already present in the model. The use of this op-
tion requires the previous use of *INITIAL CONDITIONS, TYPE=PLASTIC
STRAIN or *MODEL CHANGE, TYPE=ELEMENT, ADD or *MODEL CHANGE,
TYPE=ELEMENT, ADD=STRAIN FREE.

The resulting initial strain components are subtracted from the strain com-
ponents computed from the displacement field. If thermal strains are relevant
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they are additionally subtracted. The resulting strain is used to compute the
stress and tangent stiffness matrix using the appropriate constitutive equations.

Please note that the strains have to be provided in the GLOBAL (rect-
angular) coordinate system, no matter whether an *ORIENTATION card or
*TRANSFORM card applies to the corresponding element.

First line:

• *INITIAL STRAIN INCREASE

Following line:

• Element number.

• Integration point number.

• Value of first initial strain increase component (xx) in the GLOBAL co-
ordinate system x-y-z.

• Value of second initial strain increase component (yy) in the GLOBAL
coordinate system x-y-z.

• Value of third initial strain increase component (zz) in the GLOBAL co-
ordinate system x-y-z.

• Value of fourth initial strain increase component (xy) in the GLOBAL
coordinate system x-y-z.

• Value of fifth initial strain increase component (xz) in the GLOBAL co-
ordinate system x-y-z.

• Value of sixth initial strain increase component (yz) in the GLOBAL co-
ordinate system x-y-z.

Repeat this line if needed. The strain components should be given as Lagrange
strain components for nonlinear calculations and linearized strain components
for linear computations.

Examples:

*INITIAL STRAIN INCREASE

20,5,0.01,0.,0.01,0.,0.,0.

increases the initial strain at integration point 5 of element 20 by a nor-
mal global x and normal global z component of 0.01, the other strains remain
unchanged.

Example files: inistrain2.
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8.73 *KINEMATIC

Keyword type: model definition
With this keyword kinematic constraints can be established between each

node belonging to an element surface and a reference node. A kinematic con-
straint specifies that the displacement in a certain direction i at a node corre-
sponds to the rigid body motion of this node about a reference node. Therefore,
the location of the reference node is important.

This card must be immediately preceded by a *COUPLING keyword card. If
no ORIENTATION was specified on the *COUPLING card, the degrees of free-
dom entered immediately below the *KINEMATIC card (these are the degrees
of freedom i which take part in the rigid body motion) apply to the global rect-
angular system, if an ORIENTATION was used, they apply to the local system.
If the local system is cylindrical, the degrees of freedom 1, 2 and 3 correspond
to the displacement in radial direction, the circumferential angle and the dis-
placement in axial direction, respectively (as defined by the *ORIENTATION
card; the position of the reference node is immaterial to that respect).

The degrees of freedom in the reference node (1 up to 3 for translations, 4
up to 6 for rotations; they apply to the global system unless a *TRANSFORM
card was defined for the reference node) can be constrained by a *BOUNDARY
card. Alternatively, a force (degrees of freedom 1 up to 3) or moment (degrees
of freedom 4 up to 6) can be applied by a *CLOAD card. In the latter case the
resulting displacements (degrees of freedom 1 up to 3) can be printed in the .dat
file by selecting U on the *NODE PRINT card for the reference node. However,
the corresponding selection of RF on the *NODE PRINT card does not work for
the reference node. Instead, the user should use *SECTION PRINT to obtain
the global force and moment on the selected surface.

First line:

• *KINEMATIC

Following line:

• first degree of freedom (only 1, 2 or 3 allowed)

• last degree of freedom (only 1, 2 or 3 allowed); if left blank the last degree
of freedom coincides with the first degree of freedom.

Repeat this line if needed to constrain other degrees of freedom.

Example:

*NODE

262,.5,.5,8.

*ORIENTATION,NAME=OR1,SYSTEM=CYLINDRICAL

.5,.5,0.,.5,.5,1.

*COUPLING,REF NODE=262,SURFACE=S1,ORIENTATION=OR1,CONSTRAINT NAME=CN1



518 8 INPUT DECK FORMAT

*KINEMATIC

2

*STEP

*STATIC

*BOUNDARY

262,6,6,.01

specifies a moment of size 0.01 about the z-axis through node 262. The rotation
(angle) about this axis of each node belonging to the facial surface SURF will
be identical and such that the resulting moment in the structure agrees with
the applied moment. Since only local degree of freedom 2 takes part in the
rigid body motion, the radial and axial displacement in the nodes belonging to
surface S1 is left completely free.

Example files: coupling2, coupling3.

8.74 *MAGNETIC PERMEABILITY

Keyword type: model definition, material
This option is used to define the magnetic permeability of a material. There

are no parameters. The material is supposed to be isotropic. The constant may
be temperature dependent. The unit of the magnetic permeability coefficient
is the unit of force divided by the square of the unit of electrical current. In
SI-units this is N/A2 or Henry/m. The magnetic permeability may be viewed
as the product of the relative magnetic permeability (dimensionless) µr with
the permeability of vacuum µ0.

Following the magnetic permeability constant the user is supposed to define
the domain for which this material is used. In an electromagnetic calculation
there are three domains:

1. the air, which is the P-domain (domain 1)

2. the bodies, which is the A,V-domain (domain 2)

3. that part of the air, which, if filled with body material, ensures that the
bodies are simply connected; this is the A-domain (domain 3). If there is
only one body and if it is such that it is naturally simply connected the
A-domain is empty.

For more details the reader is referred to the section on electromagnetism.

First line:

• *MAGNETIC PERMEABILITY

Following line:

• µ.
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• number of the domain

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*MAGNETIC PERMEABILITY

1.255987E-6,2

tells you that the magnetic permeability coefficient is 1.255987 × 10−6, in-
dependent of temperature (if SI-units are used this is the magnetic permeability
of copper). The domain for which this material is defined is the A,V-domain.

Example files: induction.

8.75 *MASS

Keyword type: model definition

This option allows the specification of the nodal mass in the MASS elements
of the model. There is one required parameter ELSET specifying the element
set for which this mass applies. It should contain only MASS elements. The
mass value is applied in each of the elements of the set separately.

First line:

• *MASS

• Enter the parameter ELSET and its value.

Following line:

• Mass.

Example:

*MASS,ELSET=E1

1.e3

assigns a mass of 1000. in each element belonging to element set E1.

Example files: .
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8.76 *MASS FLOW

Keyword type: step
This option allows the specification of a mass flow through a face in 3-D

Navier-Stokes calculations.
In order to specify which face the flow is entering or leaving the faces are

numbered. The numbering depends on the element type.
For hexahedral elements the faces are numbered as follows (numbers are

node numbers):

• Face 1: 1-2-3-4

• Face 2: 5-8-7-6

• Face 3: 1-5-6-2

• Face 4: 2-6-7-3

• Face 5: 3-7-8-4

• Face 6: 4-8-5-1

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1

for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

The mass flow is entered as a uniform flow with flow type label Mx where x
is the number of the face. Right now, only zero mass flow is allowed, i.e. no flow
is entering or leaving the domain. There are no parameters for this keyword
card.

In order to apply a mass flow to a surface the element set label underneath
may be replaced by a surface name. In that case the mass flow type label takes
the value “M” without any number following.

First line:
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• *MASS FLOW

Following line:

• Element number or element set label.

• Mass flow type label.

• Zero.

Repeat this line if needed.

Example:

*MASS FLOW

20,M2

assigns a zero mass flow to face 2 of element 20.

Example files: bumpsubfine (large fluid examples).

8.77 *MATERIAL

Keyword type: model definition
This option is used to indicate the start of a material definition. A material

data block is defined by the options between a *MATERIAL line and either
another *MATERIAL line or a keyword line that does not define material prop-
erties. All material options within a data block will be assumed to define the
same material. If a property is defined more than once for a material, the last
definition is used. There is one required parameter, NAME, defining the name
of the material with which it can be referenced in element property options (e.g.
*SOLID SECTION). The name can contain up to 80 characters.

Material data requests outside the defined ranges are extrapolated in a con-
stant way and a warning is generated. Be aware that this occasionally occurs
due to rounding errors.

First line:

• *MATERIAL

• Enter the NAME parameter and its value.

Example:

*MATERIAL,NAME=EL

starts a material block with name EL.

Example files: fullseg, beamnldype, beamog.
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8.78 *MEMBRANE SECTION

Keyword type: model definition
This option is used to assign material properties to membrane element sets.

The syntax is identical to *SHELL SECTION, therefore the user is referred to
that section for further details

Example files: membrane1, membrane2, membrane3.

8.79 *MODAL DAMPING

Keyword type: step
This card is used within a step in which the *MODAL DYNAMIC or *STEADY

STATE DYNAMICS procedure has been selected. There are two optional, mu-
tually exclusive parameters: RAYLEIGH and MODAL=DIRECT (default).

If MODAL=DIRECT is selected the user can specify the viscous damping
factor ζ for each mode separately. This is the default. Direct damping is not
allowed in combination with nonzero single point constraints.

If RAYLEIGH is selected Rayleigh damping is applied in a global way, i.e.
the damping matrix [C] is taken to be a linear combination of the stiffness
matrix [K] and the mass matrix [M ]:

[C] = α [M ] + β [K] . (810)

The coefficients apply to all modes. The corresponding viscous damping
factor ζj for mode j amounts to:

ζj =
α

2ωj
+
βωj
2
. (811)

Consequently, α damps the low frequencies, β damps the high frequencies.
The *MODAL DAMPING keyword can be used in any step to redefine

damping values defined in a previous step.

First line:

• *MODAL DAMPING,RAYLEIGH

• Enter any needed parameters and their values.

Second line if MODAL=DIRECT is selected (or, since this is default, if no
additional parameter is entered):

• lowest mode of the range

• highest mode of the range (default is lowest mode of the range)

• viscous damping factor ζ for modes between (and including) the lowest
and highest mode of the range
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Repeat this line if needed.
Second line if RAYLEIGH is selected:

• not used (kept for compatibility reasons with ABAQUS)

• not used (kept for compatibility reasons with ABAQUS)

• Coefficient of the mass matrix α.

• Coefficient of the stiffness matrix β.

Example:

*MODAL DAMPING,RAYLEIGH

,,0.,2.e-4

indicates that the damping matrix is obtained by multiplying the stiffness
matrix with 2 · 10−4

Example files: beamdy3, beamdy4, beamdy5, beamdy6.

8.80 *MODAL DYNAMIC

Keyword type: step
This procedure is used to calculate the response of a structure subject to

dynamic loading. Although the deformation up to the onset of the dynamic
calculation can be nonlinear, this procedure is basically linear and assumes
that the response can be written as a linear combination of the lowest modes
of the structure. To this end, these modes must have been calculated in a
previous *FREQUENCY,STORAGE=YES step (not necessarily in the same
calculation). In the *MODAL DYNAMIC step the eigenfrequencies, modes
and mass matrix are recovered from the file jobname.eig. The time period of
the loading is characterized by its total length and the length of an increment.
Within each increment the loading is assumed to be linear, in which case the
solution is exact apart from modeling inaccuracies and the fact that not all
eigenmodes are used. The number of eigenmodes used is taken from the previous
*FREQUENCY step. Since a modal dynamic step is a perturbation step, all
previous loading is removed. The loading defined within the step is multiplied by
the amplitude history for each load as specified by the AMPLITUDE parameter
on the loading card, if any. If no amplitude applies all loading is applied at the
start of the step. Loading histories extending beyond the amplitude time scale
are extrapolated in a constant way. The absence of the AMPLITUDE parameter
on a loading card leads to a constant load.

There are four optional parameters: SOLVER, DIRECT, DELTMX, and
STEADY STATE. SOLVER determines the package used to solve for the steady
state solution in the presence of nonzero displacement boundary conditions. The
following solvers can be selected:
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• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, an error is
issued.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

The parameters DIRECT and DELTMX are linked. The parameter DI-
RECT controls the increment size. If DIRECT=NO the size of increments is
variable. It is determined by the requirement that the change in forces within
an increment should not exceed the value of DELTMX. Therefore, if the user
specifies DIRECT=NO a value for DELTMX has to be provided. Default is
DIRECT=YES (or, equivalently DIRECT without any argument). In the lat-
ter case the value of DELTMX is irrelevant. The modal forces are the scalar
product of the system force vector with each of the selected (mass normalized)
eigenmodes. The unit of the modal forces is force times square root of length.

The parameter STEADY STATE can be used to continue a modal dynamics
calculation until steady state has been reached. In that case the total time
period is set to 10.10 and does not have to be specified by the user. Instead,
the user defines the maximum allowable relative error for the solution to be
considered to be steady state. For instance, if the user sets this number to
0.01 steady state will be reached if the change in the largest solution variable
(displacements or temperatures, depending on the kind of analysis) does not
exceed 1%.

First line:

• *MODAL DYNAMIC
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• enter the SOLVER parameter and its value, if needed.

Second line if STEADY STATE is not active:

• Initial time increment. This value will be modified due to automatic incre-
mentation, if DIRECT=NO was specified. If no value is given, the initial
time increment equals the time period of the step.

• Time period of the step.

• Minimum time increment allowed. Only active if DIRECT=NO is speci-
fied. Default is the initial time increment or 1.e-10 times the time period
of the step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT=NO is speci-
fied. Default is 1.e+30.

Second line if STEADY STATE is active:

• Initial time increment. This value will be modified due to automatic in-
crementation if DIRECT=NO was specified.

• Relative error for steady state conditions to be satisfied.

• Minimum time increment allowed. Only active if DIRECT=NO is speci-
fied. Default is the initial time increment or 1.e-10 times the time period
of the step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT=NO is speci-
fied. Default is 1.e+30.

Example:

*MODAL DYNAMIC

1.E-5,1.E-4

defines a modal dynamic procedure with time increment 10−5 and time pe-
riod 10−4. The time increment is kept constant.

Example:

*MODAL DYNAMIC,STEADY STATE

1.E-5,1.E-2

defines a modal dynamic procedure with initial time increment 10−5 and
relative error 10−2. The time increment is kept constant.

Example files: beamdy1, beamdy2, beamdy3, beamdy4, beamdy5, beamdy6,
beamdy17.
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8.81 *MODEL CHANGE

Keyword type: step
With this option one can activate or deactivate elements and contact pairs.

Furthermore, one can turn the mechanical strain in existing elements into resid-
ual strain at the start of a new step.

One can deactivate or activate any element which has been defined in the
model section of the input deck. Before the first step all elements are by
default activated. There is one required parameter TYPE=ELEMENT and
there are two mutually exclusive parameters ADD and REMOVE. The ADD
parameter can be complemented by the modifiers STRAIN FREE or WITH
STRAIN (ADD=STRAIN FREE and ADD=WITH STRAIN, respectivily). If
ADD=STRAIN FREE is selected the strains at the time of adding the element,
if any, are modified by artificial initial strains such that the resulting stress
tensor is zero. In that sense the elements are stress free rather than strain
free. With ADD=WITH STRAIN the strains at the time of activation are not
modified. Default is STRAIN FREE.

To activate or deactivate contact between two surfaces, contact must have
been defined between these surfaces using a *CONTACT PAIR card before the
first step. By default all contact pairs are activated before the first step. There
is one required parameter TYPE=CONTACT PAIR and there are two mutually
exclusive parameters ADD and REMOVE.

Finally, one can turn the mechanical strain from the end of the last step into
a residual strain by using the parameter MECHSTRAINTORESIDUAL. If no
new loading is applied in the actual step this will result in zero stress provided
the force equilibrium is still satisfied. This is for instance the case when the
loading purely consists of prescribed displacements. No elements are added or
deleted.

First line:

• *MODEL CHANGE

• enter the required parameter TYPE=CONTACTPAIR or TYPE=ELEMENT
and one of the mutually exclusive parameters ADD and REMOVE.

Following line for TYPE=ELEMENT:

• List of elements and/or sets of elements to be activated or deactivated
(maximum 16 entries per line).

Repeat this line if needed

Following line for TYPE=CONTACT PAIR:

• Name of the slave surface (can be nodal or element face based).

• Name of the master surface (must be based on element faces).
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Only one such line is allowed; repeat *MODEL CHANGE if several contact
pairs are to be modified.

Example:

*MODEL CHANGE,TYPE=CONTACT PAIR,REMOVE

dep,ind

deactivates contact between the surfaces dep and ind.

Example files: modelchel,modelchel2

8.82 *MPC

Keyword type: model definition
With this keyword card a multiple point constraint is defined, usually a

nonlinear one. Right now, four different MPC’s can be selected.

• A plane MPC (name PLANE). This MPC specifies that all nodes listed
within this MPC card should stay in a plane. The first three nodes are
the defining nodes and should not lie on a line. For all subsequent nodes
a nonlinear MPC is generated expressing that they stay within the plane.
Notice that the plane can move during deformation, depending on the
motion of the defining nodes.

• A straight line MPC (name STRAIGHT). This MPC expresses that all
nodes listed within this MPC card should stay on a straight line. The
first two nodes are the defining nodes and should not coincide. For all
subsequent nodes two nonlinear MPC’s are generated expressing that they
stay on the straight line. Notice that the straight line can move during
deformation, depending on the motion of its defining nodes.

• A beam MPC (name BEAM). This MPC involves exactly two nodes the
distance between which is kept constant during the calculation.

• A user MPC (name to be defined by the user). With this option the user
can define new nonlinear MPC’s. Examples are given in Section 9.7, e.g.
the mean rotation MPC.

A *MPC card automatically triggers the NLGEOM parameter, i.e. a ge-
ometrically nonlinear calculation is performed, except if the MPC is a mean
rotation MPC.

There are no parameters for this keyword card.

First line:

• *MPC

Second line:
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• MPC name

• list of nodes participating in the MPC: maximum 15 entries. Zero entries
are discarded.

Following lines (as many as needed):

• list of nodes participating in the MPC: maximum 16 entries. Zero entries
are discarded.

Example:

*MPC

PLANE,3,8,15,39,14

specifies that nodes 3, 8, 15, 39 and 14 should stay in a plane. The plane is
defined by nodes 3, 8 and 15. They should not be co-linear.

Example files: beammr, beamplane, beamstraight.

8.83 *NETWORK MPC

Keyword type: model definition
With this option, an equation between variables in a network (total temper-

ature and total pressure at the end nodes of a network element, mass flow in
the middle node) can be created. The corresponding degrees of freedom are:

• total temperature: 0

• mass flow: 1

• total pressure: 2

The use of *NETWORKMPC requires the coding of subroutines networkmpc lhs.f
and networkmpc rhs.f by the user. In these routines the user defines the MPC
(linear or nonlinear) using the information entered underneath *NETWORK
MPC. The syntax is identical to *EQUATION except for an additional parame-
ter TYPE specifying the type of MPC. Using this type the user can distinguish
between different kinds of MPC in the networkmpc lhs.f and networkmpc rhs.f
subroutines.

For instance, suppose the user wants to define a network MPC of the form:

f := apt(node1) + bp2t (node2) = 0 (812)

specifying that the total pressure in node 1 should be (-b/a) times the square
of the total pressure in node 2. There are 2 degrees of freedom involved: dof 2
in node 1 and dof 2 in node 2. Underneath *NETWORK MPC the user defines
the coefficients and degrees of freedom of the terms involved:
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*NETWORK MPC,TYPE=QUADRATIC

2

node1,2,a,node2,2,b

All this information including the type of the MPC is transferred to the net-
workmpc lhs.f and networkmpc rhs.f subroutines. In networkmpc rhs.f the user
has to code the calculation of -f, in networkmpc lhs.f the calculation of the
derivative of f w.r.t. each degree of freedom occurring in the MPC. This has
been done for TYPE=QUADRATIC and the reader is referred to the source
code and example networkmpc.inp for further details.

8.84 *NO ANALYSIS

Keyword type: step
This procedure is used for input deck and geometry checking only. No cal-

culation is performed. There are no parameters.

First and only line:

• *NO ANALYSIS

Example:

*NO ANALYSIS

requests the no analysis procedure, in which the set of equations is built but
not solved (the Jacobian determinant is checked).

Example files: beamnoan.

8.85 *NODAL THICKNESS

Keyword type: model definition
This option is used to assign a thickness to a node or to a node set. There

are no parameters. This keyword only makes sense for nodes belonging to
plane stress/strain elements, shell elements and beam elements. For all of these
except for the beam elements one thickness value should be given. For plane
stress/strain and shell elements this is the thickness in normal direction. The
normal direction can be defined by using the *NORMAL keyword card. If
none is defined, the normal is calculated based on the geometrical data. For
beam elements two thicknesses can be defined: one in 1-direction and one in
2-direction. The 1-direction can be defined on the *BEAM SECTION card, the
2-direction by the *NORMAL card.

The *NODAL THICKNESS card takes precedence over any other thick-
ness definitions if the NODAL THICKNESS parameter was selected on the
*BEAM SECTION, *SHELL SECTION or *SOLID SECTION card. Right
now, it cannot be used for composite materials.
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For structures in which axisymmetric elements (type CAX*) are present any
thickness defined on the present card for plane stress/strain and shell elements
applies to 360◦.

First line:

• *NODAL THICKNESS

Following line:

• Node or set of nodes previously defined

• Thickness 1

• Thickness 2

Example:

*NODAL THICKNESS

22,0.05,0.08

assigns to node 22 the thickness 0.05 and 0.08. Any plane stress or shell
element containing node 22 will have a local thickness of 0.05 unit lengths at
node 22. Any beam element containing node 22 will have a thickness of 0.05 unit
length in local 1-direction and a thickness of 0.08 unit length in local 2-direction.

Example files: shell1.

8.86 *NODE

Keyword type: model definition
This option allows nodes and their coordinates to be defined. The parameter

NSET is optional and is used to assign the nodes to a node set. If the set already
exists, the nodes are ADDED to the set.

First line:

• *NODE

• Enter the optional parameter, if desired.

Following line:

• node number.

• Value of first coordinate.

• Value of second coordinate.

• Value of third coordinate.
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Repeat this line if needed.

Example:

*NODE,NSET=Nall

1,0.,0.,0.

2,1.,0.,0.

3,0.,1.,0.

defines three nodes with node number one, two and three and rectangular
coordinates (0.,0.,0.), (1.,0.,0.) and (0.,1.,0.) respectively.

Example files: beam8t, beamb, beamdy1.

8.87 *NODE FILE

Keyword type: step
This option is used to print selected nodal variables in file jobname.frd for

subsequent viewing by CalculiX GraphiX. The following variables can be se-
lected (the label is square brackets [] is the one used in the .frd file; for frequency
calculations with cyclic symmetry both a real and an imaginary part may be
stored, in all other cases only the real part is stored):

• CP [CP3DF]: Pressure coefficient in 3D compressible fluids.

• DEPT [DEPTH]: Fluid depth in channel networks.

• HCRI [HCRIT]: Critical depth in channel networks.

• MACH [M3DF]: Mach numbers in 3D compressible fluids.

• MAXU [MDISP]: Maximum displacements orthogonal to a given vector
at all times for *FREQUENCY calculations with cyclic symmetry. The
components of the vector are the coordinates of a node stored in a node
set with the name RAY. This node and node set must have been defined
by the user.

• MF [MAFLOW]: Mass flows in networks. The mass flow through a net-
work element is stored in the middle node of the element. In the end nodes
the mass flow is not unique, since more than two element can be connected
to the node. For end nodes the sum of the mass flow leaving the node
is stored. Notice that at nodes where mass flow is leaving the network
the value will be wrong if no proper exit element (with node number 0) is
attached to that node.

• NT [NDTEMP]: Temperatures. This includes both structural tempera-
tures and total fluid temperatures in a network.

• PNT [PNDTEMP]: Temperatures: magnitude and phase (only for *STEADY STATE DYNAMICS
calculations).
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• POT [ELPOT]: Electrical potential, only for electromagnetic calculations.

• PRF [PFORC]: External forces: magnitude and phase (only for *FREQUENCY
calculations with cyclic symmetry).

• PS [STPRES]: Static pressures in liquid networks.

• PSF [PS3DF]: Static pressures in 3D fluids.

• PT [TOPRES]: Total pressures in gas networks.

• PTF [PT3DF]: Total pressures in 3D fluids.

• PU [PDISP]: Displacements: magnitude and phase (only for *STEADY STATE DYNAMICS
calculations and *FREQUENCY calculations with cyclic symmetry).

• RF [FORC(real), FORCI(imaginary)]: External forces (only static forces;
dynamic forces, such as those caused by dashpots, are not included)

• RFL [RFL]: External concentrated heat sources.

• SEN [SEN]: Sensitivities.

• TS [STTEMP]: Static temperatures in networks.

• TSF [TS3DF]: Static temperatures in 3D fluids.

• TT [TOTEMP]: Total temperatures in networks.

• TTF [TT3DF]: Total temperatures in 3D fluids.

• TURB [TURB3DF]: Turbulence variables in 3D compressible fluids: ρk
and ρω.

• U [DISP(real), DISPI(imaginary)]: Displacements.

• V [VELO]: Velocities in dynamic calculations.

• VF [V3DF]: Velocities in 3D fluids.

The selected variables are stored for the complete model.
The external forces (key RF) are the sum of the reaction forces, concentrated

loads (*CLOAD) and distributed loads (*DLOAD) in the node at stake. Only
in the absence of concentrated loads in the node and distributed loads in any
element to which the node belongs, the external forces reduce to the reaction
forces. Forces induced by multiple point constraints are not calculated. Since
single point constraints defined in transformed coordinates are converted into
multiple point constraints in the global rectangular system, the force in a node
in which a SPC is defined in local coordinates are not correctly delivered upon
using the RF key in combination with the *NODE PRINT keyword card.

For frequency calculations with cyclic symmetry the eigenmodes are gener-
ated in pairs (different by a phase shift of 90 degrees). Only the first one of each
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pair is stored in the frd file. If U is selected (the displacements) two load cases
are stored in the frd file: a loadcase labeled DISP containing the real part of
the displacements and a loadcase labeled DISPI containing the imaginary part
of the displacements. For all other variables only the real part is stored.

The first occurrence of an *NODE FILE keyword card within a step wipes
out all previous nodal variable selections for file output. If no *NODE FILE
card is used within a step the selections of the previous step apply. If there is
no previous step, no nodal variables will be stored.

Notice that only values in nodes belonging to elements are stored. Val-
ues in nodes not belonging to any element (e.g. the rotational node in a
*RIGID BODY option) can only be obtained using *NODE PRINT.

There are nine optional parameters: FREQUENCY, FREQUENCYF, GLOBAL,
OUTPUT, OUTPUT ALL, TIME POINTS, NSET, LAST ITERATIONS and
CONTACT ELEMENTS. The parameters FREQUENCY and TIME POINTS
are mutually exclusive.

FREQUENCY applies to nonlinear calculations where a step can consist
of several increments. Default is FREQUENCY=1, which indicates that the
results of all increments will be stored. FREQUENCY=N with N an integer
indicates that the results of every Nth increment will be stored. The final results
of a step are always stored. If you only want the final results, choose N very
big. The value of N applies to *OUTPUT,*ELEMENT OUTPUT, *EL FILE,
*ELPRINT, *NODE OUTPUT, *NODE FILE, *NODE PRINT, *SECTION PRINT,*CONTACT OUTPUT,
*CONTACT FILE and *CONTACT PRINT. If the FREQUENCY parameter
is used for more than one of these keywords with conflicting values of N, the
last value applies to all. A frequency parameter stays active across several steps
until it is overwritten by another FREQUENCY value or the TIME POINTS
parameter.

The 3D fluid analogue of FREQUENCY is FREQUENCYF. In coupled cal-
culations FREQUENCY applies to the thermomechanical output, FREQUEN-
CYF to the 3D fluid output.

With the parameter GLOBAL you tell the program whether you would like
the results in the global rectangular coordinate system or in the local nodal
system. If an *TRANSFORM card is applied to the node at stake, this card
defines the local system. If no *TRANSFORM card is applied to the element,
the local system coincides with the global rectangular system. Default value for
the GLOBAL parameter is GLOBAL=YES, which means that the results are
stored in the global system. If you prefer the results in the local system, specify
GLOBAL=NO.

The parameter OUTPUT can take the value 2D or 3D. This has only effect
for 1d and 2d elements such as beams, shells, plane stress, plane strain and ax-
isymmetric elements AND provided it is used in the first step. If OUTPUT=3D,
the 1d and 2d elements are stored in their expanded three-dimensional form.
In particular, the user has the advantage to see his/her 1d/2d elements with
their real thickness dimensions. However, the node numbers are new and do not
relate to the node numbers in the input deck. Once selected, this parameter is
active in the complete calculation. If OUTPUT=2D the fields in the expanded
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elements are averaged to obtain the values in the nodes of the original 1d and
2d elements. In particular, averaging removes the bending stresses in beams
and shells. Therefore, default for beams and shells is OUTPUT=3D, for plane
stress, plane strain and axisymmetric elements it is OUTPUT=2D. For axisym-
metric structures and OUTPUT=2D the mass flow (MF) and the external force
(RF) are stored for 360◦, else it is stored for the displayed 3D segment, i.e. 2◦.
If OUTPUT=3D is selected, the parameter NSET is deactivated.

The parameter OUTPUT ALL specifies that the data has to be stored for
all nodes, including those belonging to elements which have been deactivated.
Default is storage for nodes belonging to active elements only.

With the parameter TIME POINTS a time point sequence can be referenced,
defined by a *TIME POINTS keyword. In that case, output will be provided for
all time points of the sequence within the step and additionally at the end of the
step. No other output will be stored and the FREQUENCY parameter is not
taken into account. Within a step only one time point sequence can be active.
If more than one is specified, the last one defined on any of the keyword cards
*NODE FILE, *EL FILE, *NODE PRINT or *EL PRINT will be active. The
TIME POINTS option should not be used together with the DIRECT option on
the procedure card. The TIME POINTS parameters stays active across several
steps until it is replaced by another TIME POINTS value or the FREQUENCY
parameter.

The specification of a node set with the parameter NSET limits the output
to the nodes contained in the set. For cyclic symmetric structures the usage of
the parameter NGRAPH on the *CYCLIC SYMMETRY MODEL card leads
to output of the results not only for the node set specified by the user (which
naturally belongs to the base sector) but also for all corresponding nodes of the
sectors generated by the NGRAPH parameter. Notice that for cyclic symmetric
structures the use of NSET is mandatory.

The parameter LAST ITERATIONS leads to the storage of the displace-
ments in all iterations of the last increment in a file with name ResultsFor-
LastIterations.frd (can be opened with CalculiX GraphiX). This is useful for
debugging purposes in case of divergence. No such file is created if this param-
eter is absent.

Finally, the parameter CONTACT ELEMENTS stores the contact elements
which have been generated in each iteration in a file with the name jobname.cel.
When opening the frd file with CalculiX GraphiX these files can be read with
the command “read jobname.cel inp” and visualized by plotting the elements
in the sets contactelements stα inβ atγ itδ, where α is the step number, β the
increment number, γ the attempt number and δ the iteration number.

First line:

• *NODE FILE

• Enter any needed parameters and their values.

Second line:
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• Identifying keys for the variables to be printed, separated by commas.

Example:

*NODE FILE,TIME POINTS=T1

RF,NT

requests the storage of reaction forces and temperatures in the .frd file for
all time points defined by the T1 time points sequence.

Example files: beampt, beampo1.

8.88 *NODE OUTPUT

Keyword type: step
This option is used to print selected nodal variables in file jobname.frd for

subsequent viewing by CalculiX GraphiX. The options and its use are identical
with the *NODE FILE keyword, however, the resulting .frd file is a mixture of
binary and ASCII (the .frd file generated by using *NODE FILE is completely
ASCII). This has the advantage that the file is smaller and can be faster read
by cgx.

If FILE and OUTPUT cards are mixed within one and the same step the
last such card will determine whether the .frd file is completely in ASCII or a
mixture of binary and ASCII.

Example:

*NODE OUTPUT,FREQUENCY=2,TIME POINTS=T1

RF,NT

requests the storage of reaction forces and temperatures in the .frd file every
second increment. In addition, output will be stored for all time points defined
by the T1 time points sequence.

Example files: cubespring.

8.89 *NODE PRINT

Keyword type: step
This option is used to print selected nodal variables in file jobname.dat. The

following variables can be selected:

• Displacements (key=U)

• Structural temperatures and total temperatures in networks (key=NT or
TS; both are equivalent)

• Static temperatures in 3D fluids (key=TSF)
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• Total temperatures in 3D fluids (key=TTF)

• Pressures in networks (key=PN). These are the total pressures for gases,
static pressures for liquids and liquid depth for channels. The fluid section
types dictate the kind of network.

• Static pressures in 3D fluids (key=PSF)

• Total pressures in 3D fluids (key=PTF)

• Mach numbers in compressible 3D fluids (key=MACH)

• Pressure coefficients in compressible 3D fluids (key=CP)

• Velocities in 3D fluids (key=VF)

• Mass flows in networks (key=MF)

• External forces (key=RF) (only static forces; dynamic forces, such as those
caused by dashpots, are not included)

• External concentrated heat sources (key=RFL)

The external forces are the sum of the reaction forces, concentrated loads
(*CLOAD) and distributed loads (*DLOAD) in the node at stake. Only in
the absence of concentrated loads in the node and distributed loads in any
element to which the node belongs, the external forces reduce to the reaction
forces. Forces induced by multiple point constraints are not calculated. Since
single point constraints defined in transformed coordinates are converted into
multiple point constraints in the global rectangular system, the force in a node
in which a SPC is defined in local coordinates are not correctly delivered upon
using the RF key in combination with the *NODE PRINT keyword card.

There are six parameters, FREQUENCY, FREQUENCYF, NSET, TO-
TALS, GLOBAL and TIME POINTS. The parameter NSET is required, defin-
ing the set of nodes for which the displacements should be printed. If this card
is omitted, no values are printed. Several *NODE PRINT cards can be used
within one and the same step.

The parameters FREQUENCY and TIME POINTS are mutually exclusive.
The parameter FREQUENCY is optional, and applies to nonlinear cal-

culations where a step can consist of several increments. Default is FRE-
QUENCY=1, which indicates that the results of all increments will be stored.
FREQUENCY=N with N an integer indicates that the results of every Nth
increment will be stored. The final results of a step are always stored. If
you only want the final results, choose N very big. The value of N applies to
*OUTPUT,*ELEMENT OUTPUT, *EL FILE, *ELPRINT, *NODE OUTPUT,
*NODE FILE, *NODE PRINT, *SECTION PRINT,*CONTACT OUTPUT, *CONTACT FILE
and *CONTACT PRINT. If the FREQUENCY parameter is used for more than
one of these keywords with conflicting values of N, the last value applies to all.
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A frequency parameter stays active across several steps until it is overwritten
by another FREQUENCY value or the TIME POINTS parameter.

The 3D fluid analogue of FREQUENCY is FREQUENCYF. In coupled cal-
culations FREQUENCY applies to the thermomechanical output, FREQUEN-
CYF to the 3D fluid output.

The parameter TOTALS only applies to external forces. If TOTALS=YES
the sum of the external forces for the whole node set is printed in addition to
their value for each node in the set separately. If TOTALS=ONLY is selected the
sum is printed but the individual nodal contributions are not. If TOTALS=NO
(default) the individual contributions are printed, but their sum is not. Notice
that the sum is always written in the global rectangular system, irrespective of
the value of the GLOBAL parameter.

With the optional parameter GLOBAL you tell the program whether you
would like the results in the global rectangular coordinate system or in the
local nodal system. If an *TRANSFORM card is applied to the node at stake,
this card defines the local system. If no *TRANSFORM card is applied to the
element, the local system coincides with the global rectangular system. Default
value for the GLOBAL parameter is GLOBAL=NO, which means that the
results are stored in the local system. If you prefer the results in the global
system, specify GLOBAL=YES. If the results are stored in the local system the
character ’L’ is listed at the end of the line.

With the parameter TIME POINTS a time point sequence can be referenced,
defined by a *TIME POINTS keyword. In that case, output will be provided for
all time points of the sequence within the step and additionally at the end of the
step. No other output will be stored and the FREQUENCY parameter is not
taken into account. Within a step only one time point sequence can be active.
If more than one is specified, the last one defined on any of the keyword cards
*NODE FILE, *EL FILE, *NODE PRINT, *EL PRINT or *FACE PRINT will
be active. The TIME POINTS option should not be used together with the
DIRECT option on the procedure card. The TIME POINTS parameters stays
active across several steps until it is replaced by another TIME POINTS value
or the FREQUENCY parameter.

The first occurrence of an *NODE PRINT keyword card within a step wipes
out all previous nodal variable selections for print output. If no *NODE PRINT
card is used within a step the selections of the previous step apply, if any.

Notice that some of the keys apply to specific domains. For instance, PS and
V can only be used for 3D fluids, PT and MF only for networks. Furthermore,
PT only makes sense for the vertex nodes of the network elements, whereas MF
only applies to the middle nodes of network elements. It is the responsibility of
the user to make sure that the sets (s)he specifies contain the right nodes. For
nodes not matching the key the printed values are meaningless. If the model
contains axisymmetric elements the mass flow applies to a segment of 2◦. So
for the total flow this value has to be multiplied by 180.

First line:

• *NODE PRINT
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• Enter the parameter NSET and its value.

Second line:

• Identifying keys for the variables to be printed, separated by commas.

Example:

*NODE PRINT,NSET=N1

RF

requests the storage of the reaction forces in the nodes belonging to (node)
set N1 in the .dat file.

Example files: beampkin, beamrb.

8.90 *NORMAL

Keyword type: model definition
With this option a normal can be defined for a (node,element) pair. This

only makes sense for shell elements and beam elements. For beam elements the
normal direction is the local 2-direction. If no normal is specified in a node it is
calculated on basis of the local geometry. If the normal defined by the user has
not unit length, it will be normalized. There are no parameters for this keyword
card.

First line:

• *NORMAL

• Element number

• Node number

• Global x-coordinate of the normal

• Global y-coordinate of the normal

• Global z-coordinate of the normal

Example:

*NORMAL

5,18,0.707,0.,0.707

Defines a normal with components (0.707,0.,0.707) in node 18 of element 5.

Example files: shellnor.
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8.91 *NSET

Keyword type: model definition
This option is used to assign nodes to a node set. The parameter NSET

containing the name of the set is required (maximum 80 characters), whereas
the parameter GENERATE (without value) is optional. If present, nodal ranges
can be expressed by their initial value, their final value, and an increment. If a
set with the same name already exists, it is reopened and complemented. The
name of a set is case insensitive. Internally, it is modified into upper case and
a ’N’ is appended to denote it as node set. Nodes are internally stored in the
order they are entered, no sorting is performed.

The following names are reserved (i.e. cannot be used by the user for other
purposes than those for which they are reserved):

• RAY: node set needed by MAXU (cf. *NODE FILE).

• STRESSDOMAIN: node set needed by MAXS (cf. *EL FILE).

• STRAINDOMAIN: node set needed by MAXE (cf. *EL FILE).

First line:

• *NSET

• Enter any needed parameters and their values.

Following line if the GENERATE parameter is omitted:

• List of nodes and/or sets of nodes previously defined to be assigned to this
node set (maximum 16 entries per line).

Repeat this line if needed.
Following line if the GENERATE parameter is included:

• First node in set.

• Last node in set.

• Increment in nodal numbers between nodes in the set. Default is 1.

Repeat this line if needed.

Example:

*NSET,NSET=N1

1,8,831,208

*NSET,NSET=N2

100,N1

assigns the nodes with number 1, 8, 831 and 208 to (node) set N1 and the
nodes with numbers 1, 8, 831, 208 (= set N1) and 100 to set N2.

Example files: segmentm, shell2.
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8.92 *OBJECTIVE

Keyword type: step
With *OBJECTIVE one can define the objective functions in a sensitivity

analysis. Right now the following objectives are allowed for TYPE=COORDINATE
design variables:

• DISPLACEMENT: the square root of the sum of the square of the dis-
placements in all nodes of the structure or of a subset if a node set is
defined

• EIGENFREQUENCY: all eigenfrequencies calculated in a previous *FREQUENCY
step (actually the eigenvalues, which are the square of the eigenfrequen-
cies)

• MASS: mass of the total structure or of a subset if an element set is defined

• STRAIN ENERGY: internal energy of the total structure or of a subset
if an element set is defined

• STRESS: the maximum von Mises stress of the total structure or of a
subset if a node set is defined. The maximum is approximated by the
Kreisselmeier-Steinhauser function

f =
1

ρ
ln
∑

i

eρ
σi
σ̄ , (813)

where σi is the von Mises stress in node i, ρ and σ̄ are user-defined pa-
rameters. The higher ρ the closer f is to the actual maximum (a value
of 10 is recommended; the higher this value, the sharper the turns in the
function). σ̄ is the target stress, it should not be too far away from the
actual maximum.

and for TYPE=ORIENTATION design variables:

• DISPLACEMENT: the displacements in all nodes.

• EIGENFREQUENCY: all eigenfrequencies (actually the eigenvalues, which
are the square of the eigenfrequencies) and eigenmodes calculated in a pre-
vious *FREQUENCY step.

• GREEN: the Green functions calculated in a previous *GREEN step.

• MASS: mass of the total structure or of a subset if an element set is defined

• STRAIN ENERGY: internal energy of the total structure or of a subset
if an element set is defined

• STRESS: the stresses in all nodes.
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There is one optional parameter TARGET. If TARGET=MIN (= default)
the sensivity is calculated for a minization of the objective, if TARGET=MAX
for a maximization. The difference comes into play when determining which
constraints are active. Exactly one *OBJECTIVE keyword is required in a
*SENSITIVITY step. This keyword has to be followed by at least one objective
function. If a *CONSTRAINT card is used within the step exactly one objective
function must be defined within the step.

First line:

• *OBJECTIVE.

Second line:

• an objective function

• an element or node set, if appropriate

• ρ for the Kreisselmeier-Steinhauser function (only for the coordinates as
design variables and the stress as target)

• σ̄ for the Kreisselmeier-Steinhauser function (only for the coordinates as
design variables and the stress as target)

Repeat this line if needed.
The objective functions STRAIN ENERGY, MASS, DISPLACEMENT and

STRESS require a *STATIC step before the *SENSITIVITY step, the objective
function EIGENFREQUENCY requires a *FREQUENCY step immediately
preceding the *SENSITIVITY step and the objective function GREEN requires
a *GREEN step before the *SENSITIVITY step. Therefore, the {STRAIN EN-
ERGY, MASS, DISPLACEMENT, STRESS} objective functions, the {EIGENFREQUENCY}
objective function and the {GREEN} objective function are mutually exclusive
within one and the same *SENSITIVITY step.

Example:

*OBJECTIVE

DISPLACEMENT,N1

defines the square root of the sum of the square of the displacements in set
N1 to be the objective function.

Example files: sensitivity I.

8.93 *ORIENTATION

Keyword type: model definition
This option may be used to specify a local axis system X’-Y’-Z’ to be used for

defining material properties. For now, rectangular and cylindrical systems can
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Figure 174: Definition of a rectangular coordinate system

be defined, triggered by the parameter SYSTEM=RECTANGULAR (default)
and SYSTEM=CYLINDRICAL.

A rectangular system is defined by specifying a point a on the local X’ axis
and a point b belonging to the X’-Y’ plane but not on the X’ axis. A right hand
system is assumed (Figure 174).

When using a cylindrical system two points a and b on the axis must be
given. The X’ axis is in radial direction, the Z’ axis in axial direction from point
a to point b, and Y’ is in tangential direction such that X’-Y’-Z’ is a right hand
system (Figure 175).

Instead of listing the coordinates of points a and b explicitly on the line
underneath *ORIENTATION, the user can specify a distribution defined by a
*DISTRIBUTION card.

The parameter NAME, specifying a name for the orientation so that it can
be used in an element property definition (e.g. *SOLID SECTION) is required
(maximum 80 characters).

Notice that a shell ALWAYS induces a local element coordinate system,
independent of whether an *ORIENTATION applies or not. For details the
user is referred to Section 6.2.14.

For rectangular systems an additional rotation about one of the local axes
can be specified on the second line underneath the *ORIENTATION card.

First line:

• *ORIENTATION
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Figure 175: Definition of a cylindrical coordinate system

• Enter the required parameter NAME, and the optional parameter SYS-
TEM if needed.

Second line (explicit definition of a and b):

• X-coordinate of point a.

• Y-coordinate of point a.

• Z-coordinate of point a.

• X-coordinate of point b.

• Y-coordinate of point b.

• Z-coordinate of point b.

Second line (use of a distribution):

• name of the distribution.

Third line (optional for local rectangular systems)

• local axis about which an additional rotation is to be performed

• angle of rotation in degrees.

Example:

*ORIENTATION,NAME=OR1,SYSTEM=CYLINDRICAL

0.,0.,0.,1.,0.,0.
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defines a cylindrical coordinate system with name OR1 and axis through the
points (0.,0.,0.) and (1.,0.,0.). Thus, the x-axis in the global coordinate system
is the axial direction in the cylindrical system.

Example files: beampo2.

8.94 *OUTPUT

Keyword type: model definition
This keyword is provided for compatibility with ABAQUS. The only param-

eters are FREQUENCY and FREQUENCYF. They are optional.
The parameter FREQUENCY applies to nonlinear calculations where a step

can consist of several increments. Default is FREQUENCY=1, which indicates
that the results of all increments will be stored. FREQUENCY=N with N an
integer indicates that the results of every Nth increment will be stored. The
final results of a step are always stored. If you only want the final results, choose
N very big. The value of N applies to *OUTPUT,*ELEMENT OUTPUT,
*EL FILE, *ELPRINT, *NODE OUTPUT, *NODE FILE, *NODE PRINT, *SECTION PRINT,*CONT
*CONTACT FILE and *CONTACT PRINT. If the FREQUENCY parameter
is used for more than one of these keywords with conflicting values of N, the
last value applies to all. A frequency parameter stays active across several steps
until it is overwritten by another FREQUENCY value or the TIME POINTS
parameter.

The 3D fluid analogue of FREQUENCY is FREQUENCYF. In coupled cal-
culations FREQUENCY applies to the thermomechanical output, FREQUEN-
CYF to the 3D fluid output.

8.95 *PHYSICAL CONSTANTS

Keyword type: model definition
This keyword is used to define the Stefan–Boltzmann constant, absolute zero

temperature and the universal gravitational constant in the user’s units. For 3D
fluid calculations only absolute zero temperature is needed, for radiation type
boundary conditions both absolute zero temperature and the Stefan–Boltzmann
constant must be defined. They are defined by the two parameters ABSOLUTE
ZERO and STEFAN BOLTZMANN. The universal gravitational constant is
required for general gravitational loading, e.g. for the calculation of orbits and
is defined by the parameter NEWTON GRAVITATION.

First line:

• *PHYSICAL CONSTANTS

Example:

*PHYSICAL CONSTANTS, ABSOLUTE ZERO=0, STEFAN BOLTZMANN=5.669E-8
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for time in s, length in m, mass in kg and temperature in K (unit of the
Stefan-Boltzmann constant: Wm−2K−4.

Example:

*PHYSICAL CONSTANTS, NEWTON GRAVITY=6.67E-11

for time in s, length in m, mass in kg and temperature in K (unit of the
universal gravitational constant: Nm2kg−2).

Example files: beamhtbf, oneel20cf, cubenewt.

8.96 *PLASTIC

Keyword type: model definition, material
This option is used to define the plastic properties of an incrementally plastic

material. There is one optional parameter HARDENING. Default is HARD-
ENING=ISOTROPIC, other values are HARDENING=KINEMATIC for kine-
matic hardening, HARDENING=COMBINED for combined isotropic and kine-
matic hardening and HARDENING=USER for user defined hardening curves.
All constants may be temperature dependent. The card should be preceded by a
*ELASTIC card within the same material definition, defining the isotropic elas-
tic properties of the material. User defined hardening curves should be defined
in the user subroutine uhardening.f

If the elastic data is isotropic, the large strain viscoplastic theory treated
in [78] and [79] is applied. If the elastic data is orthotropic, the infinitesimal
strain model discussed in Section 6.8.13 is used. Accordingly, for an elastically
orthotropic material the hardening can be at most linear. Furthermore, if the
temperature data points for the hardening curves do not correspond to the
*ELASTIC temperature data points, they are interpolated at the latter points.
Accordingly, for an elastically orthotropic material, it is advisable to define the
hardening curves at the same temperatures as the elastic data.

For the selection of plastic output variables the reader is referred to Section
6.8.7.

First line:

• *PLASTIC

• Enter the HARDENING parameter and its value, if needed

Following sets of lines define the isotropic hardening curve for HARDEN-
ING=ISOTROPIC and the kinematic hardening curve for HARDENING=KINEMATIC
or HARDENING=COMBINED: First line in the first set:

• Von Mises stress.

• Equivalent plastic strain.
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• Temperature.

Use as many lines in the first set as needed to define the complete hardening
curve for this temperature.

Use as many sets as needed to define complete temperature dependence.
For the definition of the isotropic hardening curve for HARDENING=COMBINED

the keyword *CYCLIC HARDENING is used.

Example:

*PLASTIC

800.,0.,273.

900.,0.05,273.

1000.,0.15,273.

700.,0.,873.

750.,0.04,873.

800.,0.13,873.

defines two stress-strain curves: one for temperature T=273. and one for
T=873. The curve at T=273 connects the points (800.,0.), (900.,0.05) and
(1000.,0.15), the curve at T=873 connects (700.,0.), (750.,0.04) and (800.,0.13).
Notice that the first point on the curves represents first yielding and must give
the Von Mises stress for a zero equivalent plastic strain.

Example files: beampd, beampiso, beampkin, beampt.

8.97 *PRE-TENSION SECTION

Keyword type: model definition
This option is used to define a pre-tension in a bolt or similar structure.

There are three parameters: SURFACE, ELEMENT and NODE. The parameter
NODE is required as well as one of the parameters SURFACE and ELEMENT.
The latter two parameters are mutually exclusive.

With the parameter SURFACE an element face surface can be defined on
which the pre-tension acts. This is usually a cross section of the bolt. This
option is used for volumetric elements. Alternatively, the bolt can be modeled
with just one linear beam element (type B31). In that case the parameter
ELEMENT is required pointing to the number of the beam element.

The parameter NODE is used to define a reference node. This node should
not be used elsewhere in the model. In particular, it should not belong to
any element. The coordinates of this node are immaterial. The first degree of
freedom of this node is used to define a pre-tension force with *CLOAD or a
differential displacement with *BOUNDARY. The force and the displacements
are applied in the direction of a vector, which is the normal to the surface if the
SURFACE parameter is used and the axis of the beam element if the ELEMENT
parameter is used. This vector can be defined underneath the *PRE-TENSION
SECTION keyword. If the vector is specified away from the elements whose
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faces belong to the surface (volumetric case) or in the direction going from node
1 to node 2 in the element definition (for the beam element), a positive force
or positive displacements correspond to tension in the underlying structure.
If no such vector is defined by the user, it is calculated automatically as the
mean of the normals away from the elements whose faces belong to the surface
(volumetric case) or as the vector extending from node 1 to node 2 (beam case).

Notice that in the volumetric case the surface must be defined by element
faces, it cannot be defined by nodes. Furthermore, the user should make sure
that

• the surface does not contain edges or vertices of elements which do not
have a face in common with the surface. Transgression of this rule will
lead to unrealistic stress concentrations.

• the surface is not adjacent to quadratic elements the faces of which belong
to a contact surface.

Internally, the nodes belonging to the element face surface are copied and
a linear multiple point constraint is generated between the nodes expressing
that the mean force is the force specified by the user (or similarly, the mean
differential displacement is the one specified by the user). Therefore, if the
user visualizes the results with CalculiX GraphiX, a gap will be noticed at the
location of the pre-tension section.

For beam elements a linear multiple point constraint is created between the
nodes belonging to the beam element. The beam element itself is deleted,i.e.
it will not show up in the frd-file. Therefore, no other boundary conditions or
loads can be applied to such elements. Their only reason of existence is to create
an easy means in which the user can define a pretension. To this end the nodes
of the beam element (e.g. representing a bolt) should be connected by linear
equations or a *DISTRIBUTING COUPLING card to nodes of the structures
to be held together.

First line:

• *PRE-TENSION SECTION

• Enter the NODE and the SURFACE or ELEMENT parameter and their
values

Following line (optional):

• First component in global coordinates of the normal on the surface

• Second component in global coordinates of the normal on the surface

• Third component in global coordinates of the normal on the surface

Example:

*PRE-TENSION SECTION,SURFACE=SURF1,NODE=234

1.,0.,0.
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defines a pre-tension section consisting of the surface with the name SURF1
and reference node 234. The normal on the surface is defined as the positive
global x-direction.

Example files: pret1, pret2, pret3.

8.98 *RADIATE

Keyword type: step
This option allows the specification of radiation heat transfer of a surface at

absolute temperature θ (i.e. in Kelvin) and with emissivity ǫ to the environment
at absolute temperature θ0. The environmental temperature θ0 is also called the
sink temperature. If the user wishes so, it can be calculated by cavity radiation
considerations from the temperatures of other visible surfaces. The radiation
heat flux q satisfies:

q = ǫσ(θ4 − θ40), (814)

where σ = 5.67 × 10−8W/m2K4 is the Stefan–Boltzmann constant. The
emissivity takes values between 0 and 1. Blackbody radiation is characterized
by ǫ = 1. In CalculiX, the radiation is assumed to be diffuse (it does not depend
on the angle under which it is emitted from the surface) and gray (it does
not depend on the wavelength of the radiation). Selecting radiation type flux
requires the inclusion of the *PHYSICAL CONSTANTS card, which specifies
the value of the Stefan–Boltzmann constant and the value of absolute zero in
the user’s units. In order to specify which face the flux is entering or leaving
the faces are numbered. The numbering depends on the element type.

For hexahedral elements the faces are numbered as follows (numbers are
node numbers):

• Face 1: 1-2-3-4

• Face 2: 5-8-7-6

• Face 3: 1-5-6-2

• Face 4: 2-6-7-3

• Face 5: 3-7-8-4

• Face 6: 4-8-5-1

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1
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and for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-4

• Face 4: 4-1

• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for triangular plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-1

• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for quadrilateral shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-4

• Face 6: 4-1

for triangular shell elements:

• Face NEG or 1: in negative normal direction



550 8 INPUT DECK FORMAT

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-1

The labels NEG and POS can only be used for uniform, non-cavity radiation
and are introduced for compatibility with ABAQUS. Notice that the labels 1
and 2 correspond to the brick face labels of the 3D expansion of the shell (Figure
85).

for beam elements:

• Face 1: in negative 1-direction

• Face 2: in positive 1-direction

• Face 3: in positive 2-direction

• Face 5: in negative 2-direction

The beam face numbers correspond to the brick face labels of the 3D expansion
of the beam (Figure 90).

Radiation flux characterized by a uniform emissivity is entered by the dis-
tributed flux type label Rx where x is the number of the face, followed by the
sink temperature and the emissivity. If the emissivity is nonuniform the label
takes the form RxNUy and a user subroutine radiate.f must be provided spec-
ifying the value of the emissivity and the sink temperature. The label can be
up to 17 characters long. In particular, y can be used to distinguish different
nonuniform emissivity patterns (maximum 13 characters).

If the user does not know the sink temperature but rather prefers it to
be calculated from the radiation from other surfaces, the distributed flux type
label RxCR should be used (CR stands for cavity radiation). In that case,
the temperature immediately following the label is considered as environment
temperature for viewfactors smaller than 1, what is lacking to reach the value
of one is considered to radiate towards the environment. Sometimes, it is useful
to specify that the radiation is closed. This is done by specifying a value of the
environment temperature which is negative if expressed on the absolute scale
(Kelvin). Then, the viewfactors are scaled to one exactly. For cavity radiation
the sink temperature is calculated based on the interaction of the surface at
stake with all other cavity radiation surfaces (i.e. with label RyCR, y taking a
value between 1 and 6). Surfaces for which no cavity radiation label is specified
are not used in the calculation of the viewfactor and radiation flux. Therefore, it
is generally desirable to specify cavity radiation conditions on ALL element faces
(or on none). If the emissivity is nonuniform, the label reads RxCRNUy and a
subroutine radiate.f specifying the emissivity must be provided. The label can
be up to 17 characters long. In particular, y can be used to distinguish different
nonuniform emissivity patterns (maximum 11 characters).
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Optional parameters are OP, AMPLITUDE, TIME DELAY, RADIATION
AMPLITUDE, RADIATION TIME DELAY, ENVNODE and CAVITY. OP
takes the value NEW or MOD. OP=MOD is default and implies that the ra-
diation fluxes on different faces are kept over all steps starting from the last
perturbation step. Specifying a radiation flux on a face for which such a flux
was defined in a previous step replaces this value. OP=NEW implies that all
previous radiation flux is removed. If multiple *RADIATE cards are present in
a step this parameter takes effect for the first *RADIATE card only.

The AMPLITUDE parameter allows for the specification of an amplitude
by which the sink temperature is scaled (mainly used for dynamic calculations).
Thus, in that case the sink temperature values entered on the *RADIATE card
are interpreted as reference values to be multiplied with the (time dependent)
amplitude value to obtain the actual value. At the end of the step the reference
value is replaced by the actual value at that time. In subsequent steps this
value is kept constant unless it is explicitly redefined or the amplitude is defined
using TIME=TOTAL TIME in which case the amplitude keeps its validity.
The AMPLITUDE parameter has no effect on nonuniform fluxes and cavity
radiation.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

The RADIATION AMPLITUDE parameter allows for the specification of
an amplitude by which the emissivity is scaled (mainly used for dynamic cal-
culations). Thus, in that case the emissivity values entered on the *RADIATE
card are interpreted as reference values to be multiplied with the (time depen-
dent) amplitude value to obtain the actual value. At the end of the step the
reference value is replaced by the actual value at that time. In subsequent steps
this value is kept constant unless it is explicitly redefined or the amplitude is
defined using TIME=TOTAL TIME in which case the amplitude keeps its va-
lidity. The RADIATION AMPLITUDE parameter has no effect on nonuniform
fluxes.

The RADIATION TIME DELAY parameter modifies the RADIATION AM-
PLITUDE parameter. As such, RADIATION TIME DELAY must be preceded
by an RADIATION AMPLITUDE name. RADIATION TIME DELAY is a
time shift by which the RADIATION AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a RADIATION TIME DELAY
of 10 means that for time t the amplitude is taken which applies to time t-10.
The RADIATION TIME DELAY parameter must only appear once on one and
the same keyword card.

The ENVNODE option applies for uniform radiation conditions only and
allows the user to specify a sink node instead of a sink temperature. In that
case, the sink temperature is defined as the temperature of the sink node.

Finally, the CAVITY parameter can be used to separate closed cavities.
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For the calculation of the viewfactors for a specific face, only those faces are
considered which:

• are subject to cavity radiation

• belong to the same cavity.

The name of the cavity can consist of maximum 3 characters (including
numbers). Default cavity is ’ ’ (empty name). Since the calculation of the view-
factors is approximate, it can happen that, even if a cavity is mathematically
closed, radiation comes in from outside. To prevent this, one can define the
faces of the cavity as belonging to one and the same cavity, distinct from the
cavities other faces belong to.

Notice that in case an element set is used on any line following *RADIATE
this set should not contain elements from more than one of the following groups:
{plane stress, plane strain, axisymmetric elements}, {beams, trusses}, {shells,
membranes}, {volumetric elements}.

In order to apply radiation conditions to a surface the element set label
underneath may be replaced by a surface name. In that case the “x” in the
radiation flux type label takes the value zero.

If more than one *RADIATE card occurs in the input deck the following
rules apply: if a *RADIATE applies to the same node and the same face as in a
previous application then the prevous value and previous amplitude (including
radiation amplitude) are replaced.

First line:

• *RADIATE

• Enter any needed parameters and their value

Following line for uniform, explicit radiation conditions:

• Element number or element set label.

• Radiation flux type label (Rx).

• Sink temperature, or, if ENVNODE is active, the sink node.

• Emissivity.

Repeat this line if needed.
Following line for nonuniform, explicit radiation conditions:

• Element number or element set label.

• Radiation flux type label (RxNUy).

Repeat this line if needed.
Following line for cavity radiation conditions with uniform emissivity and

sink temperature:
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• Element number or element set label.

• Radiation flux type label (RxCR).

• Sink temperature, or, if ENVNODE is active, the sink node.

• Emissivity.

Repeat this line if needed.
Following line for cavity radiation conditions with nonuniform emissivity and

sink temperature:

• Element number or element set label.

• Radiation flux type label (RxCRNy).

Repeat this line if needed.

Example:

*RADIATE

20,R1,273.,.5

assigns a radiation flux to face 1 of element 20 with an emissivity of 0.5 and
a sink temperature of 273.

Example files: oneel8ra, beamhtcr.

8.99 *REFINE MESH

Keyword type: step
With this keyword the part of the input mesh consisting of C3D4 and C3D10

elements is refined according to certain criteria and stored in file jobname.fin.
All other element types in the input mesh are not considered. Subsequently,
the user can replace the tetrahedral elements in his input deck by the newly
generated elements and restart a calculation in order to get a more accurate
results. This has to be done manually.

For the refinement the available criteria are the size of the displacements
(label U), the velocity (label V), the stress (label S), the total strain (label E),
the mechanical strain (label ME), the equivalent plastic strain (label PEEQ), the
energy density (label ENER), the heat flux (label HFL), the gradient based error
estimator (label ERR) or a user-defined function (user subroutine ucalculateh.f).
The size is defined as the absolute value if it concerns a scalar quantity and the
norm if it concerns a vector or tensor.

With the parameter LIMIT the user defines a positive value above which
refinement is requested. For instance, if the limit is 50. and the value of the
selected criterion is 200. a refinement by a factor of 4 is aimed at. The refinement
is done iteratively (3 times), and each iteration induces a maximum refinement
by a factor of 2.
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If the tetrahedral mesh in the input deck contains at least one quadratic
element, the refined mesh contains C3D10 elements only, else it is a pure C3D4
mesh.

First line:

• *REFINE MESH.

• enter the required parameter LIMIT and its value

Second line:

• the label of the selected criterion.

Example:

*REFINE MESH,LIMIT=50.

S

requests a refinement based on the size of the stress and a limit of 50.

Example files: circ10p.

8.100 *RESTART

Keyword type: prestep (*RESTART,READ), step (*RESTART,WRITE)
Sometimes you wish to continue a previous run without having to redo the

complete calculation. This is where the *RESTART keyword comes in. It can
be used to store results for a later restart, or to continue a previous calculation.

There is one required parameter specifying whether you want to read pre-
vious results (READ) or store the results of the present calculation for future
restarts (WRITE). This parameter must follow immediately after the *RESTART
keyword card.

If you specify READ, you can indicate with the parameter STEP which step
of the previous run is to be read. The results will be read from the binary file
“jobname.rin” which should have been generated in a previous run. If the STEP
parameter is absent the last step stored in the restart file is taken. A restart file
can contain any number of steps and anything which is allowed within a step.
For instance, one can define new loads based on sets generated in previous runs.
If present, the *RESTART,READ line must be the first non-comment line in
the input deck.

If you specify WRITE, you can specify the frequency (parameter FRE-
QUENCY) at which results are stored. A frequency of two means that the
results of every second step will be stored. Default is one. The results will be
stored in binary format in file “jobname.rout”. Any existing file with this name
will be deleted prior to the first writing operation. The restart file is being
written starting with the step in which the *RESTART card appears and is
being continued up to the step in which the *RESTART card is reused, if any.



8.101 *RETAINED NODAL DOFS 555

A reuse of the *RESTART card can be useful in case the user does not want
any further steps to be stored in the restart file (FREQUENCY=0), or in case
he/she wants to change the write frequency.

In order to prevent the restart file to be come too big, the user can spec-
ify the parameter OVERLAY for the *RESTART,WRITE combination. In that
case every new step being written to the restart file will delete all previous infor-
mation. So only the last step written to file will be available for any subsequent
reuse by a *RESTART,READ command.

For a subsequent restart job with name “jobname new.inp” the “jobname.rout”
file must be renamed into “jobname new.rin”. The *RESTART,WRITE com-
bination must be used within a *STEP definition

First and only line:

• *RESTART

• Enter any needed parameters and their values

Example:

*RESTART,READ,STEP=2

will read the results of step two in the previous calculation.

Example:

*RESTART,WRITE,FREQUENCY=3

will write the results every third step.

Example files: beamread, beamwrite, beamread2, beamwrite2.

8.101 *RETAINED NODAL DOFS

Keyword type: step
This option is used to prescribe the nodal degrees of freedom which are kept

in a *SUBSTRUCTURE GENERATE analysis. It cannot be used in any other
sort of analysis.

There is one optional parameter: SORTED=NO. It is not possible to request
a sorting of the degrees of freedom entered. The entries in the substructure
stiffness matrix are in the order introduced by the user.

No transformation is allowed. Consequently, the global Carthesian system
applies.

First line:

• *RETAINED NODAL DOFS

• Enter the parameter SORTED=NO (optional).
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Following line:

• Node number or node set label

• First degree of freedom retained

• Last degree of freedom retained. This field may be left blank if only one
degree of freedom is retained.

Repeat this line if needed.

Example:

*RETAINED NODAL DOFS

73,1,3

retains the degrees of freedom one through three (global) of node 73.

Example files: substructure.

8.102 *RIGID BODY

Keyword type: model definition
With this card a rigid body can be defined consisting of nodes or elements.

Optional parameters are REF NODE and ROT NODE.
One of the parameters NSET or ELSET is required. Use NSET to define

a rigid body consisting of the nodes belonging to a node set and ELSET for a
rigid body consisting of the elements belonging to an element set. In the latter
case, the rigid body really consists of the nodes belonging to the elements. The
parameters NSET and ELSET are mutually exclusive. The rigid body definition
ensures that the distance between any pair of nodes belonging to the body does
not change during deformation. This means that the degrees of freedom are
reduced to six: three translational and three rotational degrees of freedom.
Thus, the motion is reduced to a translation of a reference node and a rotation
about that node. Therefore, the location of the reference node is important
since it is in this node that the resultant force is applied (this force may be
defined by the user of may be the result of the calculation).

The reference node can be specified by the parameter REF NODE and should
have been assigned coordinates using the *NODE card. The reference node can
belong to the rigid body, but does not necessarily have to. Notice, however,
that if the reference node belongs to the rigid body any forces requested by
specifying RF on a *NODE PRINT card will not be correct. If no reference
node is defined by the user the origin of the global coordinate system is taken
(default).

For the rotational degrees of freedom a dummy rotational node is used whose
translational degrees of freedom are interpreted as the rotations about the ref-
erence node. Thus, the first degree of freedom is used as the rotation about the
x-axis of the rigid body, the second as the the rotation about the y-axis and
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the third as the rotation about the z-axis. The rotational node can be defined
explicitly using the parameter ROT NODE. In that case, this node must be
been assigned coordinates (their value is irrelevant) and should not belong to
any element of the structure.

In the absence of any of the parameters REF NODE or ROT NODE, extra
nodes are generated internally assuming their tasks. The position of the default
REF NODE is the origin. However, defining the nodes explicitly can be useful
if a rotation about a specific point is to be defined (using *BOUNDARY or
*CLOAD), or if rigid body values (displacements or forces) are to be printed
using *NODE PRINT. Notice that a force defined in a rotational node has the
meaning of a moment.

Internally, a rigid body is enforced by using nonlinear multiple point con-
straints (MPC).

If the participating nodes in a rigid body definition lie on a straight line,
the rigid body rotation about the line is not defined and an error will occur.
To remove the rotational degree of freedom, specify that the rotation about the
axis is zero. If a is a unit normal on the axis and uR is the displacement of the
ROT NODE, this results in a linear MPC of the form a.uR = 0 to be specified
by the user by means of a *EQUATION card.

First and only line:

• *RIGID BODY

• Enter any needed parameters and their values

Example:

*RIGID BODY,NSET=rigid1,REF NODE=100,ROT NODE=101

defines a rigid body consisting of the nodes belonging to node set rigid1 with
reference node 100 and rotational node 101.

Using

*CLOAD

101,3,0.1

in the same input deck (see *CLOAD) defines a moment about the z-axis of
0.1 acting on the rigid body.

Example files: beamrb.

8.103 *ROBUST DESIGN

Keyword type: step
This procedure is used to perform a robust design analysis. It is used to

create random fields based on correction and geometric tolerance information
provided by the user. The only parameter RANDOM FIELD ONLY is required.
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The result of a robust design analysis is a set of eigenvectors (random
fields) which represent the possible fluctuation of the geometry of the struc-
ture caused by the tolerances and up to a specified accuracy. Other key-
words needed in a robust design analysis are *CORRECTION LENGTH and
*GEOMETRIC TOLERANCES.

First line:

• *ROBUST DESIGN

• Enter the RANDOM FIELD ONLY parameter.

Second line:

• Requested accuracy (real number; > 0. and < 1.).

Example:

*ROBUST DESIGN,RANDOM FIELD ONLY

0.99

defines a robust design analysis up to an accuracy of 99 %.

Example files: beamprand.

8.104 *SECTION PRINT

Keyword type: step
This option is used to print selected facial variables in file jobname.dat. The

following variables can be selected:

• Fluid dynamic drag stresses (key=DRAG), only makes sense for 3D fluid
calculations

• Heat flux (key=FLUX), only makes sense for heat calculations (structural
or CFD)

• Section forces, section moments and section areas(key=SOF or key=SOM
or key=SOAREA), only makes sense for structural calculations

The drag stresses are printed in the integration points of the faces. The
output lists the element, the local face number, the integration point, the x-
, y- and z- component of the surface stress vector in the global coordinate
system, the normal component, the shear component and the global coordinates
of the integration point. At the end of the listing the surface stress vectors are
integrated to yield the total force on the surface.

The heat flux is also printed in the integration points of the faces. The
output lists the element, the local face number, the integration point, the heat
flux (positive = flux leaving the element through the surface defined by the
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parameter SURFACE) and the global coordinates of the integration point. At
the end of the listing the heat flux vectors are integrated to yield the total heat
flow through the surface.

The section forces, section moments and section areas are triggered by the
keys SOF, SOM and SOAREA. All three keys are equivalent, i.e. asking for
SOF (the section forces) will also trigger the calculation of the section moments
and the section areas. This implementation was selected because the extra
work needed to calculate the moments and areas once the forces are known is
neglegible. The output lists

• the components of the total surface force and moment about the origin in
global coordinates

• the coordinates of the center of gravity and the components of the mean
normal

• the components of the moment about the center of gravity in global coor-
dinates

• the area, the normal force on the section (+ is tension, - is compression)
and the size (absolute value) of the shear force.

Notice that, for internal surfaces (i.e. surfaces which have elements on both
sides) the sign of the force and the moment depends on the side the elements of
which were selected in the definition of the *SURFACE. Please look at example
beamp.inp for an illustration of this.

There are four parameters, SURFACE, NAME, FREQUENCYF and TIME
POINTS. The parameter SURFACE is required, defining the facial surface for
which the requested items are to be printed. The parameter NAME is required
too, defining a name for the section print. So far, this name is not used.

The parameters FREQUENCYF and TIME POINTS are mutually exclu-
sive.

The parameter FREQUENCYF is optional, and applies to nonlinear cal-
culations where a step can consist of several increments. Default is FRE-
QUENCYF=1, which indicates that the results of all increments will be stored.
FREQUENCYF=N with N an integer indicates that the results of every Nth
increment will be stored. The final results of a step are always stored. If
you only want the final results, choose N very big. The value of N applies to
*OUTPUT,*ELEMENT OUTPUT, *EL FILE, *ELPRINT, *NODE OUTPUT,
*NODE FILE, *NODE PRINT, *SECTION PRINT,*CONTACT OUTPUT, *CONTACT FILE
and *CONTACT PRINT. If the FREQUENCYF parameter is used for more
than one of these keywords with conflicting values of N, the last value applies
to all. A FREQUENCYF parameter stays active across several steps until it is
overwritten by another FREQUENCYF value or the TIME POINTS parameter.

With the parameter TIME POINTS a time point sequence can be referenced,
defined by a *TIME POINTS keyword. In that case, output will be provided
for all time points of the sequence within the step and additionally at the end
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of the step. No other output will be stored and the FREQUENCYF parameter
is not taken into account. Within a step only one time point sequence can
be active. If more than one is specified, the last one defined on any of the
keyword cards *NODE FILE, *EL FILE, *NODE PRINT or *EL PRINT will
be active. The TIME POINTS option should not be used together with the
DIRECT option on the procedure card. The TIME POINTS parameters stays
active across several steps until it is replaced by another TIME POINTS value
or the FREQUENCYF parameter.

The first occurrence of an *SECTION PRINT keyword card within a step
wipes out all previous facial variable selections for print output. If no *SEC-
TION PRINT card is used within a step the selections of the previous step
apply, if any.

Several *SECTION PRINT cards can be used within one and the same step.

First line:

• *SECTION PRINT

• Enter the parameter SURFACE and its value.

Second line:

• Identifying keys for the variables to be printed, separated by commas.

Example:

*SECTION PRINT,SURFACE=S1,NAME=SP1

DRAG

requests the storage of the drag stresses for the faces belonging to (facial)
set N1 in the .dat file. The name of the section print is SP1.

Example files: fluid2, beamp.

8.105 *SELECT CYCLIC SYMMETRY MODES

Keyword type: step
This option is used to trigger an eigenmode or a Green function analysis

for cyclic symmetric structures. It must be preceded by a *FREQUENCY or
*GREEN card, respectively. There are two optional parameters NMIN, NMAX.
NMIN is the lowest cyclic symmetry mode number (also called nodal diameter)to
be considered (default 0), NMAX is the highest cyclic symmetry mode number
(default N/2 for N even and (N+1)/2 for N odd, where N is the number of
sectors on the *CYCLIC SYMMETRY MODEL card.

For models containing the axis of cyclic symmetry (e.g. a full disk), the nodes
on the symmetry axis are treated differently depending on whether the cyclic
symmetry mode number is 0, 1 or exceeds 1. Therefore, for such structures
calculations for cyclic symmetry mode numbers 0 or 1 must be performed in
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separate steps with NMIN=0,NMAX=0 and NMIN=1,NMAX=1, respectively.

First and only line:

• *SELECT CYCLIC SYMMETRY MODES

• Enter the parameters NMIN and NMAX and their values, if appropriate.

Example:

*SELECT CYCLIC SYMMETRY MODES, NMIN=2, NMAX=4

triggers a cyclic symmetry calculation for mode numbers 2 up to and includ-
ing 4.

Example files: segment, fullseg, greencyc1.

8.106 *SENSITIVITY

Keyword type: step
This procedure is used to perform a sensitivity analysis. There are three

optional parameters: NLGEOM, READ and WRITE. If NLGEOM is active,
the change of the stiffness matrix w.r.t. the design variables is performed based
on:

• a material tangent stiffness matrix at the strain at the end of the previous
static step

• displacements at the end of the previous static step (large deformation
stiffness)

• the stresses at the end of the previous static step (stress stiffness)

It makes sense to include NLGEOM if it was used on a previous static step
and not to include it if it was not used on a prevous static step or in the absense
of any prevous static step.

The parameters READ and WRITE are mutually exclusive and can only be
used if the coordinates are the design variables. If WRITE is selected, the “raw”
sensitivities (i.e. without filtering or any other action defined underneath the
*FILTER card) for all design nodes are stored in file jobname.sen in ascending
order of the design node numbers. If READ is selected the raw sensitivities are
read from file jobname.sen. They can be further processed by filtering etc.

Notice that the objective functions STRAIN ENERGY, MASS, DISPLACE-
MENT and STRESS require a previous *STATIC step, the objective GREEN
requires a previous *GREEN step and the objective EIGENFREQUENCY re-
quires a previous *FREQUENCY step, possibly preceded by a *STATIC step,
cf. *OBJECTIVE.

First line:



562 8 INPUT DECK FORMAT

• *SENSITIVITY

• Enter the NLGEOM parameter if needed.

Example:

*SENSITIVITY

defines a linear sensitivity step.

Example files: beampic, beampis.

8.107 *SHELL SECTION

Keyword type: model definition
This option is used to assign material properties to shell element sets. The

parameter ELSET is required, one of the mutually exclusive parameters MATE-
RIAL and COMPOSITE is required too, whereas the parameters ORIENTA-
TION, NODAL THICKNESS, OFFSET are optional. The parameter ELSET
defines the shell element set to which the material specified by the parameter
MATERIAL applies. The parameter ORIENTATION allows to assign local
axes to the element set. If activated, the material properties are applied to
the local axis. This is only relevant for non isotropic material behavior. The
parameter NODAL THICKNESS indicates that the thickness for ALL nodes
in the element set are defined with an extra *NODAL THICKNESS card and
that any thicknesses defined on the *SHELL SECTION card are irrelevant. The
OFFSET parameter indicates where the mid-surface of the shell should be in
relation to the reference surface defined by the surface representation given by
the user. The unit of the offset is the thickness of the shell. Thus, OFFSET=0
means that the reference surface is the mid-surface of the shell, OFFSET=0.5
means that the reference surface is the top surface of the shell. The offset can
take any real value. Finally, the COMPOSITE parameter is used to define a
composite material. It can only be used for S8R and S6 elements. A composite
material consists of an integer number of layers made up of different materials
with possibly different orientations. For a composite material the material is
specified on the lines beneath the *SHELL SECTION card for each layer sepa-
rately. The orientation for each layer can be defined in the same way. If none
is specified, the orientation defined by the ORIENTATION parameter will be
taken, if any.

For structures in which axisymmetric elements (type CAX*) are present any
thickness defined on the present card applies to 360◦.

First line:

• *SHELL SECTION

• Enter any needed parameters.
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Second line if the parameter COMPOSITE is not used (only read if the first
line does not contain NODAL THICKNESS):

• thickness

Second line if the parameter COMPOSITE is used (NODAL THICKNESS
is not allowed):

• thickness (required)

• not used

• name of the material to be used for this layer (required)

• name of the orientation to be used for this layer (optional)

Repeat this line as often as needed to define all layers.

Example:

*SHELL SECTION,MATERIAL=EL,ELSET=Eall,ORIENTATION=OR1,OFFSET=-0.5

3.

assigns material EL with orientation OR1 to all elements in (element) set
Eall. The reference surface is the bottom surface of the shell and the shell
thickness is 3 length units.

Example files: shell1, shell2, shellbeam.

8.108 *SOLID SECTION

Keyword type: model definition
This option is used to assign material properties to 3D, plane stress, plane

strain, axisymmetric and truss element sets. The parameters ELSET and MA-
TERIAL are required, the parameters ORIENTATION and NODAL THICK-
NESS are optional. The parameter ELSET defines the element set to which
the material specified by the parameter MATERIAL applies. The parameter
ORIENTATION allows to assign local axes to the element set. If activated, the
material properties are applied to the local axis. This is only relevant for non
isotropic material behavior. The parameter NODAL THICKNESS (only rele-
vant for plane stress and plane strain elements) indicates that the thickness for
ALL nodes in the element set are defined with an extra *NODAL THICKNESS
card and that any thickness defined on the *SOLID SECTION card (if any) is
irrelevant. Alternatively, for plane stress and plane strain elements the element
thickness can be specified on the second line. Default is 1.

For structures in which axisymmetric elements (type CAX*) are present any
thickness defined on the present card applies to 360◦.

First line:
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• *SOLID SECTION

• Enter any needed parameters.

Second line (only relevant for plane stress, plane strain and truss elements;
can be omitted for axisymmetric and 3D elements):

• thickness for plane stress and plane strain elements, cross-sectional area
for truss elements.

Example:

*SOLID SECTION,MATERIAL=EL,ELSET=Eall,ORIENTATION=OR1

assigns material EL with orientation OR1 to all elements in (element) set
Eall.

Example files: beampo2, planestress, planestress4.

8.109 *SPECIFIC GAS CONSTANT

Keyword type: model definition, material
With this option the specific gas constant of a material can be defined. The

specific gas constant is required for a calculation in which a gas dynamic network
is included. The specific gas constant R is defined as

R = R/M (815)

where R = 8314 J/(kmol K) is the universal gas constant and M is the
molecular weight of the material. The specific gas constant is temperature
independent.

First line:

• *SPECIFIC GAS CONSTANT

Following line:

• Specific gas constant.

Example:

*SPECIFIC GAS CONSTANT

287.

defines a specific gas constant with a value of 287. This value is appropriate
for air if Joule is chosen for the unit of energy, kg as unit of mass and K as unit
of temperature, i.e. R = 287 J/(kg K).

Example files: linearnet, branch1, branch2.
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8.110 *SPECIFIC HEAT

Keyword type: model definition, material
With this option the specific heat of a solid material can be defined. The

specific heat is required for a transient heat transfer analysis (*HEAT TRANS-
FER or *COUPLED TEMPERATURE-DISPLACEMENT). The specific heat
can be temperature dependent.

This option should not be used to define the specific heat of a fluid (gas or
liquid) in an aerodynamic or fluid dynamic network. For the latter purpose the
keyword *FLUID CONSTANTS is available.

First line:

• *SPECIFIC HEAT

Following line:

• Specific heat.

• Temperature.

Repeat this line if needed to define complete temperature dependence.

Example:

*SPECIFIC HEAT

446.E6

defines a specific heat with value 446.× 106 for all temperatures.

Example files: beamth, beamhtcr.

8.111 *SPRING

Keyword type: model definition
With this option the force-displacement relationship can be defined for spring

elements (cf. Sections 6.2.40,6.2.41 and 6.2.42). There is one required parameter
ELSET and there are optional parameters NONLINEAR and ORIENTATION.
With the parameter ELSET the element set is referred to for which the spring
behavior is defined. This element set should contain spring elements only. With
the parameter NONLINEAR the user can specify that the behavior of the spring
is nonlinear, default is a linear behavior. Finally, the ORIENTATION param-
eter can be used to define a local orientation of the spring for SPRING1 and
SPRING2 elements.

Please note that for a nonlinear behavior the (force,elongation) pairs have to
be entered in ascending order of the elongation. The elongation is defined as the
final length minus the initial length. The elongation can be negative, however,
it should not be smaller than the initial length of the spring. Extrapolation in
the force versus elongation graph is done in a constant way, i.e. the force is
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kept constant. This leads to a zero tangent and may lead to a singular stiffness
matrix. Therefore, the elongation range should be defined large enough to avoid
this type of problems.

For SPRING1 and SPRING2 elements the degree of freedom in which the
spring acts is entered immediately underneath the *SPRING card. For a SPRINGA
element this line is left blank. This is done out of compatibility reasons with
ABAQUS. Now, CalculiX deletes any blank lines before reading the input deck.
Therefore,the only way for CalculiX to know whether the first line underneath
the *SPRING card contains degrees of freedom or spring constant information is
to inspect whether the numbers on this line are integers or reals. Therefore, for
the *SPRING card the user should painstakingly take care that any real num-
bers (spring constant, spring force, elongation, temperature) contain a decimal
point (“.”, which is a good practice anyway).

First line:

• *SPRING

• Enter the parameter ELSET and its value and any optional parameter, if
needed.

Second line for SPRINGA type elements: enter a blank line
Second line for SPRING1 or SPRING2 type elements:

• first degree of freedom (integer, for SPRING1 and SPRING2 elements)

• second degree of freedom (integer, only for SPRING2 elements)

Following line if the parameter NONLINEAR is not used:

• Spring constant (real number).

• not used.

• Temperature (real number).

Repeat this line if needed to define complete temperature dependence.

Following sets of lines define the force-displacement curve if the parameter
NONLINEAR is active: First line in the first set:

• Spring force (real number).

• Elongation (real number).

• Temperature (real number).

Use as many lines in the first set as needed to define the complete force-
displacement curve for this temperature.

Use as many sets as needed to define complete temperature dependence.
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Example:

*SPRING,ELSET=Eall

blank line

10.

defines a linear spring constant with value 10. for all elements in element set
Eall and all temperatures.

Example:

*SPRING,ELSET=Eall,NONLINEAR

0.,0.,293.

10.,1.,293.

100.,2.,293.

0.,0.,393.

5.,1.,393.

25.,2.,393.

defines a nonlinear spring characterized by a force-displacement curve through
(0,0),(10,1),(100,2) for a temperature of 293. and through (0,0),(5,1),(25,2) for
a temperature of 393. The first scalar in the couples is the force, the second is
the elongation of the spring. This spring behavior applies to all elements in ele-
ment set Eall. Notice that for displacements outside the defined range the force
is kept constant. For instance, in the example above the force for an elongation
of 3 at a temperature of 293 will be 100.

Example files: spring1, spring2, spring3, spring4, spring5.

8.112 *STATIC

Keyword type: step
This procedure is used to perform a static analysis. The load consists of the

sum of the load of the last *STATIC step and the load specified in the present
step with replacement of redefined loads. This card is also correct for steady
state incompressible flow calculations without heat transfer.

There are five optional parameters: SOLVER, DIRECT, EXPLICIT, TIME
RESET and TOTAL TIME AT START. SOLVER determines the package used
to solve the ensuing system of equations. The following solvers can be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].
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• TAUCS

• the iterative solver by Rank and Ruecker [70], which is based on the algo-
rithms by Schwarz [74].

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the pre-conditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVE CHOLESKY triggers Incomplete Cholesky pre-conditioning.
Cholesky pre-conditioning leads to a better convergence and maybe to shorter
execution times, however, it requires additional storage roughly corresponding
to the non-zeros in the matrix. If you are short of memory, diagonal scal-
ing might be your last resort. The iterative methods perform well for truly
three-dimensional structures. For instance, calculations for a hemisphere were
about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

The parameter DIRECT is relevant for nonlinear calculations only, and in-
dicates that automatic incrementation should be switched off.

The parameter EXPLICIT is only important for fluid computations. If
present, the fluid computation is explicit, else it is semi-implicit. Static struc-
tural computations are always implicit.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter



8.112 *STATIC 569

underneath the *STATIC keyword). Consequently, if the time at the end of
the previous step is 10. and the present time period is 1., the total time at the
end of the present step is 11. If the TIME RESET parameter is used, the total
time at the beginning of the present step is 9. and at the end of the present
step it will be 10. This is sometimes useful if thermomechanical calculations are
split into transient heat transfer steps followed by quasi-static static steps (this
can be faster than using the *COUPLED TEMPERATURE-DISPLACEMENT
option, which forces the same amount of iterations for the thermal as for the
mechanical calculations and than using the *UNCOUPLED TEMPERATURE-
DISPLACEMENT option, which forces the same amount of increments for the
thermal as for the mechanical calculations). In CalculiX the static step needs a
finite time period, however, the user frequently does not want the quasi-static
step to change the time count.

Finally, the parameter TOTAL TIME AT START can be used to set the
total time at the start of the step to a specific value.

In a static step, loads are by default applied in a linear way. Other loading
patterns can be defined by an *AMPLITUDE card.

If nonlinearities are present in the model (geometric nonlinearity or material
nonlinearity), the solution is obtained through iteration. Since the step may
be too large to obtain convergence, a subdivision of the step in increments is
usually necessary. The user can define the length of the initial increment. This
size is kept constant if the parameter DIRECT is selected, else it is varied by
CalculiX according to the convergence properties of the solution. In a purely
linear calculation the step size is always 1., no iterations are performed and,
consequently, no second line underneath *STATIC is needed.

Notice that any creep behavior (e.g. by using the keyword *CREEP) is
switched off in a *STATIC step. To include creep use the *VISCO keyword.
The syntax for both keywords is the same.

First line:

• *STATIC

• Enter any needed parameters and their values.

Second line (only relevant for nonlinear analyses; for linear analyses, the step
length is always 1)

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.
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• Initial time increment for CFD applications (default 1.e-2)

Example:

*STATIC,DIRECT

.1,1.

defines a static step and selects the SPOOLES solver as linear equation solver
in the step (default). If the step is a linear one, the other parameters are of no
importance. If the step is nonlinear, the second line indicates that the initial
time increment is .1 and the total step time is 1. Furthermore, the parameter
DIRECT leads to a fixed time increment. Thus, if successful, the calculation
consists of 10 increments of length 0.1.

Example files: beampic, beampis.

8.113 *STEADY STATE DYNAMICS

Keyword type: step
This procedure is used to calculate the steady state response of a structure

subject to periodic loading. Although the deformation up to the onset of the
dynamic calculation can be nonlinear, this procedure is basically linear and
assumes that the response can be written as a linear combination of the lowest
modes of the structure. To this end, these modes must have been calculated in
a previous *FREQUENCY,STORAGE=YES step (not necessarily in the same
calculation). In the *STEADY STATE DYNAMICS step the eigenfrequencies,
modes, stiffness and mass matrix are recovered from the file jobname.eig.

For harmonic loading the steady state response is calculated for the fre-
quency range specified by the user. The number of data points within this
range n can also be defined by the user, default is 20, minimum is 2 (if the user
specifies n to be less than 2, the default is taken). If no eigenvalues occur within
the specified range, this is the total number of data points taken, i.e. including
the lower frequency bound and the upper frequency bound. If one or more eigen-
values fall within the specified range, n−2 points are taken in between the lower
frequency bound and the lowest eigenfrequency in the range, n− 2 between any
subsequent eigenfrequencies in the range and n− 2 points in between the high-
est eigenfrequency in the range and upper frequency bound. Consequently, if m
eigenfrequencies belong to the specified range, (m+1)(n−2)+m+2 = nm−m+n
data points are taken. They are equally spaced in between the fixed points
(lower frequency bound, upper frequency bound and eigenfrequencies) if the
user specifies a bias equal to 1. If a different bias is specified, the data points
are concentrated about the fixed points. Default for the bias is 3., minimum
value allowed is 1. (if the user specifies a value less than 1., the default is taken).
The number of eigenmodes used is taken from the previous *FREQUENCY step.
Since a steady state dynamics step is a perturbation step, all previous loading
is removed. The loading defined within the step is multiplied by the ampli-
tude history for each load as specified by the AMPLITUDE parameter on the
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loading card, if any. In this context the AMPLITUDE cards are interpreted
as load factor versus frequency. Loading histories extending beyond the ampli-
tude frequency scale are extrapolated in a constant way. The absence of the
AMPLITUDE parameter on a loading card leads to a frequency independent
load.

For nonharmonic loading the loading across one period is not harmonic and
has to be specified in the time domain. To this end the user can specify the
starting time and the final time of one period and describe the loading within
this period with *AMPLITUDE cards. Default is the interval [0., 1.] and step
loading. Notice that for nonharmonic loading the *AMPLITUDE cards de-
scribe amplitude versus TIME. Furthermore, the user can specify the number
of Fourier terms the nonharmonic loading is expanded in (default:20). The re-
maining input is the same as for harmonic loading, i.e. the user specifies a
frequency range, the number of data points within this range and the bias.

There are two optional parameters: HARMONIC and SOLVER. HAR-
MONIC=YES (default) indicates that the periodic loading is harmonic, HAR-
MONIC=NO specifies nonharmonic periodic loading. The parameter SOLVER
determines the package used to solve for the steady state solution in the pres-
ence of nonzero displacement boundary conditions. The following solvers can
be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].

• TAUCS

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, an error is
issued.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

First line:
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• *STEADY STATE DYNAMICS

• enter any of the parameters you need.

Second line for HARMONIC=YES (default):

• Lower bound of the frequency range (cycles/time)

• Upper bound of the frequency range (cycles/time)

• Number of data points n (default: 20)

• Bias (default: 3.)

Second line for HARMONIC=NO:

• Lower bound of the frequency range (cycles/time)

• Upper bound of the frequency range (cycles/time)

• Number of data points n (default: 20)

• Bias (default: 3.)

• Number of Fourier terms n (default: 20)

• Lower bound of the time range (default: 0.)

• Upper bound of the time range (default: 1.)

Example:

*STEADY STATE DYNAMICS

12000.,14000.,5,4.

defines a steady state dynamics procedure in the frequency interval [12000., 14000.]
with 5 data points and a bias of 4.

Example:

*STEADY STATE DYNAMICS,HARMONIC=NO

2.,4.,3,1.,11,0.,.5

defines a steady state dynamics procedure in the time domain. A complete
period is defined in the time interval [0.,0.5], and 11 Fourier terms will be taken.
Calculations will be performed for three equidistant points in the frequency
interval [2.,4.], i.e. for 2 cycles/time, 3 cycles/time and 4 cycles/time, provided
there are no eigenfrequencies in this interval.

Example files: beamdy8, beamdy9, beamdy10, beamdy11, beamdy12, beamdy13.
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8.114 *STEP

Keyword type: step

This card describes the start of a new STEP. PERTURBATION, NLGEOM,
INC, INCF, THERMAL NETWORK and AMPLITUDE are the optional pa-
rameters.

The parameter PERTURBATION is allowed for *FREQUENCY, *BUCKLE,
*GREEN, *MODAL DYNAMIC, *STEADY STATE DYNAMICS, *COMPLEX
FREQUENCY and *STATIC steps only (for *STATIC steps it only makes sense
for submodel frequency calculations with preload, else a genuine nonlinear geo-
metric calculation with NLGEOM is recommended).

If it is specified in a *FREQUENCY, *BUCKLE or *GREEN procedure, the
last *STATIC step is taken as reference state and used to calculate the stiffness
matrix. This means the inclusion of previous deformations (large deformation
stiffness) and the inclusion of previous loads as preloads (stress stiffness), taking
the temperatures into account to determine the material properties. The active
loads (mechanical and thermal) are those specified in the perturbation step. At
the end of the step the perturbation load is reset to zero.

If it is specified in a *MODAL DYNAMIC, *STEADY STATE DYNAMICS
or *COMPLEX FREQUENCY procedure it means that the data read from
the corresponding .eig-file must have been generated taking perturbation into
account (and vice versa: for instance, the absence of the perturbation parameter
in a *MODAL DYNAMIC procedure requires an .eig-file generated without
perturbation parameter in the corresponding *FREQUENCY step).

The loading active in a non-perturbative step is the accumulation of the
loading in all previous steps since but not including the last perturbation step
(or, if none has occurred, since the start of the calculation), unless OP=NEW
has been specified since.

If NLGEOM is specified, the calculation takes geometrically nonlinear effects
into account. To this end a nonlinear strain tensor is used (Lagrangian strain
for hyperelastic materials, Eulerian strain for deformation plasticity and the de-
viatoric elastic left Cauchy-Green tensor for incremental plasticity), the step is
divided into increments and a Newton iteration is performed within each incre-
ment (notice that iterations are also performed for other kinds of nonlinearity,
such as material nonlinearity or contact conditions). Although the internally
used stresses are the Piola stresses of the second kind, they are transformed
into Cauchy (true) stresses before being printed. NLGEOM is only taken into
account if the procedure card (such as *STATIC, *DYNAMIC, *COUPLED
TEMPERATURE-DISPLACEMENT) allows for it (the *FREQUENCY card,
for example, does not directly allow for it). Once the NLGEOM parameter
has been selected, it remains active in all subsequent static calculations. With
NLGEOM=NO the inclusion of geometrically nonlinear effects can be turned
off. It stays active in subsequent steps as well, unless NLGEOM was specified
again. To check whether geometric nonlinearity was taken into account in a
specific step, look for the message “Nonlinear geometric effects are taken into
account” in the output.
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The step size and the increment size can be specified underneath the pro-
cedure card. The maximum number of increments in the step (for automatic
incrementation) can be specified by using the parameter INC (default is 100)
for thermomechanical calculations and INCF (default is 10000) for 3D fluid
calculations. In coupled fluid-structure calculations INC applies to the thermo-
mechanical part of the computations and INCF to the 3D fluid part.

The option THERMAL NETWORK allows the user to perform fast ther-
mal calculations despite the use of specific network elements (e.g. gas pipers,
labyrinths etc), which are characterized by a TYPE description on the *FLUID SECTION
card. In general, the use of specific network elements triggers the alternating so-
lution of the network and the structure, leading to longer computational times.
In thermal calculations with only generic network elements (no TYPE specified
on the *FLUID SECTION cards), the temperatures in the network are solved
simulaneously with the temperatures on the structural side (which is much faster
than the alternating way). Now, sometimes the user would like to use specific
elements, despite the fact that only temperatures have to be calculated, e.g. in
order to determine the heat transfer coefficients based on flow characteristics
such as Prandl and Reynolds number (this requires the use of the user film rou-
tine film.f). Specifying THERMAL NETWORK on the FIRST *STEP card in
the input deck takes care that in such a case the simulaneous solving procedure
is used instead of the alternating one.

Finally, the parameter AMPLITUDE can be used to define whether the
loading in this step should be ramped (AMPLITUDE=RAMP) or stepped (AM-
PLITUDE=STEP). With this option the default for the procedure can be over-
written. For example, the default for a *STATIC step is RAMP. By specifying
AMPLITUDE=STEP the loading in the static step is applied completely at the
beginning of the step. Note, however, that amplitudes on the individual loading
cards (such as *CLOAD, *BOUNDARY....) take precedence.

First and only line:

• *STEP

• Enter any needed parameters and their values

Example:

*STEP,INC=1000,INCF=20000,TURBULENCE MODEL=SST

starts a step and increases the maximum number of thermomechanical in-
crements to complete the step to 1000. The maximum number of 3D fluid
increments is set to 20000 and for the turbulence model the SST model was
chosen.

Example files: beamnlp.
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8.115 *SUBMODEL

Keyword type: model definition

This keyword is used to define submodel boundaries. A submodel is a part of
a bigger model for which an analysis has already been performed. A submodel
is used if the user would like to analyze some part in more detail by using a more
dense mesh or a more complicated material model, just to name a few reasons.
At those locations where the submodel has been cut from the global model,
the boundary conditions are derived from the global model results. These are
the boundaries defined by the *SUBMODEL card. In addition, in a purely
mechanical calculation it allows to map the temperatures to all nodes in the
submodel (not just the boundary nodes).

There are four kinds of boundary conditions one may apply: the user may
map the displacements from the global model (or temperatures in a purely
thermal or a thermo-mechanical calculation ) to the boundaries of the submodel,
the stresses to the boundaries of the submodel, the forces to the boundaries
of the submodel or the user may select to map the temperatures in a purely
mechanical calculation to all nodes belonging to the submodel. Mapping the
stresses or forces may require fixing a couple of additional nodes to prevent rigid
body modes.

In order to perform the mapping (which is basically an interpolation) the
global model is remeshed with tetrahedra. The resulting mesh is stored in file
TetMasterSubmodel.frd and can be viewed with CalculiX GraphiX.

There are three parameters of which two are required. The parameters
TYPE and INPUT are required. TYPE can take the value SURFACE or NODE,
depending on whether the user wants to define stress boundary conditions or
displacement/temperature/force boundary conditions, respectively. The param-
eter INPUT specifies the file, in which the results of the global model are stored.
This must be a .frd file.

A submodel of the SURFACE type is defined by element face surfaces. These
must be defined using the *SURFACE,TYPE=ELEMENT card. Submodels of
the NODE type are defined by sets of nodes. It is not allowed to define a
local coordinate system (with a *TRANSFORM card) in these nodes. Several
submodel cards may be used in one and the same input deck, and they can
be of different types. The global result file, however, must be the same for all
*SUBMODEL cards. Furthermore, a node (for the NODE type submodel) or
an element face (for the SURFACE type submodel) may only belong to at most
one *SUBMODEL.

The optional parameter GLOBAL ELSET defines an elset in the global
model which will be used for the interpolation of the displacements or stresses
onto the submodel boundary defined underneath the *SUBMODEL card. For
the creation of this element set the parameter GENERATE is not allowed (cf.
*ELSET). Although this element set contains element numbers belonging to the
global model, it must be defined in the submodel input deck using the *ELSET
card. For instance, suppose the global model contains elements from 1 to 1000
and that the submodel contains only 10 elements numbered from 1 to 10. Both
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models have no elements in common, however, they may have element numbers
in common (as is the case in this example). Suppose that the global elements
to be used for the interpolation of the boundary conditions onto the submodel
have the numbers 600 up to 604. Then the following card defines the global
elset

*ELSET,ELSET=GLOBALSET1

600,601,602,603,604

and has to be included in the submodel input deck, although in this deck
only elements 1 to 10 are defined by a *ELEMENT card, i.e. in the submodel
input deck element numbers are referenced which are not at all defined within
the deck. This is fine for submodel decks only.

If no GLOBAL ELSET parameter is used the default GLOBAL ELSET is
the complete global model. Global elsets of different *SUBMODEL cards may
have elements in common.

Notice that the *SUBMODEL card only states that the model at stake is
a submodel and that it defines part of the boundary to be of the nodal or of
the surface type. Whether actually displacements or stresses will be applied
by interpolation from the global model depends on whether a *BOUNDARY,
*DSLOAD, *CLOAD or *TEMPERATURE, card is used, respectively, each of
them accompanied by the parameter SUBMODEL.

Mapping displacements or temperatures to the boundary of a submodel is
usually very accurate. For stresses, the results may be unsatisfactory, since
the stress values stored in the global model (and which are the basis for the
interpolation) are extrapolations of integration point values. This frequently
leads to a situation in which equilibrium for the submodel is not satisfied. To
circumvent this, the user may perform a submodel analysis with displacement
boundary conditions, store the forces at the boundaries in the frd-file and use
this file as global model for a subsequent submodel analysis with force boundary
conditions. In this way a correct force-driven analysis can be performed, for
instance for crack propagation analyses in the submodel (displacement-driven
analyses prevent the crack from growing).

First line:

• *SUBMODEL

• Enter the parameters TYPE and INPUT and their value, and, if necessary,
the GLOBAL ELSET parameter.

Following line for TYPE=NODE:

• Node or node set to be assigned to this surface (maximum 16 entries per
line).

Repeat this line if needed.
Following line for TYPE=SURFACE:
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• Element face surface (maximum 1 entry per line).

Repeat this line if needed.

Example:

*SUBMODEL,TYPE=NODE,INPUT=global.frd

part,

1,

8

states that the present model is a submodel. The nodes with number 1, 8
and the nodes in the node set “part” belong to a Dirichlet part of the boundary,
i.e. a part on which the displacements are obtained from the global model.
The results of the global model are stored in file global.frd. Whether they are
really used, depends on whether a *BOUNDARY,SUBMODEL card is defined
for these nodes.

Example files: .

8.116 *SUBSTRUCTURE GENERATE

Keyword type: step
This procedure is used to generate a substructure and store the stiffness

matrix using the *SUBSTRUCTURE MATRIX OUTPUT keyword card. No
loading should be applied.

There is one optional parameter: SOLVER. It determines the package used
to solve the ensuing system of equations. The following solvers can be selected:

• PARDISO

• SPOOLES [3, 4].

Default is the first solver which has been installed of the following list: PAR-
DISO, SPOOLES. If none is installed, a substructure generation is not possible.

First line:

• *SUBSTRUCTURE GENERATE

• Enter SOLVER, if needed, and its value.

Example:

*SUBSTRUCTURE GENERATE,SOLVER=PARDISO

defines a substructure generation step and selects the PARDISO solver as
linear equation solver in the step. For this to work, the PARDISO solver must
have been linked with CalculiX.

Example files: substructure.



578 8 INPUT DECK FORMAT

8.117 *SUBSTRUCTURE MATRIX OUTPUT

Keyword type: step
This option is used to define the name of the file in which the stiffness matrix

of the substructure is to be stored which was generated within a *SUBSTRUCTURE GENERATE
step. This is the only procedure in which this keyword card makes sense.

There are two optional parameters STIFFNESS and OUTPUT FILE, and
one required parameter FILE NAME.

The optional parameters can only take a fixed value: STIFFNESS=YES and
OUTPUT FILE= USER DEFINED. No other value is allowed.

The required parameter FILE NAME is used to define the name of the file
in which the stiffness is to be stored. The extension .mtx is default and cannot
be changed. It is automatically appended to the name given by the user.

First line:

• *SUBSTRUCTURE MATRIX OUTPUT

• Enter the parameter FILE NAME and its name, and optionally, the pa-
rameters STIFFNESS and OUTPUT FILE with their fixed values.

Example:

*SUBSTRUCTURE MATRIX OUTPUT,FILE NAME=substruc

defines file substruc.mtx for the storage of the substructure stiffness matrix.

Example files: substructure.

8.118 *SURFACE

Keyword type: model definition
This option is used to define surfaces made up of nodes or surfaces made

up of element faces. A mixture of nodes and element faces belonging to one
and the same surface is not possible. There are two parameters: NAME and
TYPE. The parameter NAME containing the name of the surface is required.
The TYPE parameter takes the value NODE for nodal surfaces and ELEMENT
for element face surfaces. Default is TYPE=ELEMENT.

At present, surfaces are used to establish cyclic symmetry conditions and to
define contact (including tied contact). The master and slave surfaces in cyclic
symmetry conditions must be nodal surfaces. For contact, the slave surface can
be a nodal or element face surface, while the master surface has to be a element
face surface.

Element faces are identified by the surface label Sx where x is the number
of the face. The numbering depends on the element type.

For hexahedral elements the faces are numbered as follows (numbers are
node numbers):
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• Face 1: 1-2-3-4

• Face 2: 5-8-7-6

• Face 3: 1-5-6-2

• Face 4: 2-6-7-3

• Face 5: 3-7-8-4

• Face 6: 4-8-5-1

for tetrahedral elements:

• Face 1: 1-2-3

• Face 2: 1-4-2

• Face 3: 2-4-3

• Face 4: 3-4-1

and for wedge elements:

• Face 1: 1-2-3

• Face 2: 4-5-6

• Face 3: 1-2-5-4

• Face 4: 2-3-6-5

• Face 5: 3-1-4-6

for quadrilateral plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-4

• Face 4: 4-1

• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for triangular plane stress, plane strain and axisymmetric elements:

• Face 1: 1-2

• Face 2: 2-3

• Face 3: 3-1
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• Face N: in negative normal direction (only for plane stress)

• Face P: in positive normal direction (only for plane stress)

for quadrilateral shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-4

• Face 6: 4-1

for triangular shell elements:

• Face NEG or 1: in negative normal direction

• Face POS or 2: in positive normal direction

• Face 3: 1-2

• Face 4: 2-3

• Face 5: 3-1

Notice that the labels 1 and 2 correspond to the brick face labels of the 3D
expansion of the shell (Figure 85).

for beam elements:

• Face 1: in negative 1-direction

• Face 2: in positive 1-direction

• Face 3: in positive 2-direction

• Face 5: in negative 2-direction

The beam face numbers correspond to the brick face labels of the 3D expansion
of the beam (Figure 90).

First line:

• *SURFACE

• Enter the parameter NAME and its value, and, if necessary, the TYPE
parameter.

Following line for nodal surfaces:
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• Node or node set to be assigned to this surface (maximum 1 entry per
line).

Repeat this line if needed.
Following line for element face surfaces:

• Element or element set (maximum 1 entry per line).

• Surface label (maximum 1 entry per line).

Repeat this line if needed.

Example:

*SURFACE,NAME=left,TYPE=NODE

part,

1,

8

assigns the nodes with number 1, and 8 and the nodes belonging to node set
part to a surface with name left.

Example:

*SURFACE,NAME=new

38,S6

assigns the face 6 of element 38 to a surface with name new.

Example files: segment, fullseg.

8.119 *SURFACE BEHAVIOR

Keyword type: model definition, surface interaction
With this option the surface behavior of a surface interaction can be defined.

The surface behavior is required for a contact analysis. There is one required pa-
rameter PRESSURE-OVERCLOSURE. It can take the value EXPONENTIAL,
LINEAR, TABULAR, TIED or HARD.

The exponential pressure-overclosure behavior takes the form in Figure 143.
The parameters c0 and p0 define the kind of contact. p0 is the contact pressure
at zero distance, c0 is the distance from the master surface at which the pressure
is decreased to 1 % of p0. The behavior in between is exponential. A large value
of c0 leads to soft contact, a small value to hard contact. For mortar face-to-
face contact the exponential pressure vs. penetration curve is move parallel
to the pressure axis such that zero penetration corresponds to zero pressure.
Furthermore, negative pressure values are set to zero.

The linear pressure-overclosure behavior (Figure 144) simulates a linear re-
lationship between the pressure and the overclosure. At zero overclosure the
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pressure is zero as well. For node-to-face penalty contact the user should spec-
ify the slope of the pressure-overclosure curve (usually 5 to 50 times the typical
Young’s modulus of the adjacent materials; the default is the first elastic con-
stant of the first encountered material in the input deck multiplied by 50) and
the tension value for large clearances σ∞ (should be small, typically 0.25 % of
the maximum stress expected; the default is the first elastic constant of the
first encountered material in the input deck divided by 70,000). The value of
c0, from which the maximum clearance is calculated for which a spring contact
element is generated (by multiplying with the square root of the spring area, cf.
Section 6.7.5) can be specified too (default value 10−3). For face-to-face contact
only the slope of the pressure-overclosure relationship is needed.

The tabular pressure-overclosure relationship is a piecewise linear curve. The
user enters (pressure,overclosure) pairs. Outside the interval specified by the
user the pressure stays constant. The value of c0, from which the maximum
clearance is calculated for which a spring contact element is generated (by mul-
tiplying with the square root of the spring area, cf. Section 6.7.5) takes the value
10−3 and cannot be changed by the user. Due to programming restraints the
use of a tabular pressure-overclosure relationship in a thermomechanical calcu-
lation implies the use of a *GAP CONDUCTANCE card defining the thermal
conductance across the contact elements.

The tied pressure-overclosure behavior simulates a truly linear relationship
between the pressure and the overclosure for positive and negative pressures.
At zero overclosure the pressure is zero. It can only be used for face-to-face
penalty contact and similates tied contact between the slave and master face.
Notice that all slave faces will be tied to opposite master faces, if any, irrespec-
tive whether there is a gap between them or not. The only parameter is the
slope of the pressure-overclosure relationship. However, tied contact requires
the specification of the stick slope on a *FRICTION card.

Hard pressure-overclosure behavior is internally reduced to linear pressure-
overclosure behavior with the default constants. In case of mortar contact true
hard behavior can be simulated by omiting the *SURFACE BEHAVIOR card
within the *SURFACE INTERACTION card.

First line:

• *SURFACE BEHAVIOR

• Enter the parameter PRESSURE-OVERCLOSURE and its value.

Following line if PRESSURE-OVERCLOSURE=EXPONENTIAL:

• c0.

• p0.

Following line if PRESSURE-OVERCLOSURE=LINEAR:

• slope K of the pressure-overclosure curve (> 0).
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• σ∞ (> 0, irrelevant vor face-to-face contact).

• c0 (> 0, irrelevant for face-to-face contact, optional for node-to-face con-
tact)

Following line if PRESSURE-OVERCLOSURE=TABULAR:

• pressure.

• overclosure.

Repeat this line as often as needed.
Following line if PRESSURE-OVERCLOSURE=TIED:

• slope K of the pressure-overclosure curve (> 0).

Example:

*SURFACE BEHAVIOR,PRESSURE-OVERCLOSURE=EXPONENTIAL

1.e-4,.1

defines a distance of 10−4 length units at which the contact pressure is .001
pressure units, whereas the contact pressure at loose contact is 0.1 pressure
units.

Example files: contact1, contact2.

8.120 *SURFACE INTERACTION

Keyword type: model definition
This option is used to start a surface interaction definition. A surface inter-

action data block is defined by the options between a *SURFACE INTERAC-
TION line and either another *SURFACE INTERACTION line or a keyword
line that does not define surface interaction properties. All surface interaction
options within a data block will be assumed to define the same surface interac-
tion. If a property is defined more than once for a surface interaction, the last
definition is used. There is one required parameter, NAME, defining the name
of the surface interaction with which it can be referenced in surface interactions
(e.g. *CONTACT PAIR). The name can contain up to 80 characters.

If used for penalty contact the surface interaction definition must contain a
*SURFACE BEHAVIOR card.

Surface interaction data requests outside the defined ranges are extrapolated
in a constant way. Be aware that this occasionally occurs due to rounding errors.

First line:

• *SURFACE INTERACTION

• Enter the NAME parameter and its value.
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Example:

*SURFACE INTERACTION,NAME=SI1

starts a material block with name SI1.

Example files: contact1, contact2.

8.121 *TEMPERATURE

Keyword type: step

This option is used to define temperatures and, for shell and beam elements,
temperature gradients within a purely mechanical *STEP definition. *TEM-
PERATURE should not be used within a pure thermal or combined thermome-
chanical analysis. In these types of analysis the *BOUNDARY card for degree
of freedom 11 should be used instead.

Optional parameter are OP, AMPLITUDE, TIME DELAY, USER, SUB-
MODEL, STEP, DATA SET, FILE and BSTEP. OP can take the value NEW
or MOD. OP=MOD is default and implies that thermal load in different nodes
is accumulated over all steps starting from the last perturbation step. Specifying
the temperature for a node for which a temperature was defined in a previous
step replaces this last value. OP=NEW implies that the temperatures are reini-
tialised to the initial values. If multiple *TEMPERATURE cards are present
in a step this parameter takes effect for the first *TEMPERATURE card only.

For shell elements a temperature gradient can be defined in addition to a
temperature. The temperature applies to nodes in the reference surface, the
gradient acts in normal direction. For beam elements two gradients can be
defined: one in 1-direction and one in 2-direction. Default for the gradients is
zero.

The AMPLITUDE parameter allows for the specification of an amplitude by
which the temperature is scaled (mainly used for dynamic calculations). Thus,
in that case the values entered on the *TEMPERATURE card are interpreted
as reference values to be multiplied with the (time dependent) amplitude value
to obtain the actual value. At the end of the step the reference value is replaced
by the actual value at that time, for use in subsequent steps.

The TIME DELAY parameter modifies the AMPLITUDE parameter. As
such, TIME DELAY must be preceded by an AMPLITUDE name. TIME
DELAY is a time shift by which the AMPLITUDE definition it refers to is
moved in positive time direction. For instance, a TIME DELAY of 10 means
that for time t the amplitude is taken which applies to time t-10. The TIME
DELAY parameter must only appear once on one and the same keyword card.

If the USER parameter is selected the temperature values are determined by
calling the user subroutine utemp.f, which must be provided by the user. This
applies to all nodes listed beneath the *TEMPERATURE keyword. Any tem-
perature values specified behind the nodal numbers are not taken into account.
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If the USER parameter is selected, the AMPLITUDE parameter has no effect
and should not be used.

The SUBMODEL parameter is used to specify that the nodes underneath the
*TEMPERATURE card should get their temperature values by interpolation
from a global model. Each of these nodes must be listed underneath exactly one
nodal *SUBMODEL card. The SUBMODEL parameter automatically requires
the use of the STEP or DATA SET parameter.

In case the global calculation was a *STATIC calculation the STEP parame-
ter specifies the step in the global model which will be used for the interpolation.
If results for more than one increment within the step are stored, the last incre-
ment is taken.

In case the global calculation was a *FREQUENCY calculation the DATA
SET parameter specifies the mode in the global model which will be used for
the interpolation. It is the number preceding the string MODAL in the .frd-file
and it corresponds to the dataset number if viewing the .frd-file with CalculiX
GraphiX. Notice that the global frequency calculation is not allowed to contain
preloading nor cyclic symmetry.

If the SUBMODEL card is used no temperature values need be specified.
The SUBMODEL parameter and the AMPLITUDE parameter are mutually
exclusive.

Temperature gradients are not influenced by the AMPLITUDE parameter.
If more than one *TEMPERATURE card occurs in an input deck, the fol-

lowing rules apply: if a *TEMPERATURE is applied to the same node as in
a previous application then the previous value and previous amplitude are re-
placed.

Finally, temperatures can also be read from an .frd file. The file name has
to be specified with the FILE parameter, the step within this file from which
the temperatures are to be read can be specified with the BSTEP parameter,
default is 1. In case part of the temperatures is listed explicitly in the input deck
and/or part is defined by a user routine and/or part is read from file (by using
several *TEMPERATURE cards within one and the same step) it is important
to know that reading from file takes precedence. This means that (no matter
the order in which the *TEMPERATURE cards are defined in the input deck):

• temperatures defined explicitly in the input deck will be overwritten by
file values for the same node

• nodes for which the temperature is supposed to be defined by a user routine
will get the file value for this node, if any.

The format is as following:
First line:

• *TEMPERATURE

• enter any parameters, if needed.
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Following line:

• Node number or node set label.

• Temperature value at the node.

• Temperature gradient in normal direction (shells) or in 2-direction (beams).

• Temperature gradient in 1-direction (beams).

Repeat this line if needed.

Example:

*TEMPERATURE

N1,293.

300,473.

301,473.

302,473.

assigns a temperature T=293 to all nodes in (node) set N1, and T=473 to
nodes 300, 301 and 302.

*TEMPERATURE,FILE=temperatures.frd,BSTEP=4

will read the temperatures from step 4 in file “temperatures.frd”.

Example files: beam8t, beam20t, beamnlt, beamt4, beamfrdread.

8.122 *TIE

Keyword type: model definition
This option is used to tie two surfaces. It can only be used with 3-dimensional

elements (no plane stress, plane strain, axisymmetric, beam or shell elements).
There is one required parameter NAME. Optional parameters are POSITION
TOLERANCE, ADJUST, CYCLIC SYMMETRY, MULTISTAGE, FLUID PE-
RIODIC and FLUID CYCLIC. The last four parameters are mutually exclusive.
CYCLIC SYMMETRY and MULTISTAGE can only be used for structures,
FLUID PERIODIC and FLUID CYCLIC can only be used for 3D-fluid calcula-
tions. The dependent surface is called the slave surface, the independent surface
is the master surface. The user can freely decide which surface is taken as slave
and which as master. The surfaces are defined using *SURFACE. Nodes be-
longing to the dependent surface cannot be used as dependent nodes in other
SPC’s or MPC’s. Only nodes on an axis of cyclic symmetry can belong to both
the slave as well as to the master surface.

Default (i.e. in the absense of the CYCLIC SYMMETRY, the MULTI-
STAGE, the FLUID PERIODIC and FLUID CYCLIC parameter) is a tie of
two adjacent surfaces in a structural calculation. This is also called tied contact.
In that case MPC’s are generated connecting the slave nodes with the master
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faces, provided the orthogonal distance between the nodes and the adjacent face
does not exceed the POSITION TOLERANCE. If no tolerance is specified, or
the tolerance is smaller than 10−10, a default tolerance applies equal to 2.5% of
the typical element size. In addition, the projection of the slave node onto the
master face must lie within this face or at any rate not farther away (measured
parallel to the face) than the default tolerance just defined. For tied contact the
slave surface can be a nodal or element face surface, whereas the master surface
has to consist of element faces. Nodes which are not connected are stored in
file WarnNodeMissMasterIntersect.nam and can be read into CalculiX GraphiX
by using the command “read WarnNodeMissMasterIntersect.nam inp”. Nodes
which are connected are automatically adjusted, i.e. the position of the slave
nodes is modified such that they lie exactly on the master surface, unless AD-
JUST=NO was specified by the user. In order to create the MPC’s connecting
the slave and master side, the latter is triangulated. The triangulation is stored
in file TriMasterContactTie.frd and can be visualized using CalculiX GraphiX.

The tie can be assigned a name by using the parameter NAME. This name
can be referred to on the *CYCLIC SYMMETRY MODEL card.

The parameter CYCLIC SYMMETRY is used to tie two surfaces bounding
one and the same datum sector in circumferential direction. Both the slave and
the master surface can be node or face based. For face based surfaces the nodes
belonging to the face are identied at the start of the algorithm which generates
the cyclic multiple point constraints. For each slave node, a master node is
determined which matches the slave node within a tolerance specified by the
parameter POSITION TOLERANCE after rotation about the cyclic symmetry
axis. The latter rotation is an important aspect: for the purpose of generating
cyclic symmetry constraints distances are measured in radial planes through
the cyclic symmetry axis. Circumferential deviations do NOT enter the calcula-
tion of this distance. A separate check, however, verifying whether the geometry
matches the number of sections defined by the user, is performed. For details the
reader is referred to *CYCLIC SYMMETRY MODEL. If no tolerance is spec-
ified, or the tolerance is smaller than 10−30, a default tolerance is calculated
equal to 10−10 times the distance of the master nodes to their closest neighbor.
Subsequently, a cyclic symmetry constraint is generated. If no master node is
found within the tolerance, the face on the master surface is identified to which
the rotated slave node belongs, and a more elaborate multiple point constraint
is generated. If none is found, the closest face is taken. If this face does not lie
within 10% of its length from the slave node, no MPC’s are generated for this
node, an error is issued and the node is stored in file WarnNodeMissCyclicSym-
metry.nam. This file can be read into CalculiX GraphiX by using the command
“read WarnNodeMissCyclicSymmetry.nam inp”.

The parameter MULTISTAGE is used to tie two coincident nodal surfaces
(no face based surfaces allowed) each of which belongs to a different datum
sector. In that way two axially neighboring datum sectors can be tied. In this
case, the order in which the user specifies the surfaces is not relevant: the surface
belonging to the smallest datum sector is taken as master surface. The larger
datum sector should not extend the smaller datum sector by more than once the



588 8 INPUT DECK FORMAT

smaller datum sector, no matter in what circumferential direction (clockwise or
counterclockwise). This option should not be used in the presence of network
elements.

The parameter FLUID PERIODIC is used to define periodic conditions in
3D-fluid calculations on surfaces which are translated w.r.t. each other. The
surfaces must be face-based and match. For cyclic conditions in 3D-fluid calcu-
lations on surfaces which are rotated w.r.t. each other the parameter FLUID
CYCLIC is used. Here too, the surfaces must be face-based and match. Both
parameters require the *CYCLIC SYMMETRY MODEL card to be effective.
For 3D-fluid applications it is recommended that at least three element rows
separate the master and the slave surface.

The parameter NAME is needed if more than one *TIE constraint is defined.
It allows the user to distinguish the tie constraints when referring to them in
other keyword cards (e.g. *CYCLIC SYMMETRY MODEL).

Notice that *TIE can only be used to tie ONE slave surface with ONE master
surface. It is not allowed to enter more than one line underneath the *TIE card.
Furthermore, *TIE cards must not use a name which has already been used for
another *TIE.

First line:

• *TIE

• enter any parameters, if needed.

Following line:

• Name of the slave surface.

• Name of the master surface.

Example:

*TIE,POSITION TOLERANCE=0.01

left,right

defines a datum sector with slave surface left and master surface right, and
defines a position tolerance of 0.01 length units.

Example files: segment, fullseg, couette1per, couettecyl4.

8.123 *TIME POINTS

Keyword type: model definition
This option may be used to specify a sequence of time points. If the pa-

rameter TIME=TOTAL TIME is used the reference time is the total time
since the start of the calculation, else it is the local step time. The param-
eter NAME, specifying a name for the time point sequence so that it can be
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referenced by output definitions (*NODE FILE, *EL FILE, *NODE PRINT or
*EL PRINT) is required (maximum 80 characters).This option makes sense for
nonlinear static, nonlinear dynamic, modal dynamic, heat transfer and coupled
temperature-displacement calculations only. In all other procedures, this card
is ignored.

In each step, the local step time starts at zero. Its upper limit is given
by the time period of the step. This time period is specified on the *STATIC,
*DYNAMIC, *HEAT TRANSFER or *COUPLED TEMPERATURE-DISPLACEMENT
keyword card. The default step time period is 1.

The total time is the time accumulated until the beginning of the actual step
augmented by the local step time.

GENERATE is the second optional parameter. If specified, the user can
define a regular pattern of time points by specifying the starting time, the end
time and the time increment.

First line:

• *TIME POINTS

• Enter the required parameter NAME, and the optional parameter if needed.

Following line, using as many entries as needed, if GENERATE is not spec-
ified:

• Time.

• Time.

• Time.

• Time.

• Time.

• Time.

• Time.

• Time.

Repeat this line if more than eight entries are needed.
Following line, using as many entries as needed, if GENERATE is specified:

• Starting time

• End time

• Time increment

Repeat this line if more than one regular sequence is needed.
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Example:

*TIME POINTS,NAME=T1

.2,.3.,.8

defines a time points sequence with name T1 consisting of times .2, .3 and
.8 time units. The time used is the local step time.

Example:

*TIME POINTS,NAME=T1,GENERATE

0.,3.,1.

defines a time points sequence with name T1 consisting of the time points
0., 1., 2., and 3. The time used is the local step time.

Example files: beamnlptp

8.124 *TRANSFORM

Keyword type: model definition
This option may be used to specify a local axis system X’-Y’-Z’ to be used for

defining SPC’s, MPC’s and nodal forces. For now, rectangular and cylindrical
systems can be defined, triggered by the parameter TYPE=R (default) and
TYPE=C.

A rectangular system is defined by specifying a point a on the local X’ axis
and a point b belonging to the X’-Y’ plane but not on the X’ axis. A right hand
system is assumed (Figure 176).

When using a cylindrical system two points a and b on the axis must be
given. The X’ axis is in radial direction, the Z’ axis in axial direction from point
a to point b, and Y’ is in tangential direction such that X’-Y’-Z’ is a right hand
system (Figure 177).

The parameter NSET, specifying the node set for which the transformation
applies, is required.

If several transformations are defined for one and the same node, the last
transformation takes effect.

Notice that a non-rectangular local coordinate system is not allowed in nodes
which belong to plane stress, plane strain, or axisymmetric elements. If a local
rectangular system is defined the local z-axis must coincide with the global z-axis
(= axis orthogonal to the plane in which these elements are defined).

First line:

• *TRANSFORM

• Enter the required parameter NSET, and the optional parameter TYPE
if needed.
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Figure 176: Definition of a rectangular coordinate system

X

Y

Z

(global)

a

b

Z’
X’ (radial)

Y’ (tangential)

(axial)

Figure 177: Definition of a cylindrical coordinate system
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Second line:

• X-coordinate of point a.

• Y-coordinate of point a.

• Z-coordinate of point a.

• X-coordinate of point b.

• Y-coordinate of point b.

• Z-coordinate of point b.

Example:

*TRANSFORM,NSET=No1,TYPE=R

0.,1.,0.,0.,0.,1.

assigns a new rectangular coordinate system to the nodes belonging to (node)
set No1. The x- and the y-axes in the local system are the y- and z-axes in the
global system.

Example files: segment1, segment2, segmentf, segmentm.

8.125 *TRANSFORMF

Keyword type: model definition
This option may be used to specify a local axis system X’-Y’-Z’ to be used

for defining SPC’s in CFD-calculations. For now, rectangular and cylindrical
systems can be defined, triggered by the parameter TYPE=R (default) and
TYPE=C.

A rectangular system is defined by specifying a point a on the local X’ axis
and a point b belonging to the X’-Y’ plane but not on the X’ axis. A right hand
system is assumed (Figure 176).

When using a cylindrical system two points a and b on the axis must be
given. The X’ axis is in radial direction, the Z’ axis in axial direction from point
a to point b, and Y’ is in tangential direction such that X’-Y’-Z’ is a right hand
system (Figure 177).

The difference with the *TRANSFORM card is that for CFD-calculations
the SPC’s are applied to element faces instead of nodes. The parameter SUR-
FACE, specifying the surface for which the transformation applies, is required.
Notice that this surface must be face-based.

First line:

• *TRANSFORM

• Enter the required parameter SURFACE, and the optional parameter
TYPE if needed.
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Second line:

• X-coordinate of point a.

• Y-coordinate of point a.

• Z-coordinate of point a.

• X-coordinate of point b.

• Y-coordinate of point b.

• Z-coordinate of point b.

Example:

*TRANSFORMF,SURFACE=ABC,TYPE=C

0.,0.,0.,1.,0.,0.

assigns a new cylindrical coordinate system to the faces belonging to surface
ABC. The cylindrical axis is the global x-axis.

Example files: .

8.126 *UNCOUPLED TEMPERATURE-DISPLACEMENT

Keyword type: step
This procedure is used to perform an uncoupled thermomechanical analysis.

For each increment a thermal analysis is performed first. Then, the resulting
temperature field is used as boundary condition for a subsequent mechanical
analysis for the same increment. Consequently, there is no feedback from the
mechanical deformation on the temperature field within one and the same in-
crement. Due to the sequential calculations the resulting systems of equations
are smaller and faster execution times can be expected. Moreover, the number
of iterations within the increment is determined for the thermal and mechanical
analysis separately, whereas in a coupled thermomechanical analysis the worst
converging type of analysis dictates the number of iterations.

There are eight optional parameters: SOLVER, DIRECT, ALPHA, STEADY
STATE, DELTMX, EXPLICIT, TIME RESET and TOTAL TIME AT START.

SOLVER determines the package used to solve the ensuing system of equa-
tions. The following solvers can be selected:

• the SGI solver

• PaStiX

• PARDISO

• SPOOLES [3, 4].
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• TAUCS

• the iterative solver by Rank and Ruecker [70], which is based on the algo-
rithms by Schwarz [74].

Default is the first solver which has been installed of the following list: SGI,
PaStiX, PARDISO, SPOOLES and TAUCS. If none is installed, the default is
the iterative solver, which comes with the CalculiX package.

The SGI solver should by now be considered as outdated.SPOOLES is very
fast, but has no out-of-core capability: the size of systems you can solve is lim-
ited by your RAM memory. With 32GB of RAM you can solve up to 1,000,000
equations. TAUCS is also good, but my experience is limited to the LLT decom-
position, which only applies to positive definite systems. It has an out-of-core
capability and also offers a LU decomposition, however, I was not able to run
either of them so far. PARDISO is the Intel proprietary solver and is about
a factor of two faster than SPOOLES. The most recent solver we tried is the
freeware solver PaStiX from INRIA. It is really fast and can use the GPU. For
large problems and a high end Nvidea graphical card (32 GB of RAM) we got an
acceleration of a factor between 3 and 8 compared to PARDISO. We modified
PaStiX for this, therefore you have to download PaStiX from our website and
compile it for your system. This can be slightly tricky, however, it is worth it!

What about the iterative solver? If SOLVER=ITERATIVE SCALING is
selected, the preconditioning is limited to a scaling of the diagonal terms,
SOLVER=ITERATIVE CHOLESKY triggers Incomplete Cholesky precondi-
tioning. Cholesky preconditioning leads to a better convergence and maybe to
shorter execution times, however, it requires additional storage roughly corre-
sponding to the nonzeros in the matrix. If you are short of memory, diago-
nal scaling might be your last resort. The iterative methods perform well for
truly three-dimensional structures. For instance, calculations for a hemisphere
were about nine times faster with the ITERATIVE SCALING solver, and three
times faster with the ITERATIVE CHOLESKY solver than with SPOOLES.
For two-dimensional structures such as plates or shells, the performance might
break down drastically and convergence often requires the use of Cholesky pre-
conditioning. SPOOLES (and any of the other direct solvers) performs well in
most situations with emphasis on slender structures but requires much more
storage than the iterative solver.

The parameter DIRECT indicates that automatic incrementation should be
switched off. The increments will have the fixed length specified by the user on
the second line.

The parameter ALPHA takes an argument between -1/3 and 0. It controls
the dissipation of the high frequency responce: lower numbers lead to increased
numerical damping ([56]). The default value is -0.05.

The parameter STEADY STATE indicates that only the steady state should
be calculated. If this parameter is absent, the calculation is assumed to be time
dependent and a transient analysis is performed. For a transient analysis the
specific heat of the materials involved must be provided.
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The parameter DELTMX can be used to limit the temperature change in
two subsequent increments. If the temperature change exceeds DELTMX the
increment is restarted with a size equal to DA times DELTMX divided by the
temperature change. The default for DA is 0.85, however, it can be changed by
the *CONTROLS keyword. DELTMX is only active in transient calculations.
Default value is 1030.

The parameter EXPLICIT is only important for fluid computations. If
present, the fluid computation is explicit, else it is semi-implicit. Coupled struc-
tural computations are always implicit.

The parameter TIME RESET can be used to force the total time at the end
of the present step to coincide with the total time at the end of the previous step.
If there is no previous step the targeted total time is zero. If this parameter is
absent the total time at the end of the present step is the total time at the end
of the previous step plus the time period of the present step (2nd parameter un-
derneath the *UNCOUPLED TEMPERATURE-DISPLACEMENT keyword).
Consequently, if the time at the end of the previous step is 10. and the present
time period is 1., the total time at the end of the present step is 11. If the TIME
RESET parameter is used, the total time at the beginning of the present step
is 9. and at the end of the present step it will be 10. This is sometimes useful
if transient uncoupled temperature-displacement calculations are preceded by a
stationary heat transfer step to reach steady state conditions at the start of the
transient uncoupled temperature-displacement calculations. Using the TIME
RESET parameter in the stationary step (the first step in the calculation) will
lead to a zero total time at the start of the subsequent instationary step.

Finally, the parameter TOTAL TIME AT START can be used to set the
total time at the start of the step to a specific value.

First line:

• *UNCOUPLED TEMPERATURE-DISPLACEMENT

• Enter any needed parameters and their values.

• Initial time increment. This value will be modified due to automatic in-
crementation, unless the parameter DIRECT was specified (default 1.).

• Time period of the step (default 1.).

• Minimum time increment allowed. Only active if DIRECT is not specified.
Default is the initial time increment or 1.e-5 times the time period of the
step, whichever is smaller.

• Maximum time increment allowed. Only active if DIRECT is not specified.
Default is 1.e+30.

Example:

*UNCOUPLED TEMPERATURE-DISPLACEMENT

.1,1.
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defines an uncoupled thermomechanical step and selects the SPOOLES solver
as linear equation solver in the step (default). The second line indicates that
the initial time increment is .1 and the total step time is 1.

Example files: thermomech2.

8.127 *USER ELEMENT

With this option the user can define a user element, i.e. an element created by
the user and not available by default in CalculiX. The following parameters are
required: TYPE, INTEGRATION POINTS, MAXDOF and NODES.

The TYPE must begin with the letter U and is to be followed by a strictly
positive integer not exceeding 9999. It is used in an *ELEMENT card to assign
this type to specific elements.

INTEGRATION POINTS defines the number of integration points used in
the numerical integration of this element type (maximum 256). It is used for
allocation purposes. E.g stresses and strains are usually calculated at the inte-
gration points.

The parameter MAXDOF declares the maximum degree of freedom associ-
ated with nodes belonging to this element type (maximum 256). Translational
degrees of freedom correspond to degrees of freedom 1,2 and 3 rotational de-
grees of freedom to 4,5 and 6. For instance, shell are beam elements usually
contain rotational degrees of freedom, so MAXDOF=6. For volumetric elements
MAXDOF is usually 3.

Finally, the parameter NODES specifies the number of nodes associated with
this element type (maximum 256).

First line:

• *USER MATERIAL

• Enter the parameters and their value

Example:

*USER ELEMENT,TYPE=U1,INTEGRATION POINTS=0,MAXDOF=6,NODES=2

defines a user element of type U1 with no integration points (i.e. analytical
integration), a maximum degree of freedom of 6 and 2 nodes.

8.128 *USER MATERIAL

Keyword type: model definition, material
This option is used to define the properties of a user-defined material. For

a user-defined material a material subroutine has to be provided, see Sections
9.5 and 9.6. There is one required parameter CONSTANTS and one optional
parameter TYPE.



8.129 *VALUES AT INFINITY 597

The value of CONSTANTS indicates how many material constants are to
be defined for this type of material.

The parameter TYPE can take the value MECHANICAL or THERMAL.
If TYPE=MECHANICAL the user routine characterizes the mechanical be-
havior of the material, i.e. the stress-strain behavior. This property is only
important for mechanical or coupled temperature-displacement calculations. If
TYPE=THERMAL the user routine defines the thermal behavior of the ma-
terial, i.e. the heat flux versus temperature gradient behavior. This is only
used in thermal or coupled temperature-displacement calculations. Default is
TYPE=MECHANICAL.

The material is identified by means of the NAME parameter on the *MA-
TERIAL card.

First line:

• *USER MATERIAL

• Enter the CONSTANTS parameter and its value

Give on the following int(CONSTANTS/8)+1 lines the constants followed
by the temperature value for which they are valid, 8 values per line. The value
of the temperature can be left blank, however, if CONSTANTS is a multiple of
8 a value for the temperature is mandatory (if only one set of material constants
is given the value of this temperature is irrelevant). Repeat the set of constants
if values for more than one temperature are given.

Example:

*USER MATERIAL,CONSTANTS=8

500000.,157200.,400000.,157200.,157200.,300000.,126200.,126200.,

294.

300000.,57200.,300000.,57200.,57200.,200000.,26200.,26200.,

394.

defines a user-defined material with eight constants for two different tem-
peratures, 294 and 394.

Example files: beamu.

8.129 *VALUES AT INFINITY

Keyword type: model definition
This keyword is used to define values at infinity for 3D fluid calculations.

They are used to calculate the pressure coefficient cP if requested as output by
the user (*NODE FILE) and freestream boundary conditions for the turbulence
parameters [51].

First line:
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• *VALUES AT INFINITY

Second line:

• Static temperature at infinity

• Norm of the velocity vector at infinity

• Static pressure at infinity

• Density at infinity

• Length of the computational domain

Example:

*VALUES AT INFINITY

40.,1.,11.428571,1.,40.

specifies a static temperature of 40., a velocity of 1., a static pressure of
11.428571 and a density of 1. at infinity. The size of the computational domain
is 40.

Example files: fluid1,fluid2.

8.130 *VIEWFACTOR

Keyword type: step
Sometimes you wish to reuse the viewfactors calculated in a previous run,

or store the present viewfactors to file for future use. This can be done using
the keyword card *VIEWFACTOR.

There are six optional parameters: READ, WRITE, WRITE ONLY, NO
CHANGE, INPUT and OUTPUT. READ/NO CHANGE and WRITE/WRITE
ONLY are mutually exclusive, i.e. if you specify READ you cannot specify
WRITE or WRITE ONLY and so on. These parameters are used to specify
whether you want to read previous viewfactors (READ/NO CHANGE) or store
the viewfactors of the present calculation for future runs (WRITE and WRITE
ONLY). For reading there is an optional parameter INPUT, for writing there is
an optional parameter OUTPUT.

If you specify READ or NO CHANGE, the results will be read from the
binary file “jobname.vwf” (which should have been generated in a previous
run) unless you use the parameter INPUT. In the latter case you can specify any
filename (maximum 126 characters) containing the viewfactors. If the filename
contains blanks, it must be delimited by double quotes and the filename should
not exceed 124 characters. The geometry of the faces exchanging radiation
must be exactly the same as in the actual run. Notice that the parameter
INPUT must be preceded by the READ or NO CHANGE parameter. The
parameter NO CHANGE has the same effect as the READ parameter except
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that it additionally specifies that the viewfactors did not change compared with
the previous step. If this parameter is selected the LU decomposition of the
radiation matrix is not repeated and a lot of computational time can be saved.
This parameter can obviously not be used in the first step of the calculation.

In thermal calculations (keyword *HEAT TRANSFER) the viewfactors are
calculated at the start of each step since the user can change the radiation
boundary conditions in each step. If the viewfactors are not read from file,
i.e. if there is no *VIEWFACTOR,READ or *VIEWFACTOR,NO CHANGE
card in a step they are calculated from scratch. In thermomechanical calcu-
lations (keyword *COUPLED TEMPERATURE-DISPLACEMENT) the view-
factors are calculated at the start of each iteration. Indeed, the deformation
of the structure in the previous iteration can lead to a change of the viewfac-
tors. However, if the user reads the viewfactors from file the recalculation of
the viewfactors in each iteration anew is turned off. In that case it is assumed
that the viewfactors do not change during the entire step.

If you specify WRITE or WRITE ONLY, the viewfactors will be stored in
binary format in file “jobname.vwf” unless you use the parameter OUTPUT.
In the latter case you can specify any filename (maximum 125 characters) in
which the viewfactors are to be written. Any existing file with this name will be
deleted prior to the writing operation. If the filename contains blanks, it must
be delimited by double quotes and the filename should not exceed 123 charac-
ters. Notice that the parameter OUTPUT must be preceded by the WRITE
or WRITE ONLY parameter. If you specify WRITE ONLY the program stops
after calculating and storing the viewfactors.

A *VIEWFACTOR card is only active in the step in which it occurs.

First and only line:

• *VIEWFACTOR

• specify either READ or WRITE

Example:

*VIEWFACTOR,WRITE

will store the viewfactors calculated in that step to file.

Example:

*VIEWFACTOR,READ,INPUT=viewfactors.dat

will read the viewfactors from file viewfactors.dat.

Example files: furnace.
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8.131 *VISCO

Keyword type: step

This procedure is used to perform a static analysis for materials with vis-
cous behavior. The syntax is identical to the *STATIC syntax, except for the
extra parameter CETOL. This parameter is required and defines the maximum
difference in viscous strain within a time increment based on the viscous strain
rate at the start and the end of the increment. To get an idea of its size one can
divide the stress increase one would typically allow within a time increment by
the E-modulus.

Although the specification of the CETOL parameter is mandatory, it is only
used so far for materials for which the elastic behavior is linear and isotropic.

Notice that the default way of applying loads in a *VISCO step is step
loading, i.e. the loading is fully applied at the start of the step. This is different
from a *STATIC step, in which the loading is ramped. Using a *VISCO step
only makes sense if at least one materials exhibits viscous behavior.

9 User subroutines.

Although the present software is protected by the GNU General Public License,
and the user should always get the source code, it is sometimes more practical
to get a nicely described user interface to plug in your own routines, instead of
having to analyze the whole program. Therefore, for specific tasks well-defined
interfaces are put at the disposal of the user. These interfaces are basically
FORTRAN subroutines containing a subroutine header, a description of the
input and output variables and declaration statements for these variables. The
body of the routine has to be written by the user.

To use a user subroutine, replace the dummy routine in the CalculiX dis-
tribution by yours (e.g. dflux.f from the distribution by the dflux.f you wrote
yourself) and recompile.

9.1 Creep (creep.f)

The user subroutine “creep.f” is made available to allow the user to incorporate
his own creep law by selecting the keyword sequence *CREEP,LAW=USER
in the input deck. The input/output depends on the kind of material: if the
elastic properties of the material are isotropic, the Von Mises stress goes in and
the equivalent deviatoric creep strain increment and its derivative with respect
to the Von Mises stress for a given Von Mises stress come out. If the elastic
properties of the material are anisotropic, the equivalent deviatoric creep strain
increment goes in and the Von Mises stress and the derivative of the equivalent
deviatoric creep strain increment with respect to the Von Mises stress come out.
The creep regime is, however, always isotropic. Whether the elastic regime is
isotropic or anisotropic is triggered by the value of the variable lend.The header
and a description of the input and output variables is as follows:
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subroutine creep(decra,deswa,statev,serd,ec,esw,p,qtild,

& temp,dtemp,predef,dpred,time,dtime,cmname,leximp,lend,

& coords,nstatv,noel,npt,layer,kspt,kstep,kinc)

!

! user creep routine

!

! INPUT (general):

!

! statev(1..nstatv) internal variables

! serd not used

! ec(1) equivalent creep at the start of the increment

! ec(2) not used

! esw(1..2) not used

! p not used

! temp temperature at the end of the increment

! dtemp not used

! predef not used

! dpred not used

! time(1) value of the step time at the end of the increment

! time(2) value of the total time at the end of the increment

! dtime time increment

! cmname material name

! leximp not used

! lend if = 2: isotropic creep

! if = 3: anisotropic creep

! coords(1..3) coordinates of the current integration point

! nstatv number of internal variables

! noel element number

! npt integration point number

! layer not used

! kspt not used

! kstep not used

! kinc not used

!

! INPUT only for elastic isotropic materials:

! qtild von Mises stress

!

! INPUT only for elastic anisotropic materials:

! decra(1) equivalent deviatoric creep strain increment

!

!

! OUTPUT (general):

!

! decra(1) equivalent deviatoric creep strain increment

! decra(2..4) not used
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! decra(5) derivative of the equivalent deviatoric

! creep strain increment w.r.t. the von Mises

! stress

! deswa(1..5) not used

!

! OUTPUT only for elastic isotropic materials:

! decra(1) equivalent deviatoric creep strain increment

!

! OUTPUT only for elastic anisotropic materials:

! qtild von Mises stress

!

9.2 Hardening (uhardening.f)

In subroutine “uhardening.f”, the user can insert his own isotropic and/or kine-
matic hardening laws for (visco)plastic behavior governed by the keyword se-
quence *PLASTIC,HARDENING=USER. The header and variable description
is as follows:

subroutine uhardening(amat,iel,iint,t1l,epini,ep,dtime,fiso,dfiso,

& fkin,dfkin)

!

! INPUT:

!

! amat: material name (maximum 80 characters)

! iel: element number

! iint: integration point number

! t1l: temperature at the end of the increment

! epini: equivalent irreversible strain at the start

! of the increment

! ep: present equivalent irreversible strain

! dtime: time increment

!

! OUTPUT:

!

! fiso: present isotropic hardening Von Mises stress

! dfiso: present isotropic hardening tangent (derivative

! of the Von Mises stress with respect to the

! equivalent irreversible strain)

! fkin: present kinematic hardening Von Mises stress

! dfkin: present kinematic hardening tangent (derivative

! of the Von Mises stress with respect to the

! equivalent irreversible strain)

!
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9.3 User-defined initial conditions

These routines are an alternative to the explicit inclusion of the initial conditions
underneath the *INITIAL CONDITIONS keyword card in the input deck. They
allow for a more flexible definition of initial conditions.

9.3.1 Initial internal variables (sdvini.f)

This subroutine is used for user-defined internal variables, characterized by the
parameter USER on the *INITIAL CONDITIONS,TYPE=SOLUTION card.
The header and variable description is as follows:

subroutine sdvini(statev,coords,nstatv,ncrds,noel,npt,

& layer,kspt)

!

! user subroutine sdvini

!

!

! INPUT:

!

! coords(1..3) global coordinates of the integration point

! nstatv number of internal variables (must be

! defined by the user with the *DEPVAR card)

! ncrds number of coordinates

! noel element number

! npt integration point number

! layer not used

! kspt not used

!

! OUTPUT:

!

! statev(1..nstatv) initial value of the internal state

! variables

9.3.2 Initial stress field (sigini.f)

This subroutine is used for user-defined initial stresses, characterized by the
parameter USER on the *INITIAL CONDITIONS,TYPE=STRESS card. The
header and variable description is as follows:

subroutine sigini(sigma,coords,ntens,ncrds,noel,npt,layer,

& kspt,lrebar,rebarn)

!

! user subroutine sigini

!

! INPUT:

!
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! coords coordinates of the integration point

! ntens number of stresses to be defined

! ncrds number of coordinates

! noel element number

! npt integration point number

! layer currently not used

! kspt currently not used

! lrebar currently not used (value: 0)

! rebarn currently not used

!

! OUTPUT:

!

! sigma(1..ntens) initial stress values in the integration

! point. If ntens=6 the order of the

! components is 11,22,33,12,13,23

!

9.4 User-defined loading

These routines are made available to define nonuniform distributed loading. The
user can define the loading in each integration point separately as a function of
position, time etc.

9.4.1 Concentrated flux (cflux.f)

This subroutine is used for user-defined concentrated heat flux, characterized
by the parameter USER on the *CFLUX card. For the header and variable
description the reader is referred to cflux.f in the source code.

9.4.2 Concentrated load (cload.f)

This subroutine is used for user-defined concentrated load, characterized by the
parameter USER on the *CLOAD card. The header and variable description is
as follows:

subroutine cload(xload,kstep,kinc,time,node,idof,coords,vold,

& mi,ntrans,trab,inotr,veold)

!

! user subroutine cload

!

!

! INPUT:

!

! kstep step number

! kinc increment number

! time(1) current step time

! time(2) current total time
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! node node number

! idof degree of freedom

! coords(1..3) global coordinates of the node

! vold(0..mi(2)

! ,1..nk) solution field in all nodes (for modal

! dynamics: in all nodes for which output

! was requested or a force was applied)

! 0: temperature

! 1: displacement in global x-direction

! 2: displacement in global y-direction

! 3: displacement in global z-direction

! 4: static pressure

! mi(1) max # of integration points per element (max

! over all elements)

! mi(2) max degree of freedomm per node (max over all

! nodes) in fields like v(0:mi(2))...

! veold(0..3,1..nk) derivative of the solution field w.r.t.

! time in all nodes(for modal

! dynamics: in all nodes for which output

! was requested or a force was applied)

! 0: temperature rate

! 1: velocity in global x-direction

! 2: velocity in global y-direction

! 3: velocity in global z-direction

! ntrans number of transform definitions

! trab(1..6,i) coordinates of two points defining transform i

! trab(7,i) -1: cylindrical transformation

! 1: rectangular transformation

! inotr(1,j) transformation number applied to node j

! inotr(2,j) a SPC in a node j in which a transformation

! applied corresponds to a MPC. inotr(2,j)

! contains the number of a new node generated

! for the inhomogeneous part of the MPC

!

! OUTPUT:

!

! xload concentrated load in direction idof of node

! "node" (global coordinates)

!

9.4.3 Distributed flux (dflux.f)

This subroutine is used for nonuniform heat flux, characterized by distributed
load labels of the form SxNUy, cf *DFLUX. The load label can be up to 20
characters long. In particular, y can be used to distinguish different nonuniform
flux patterns. The header and variable description is as follows:
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subroutine dflux(flux,sol,kstep,kinc,time,noel,npt,coords,

& jltyp,temp,press,loadtype,area,vold,co,lakonl,konl,

& ipompc,nodempc,coefmpc,nmpc,ikmpc,ilmpc,iscale,mi,

& sti,xstateini,xstate,nstate_,dtime)

!

! user subroutine dflux

!

!

! INPUT:

!

! sol current temperature value

! kstep step number

! kinc increment number

! time(1) current step time

! time(2) current total time

! noel element number

! npt integration point number

! coords(1..3) global coordinates of the integration point

! jltyp loading face kode:

! 1 = body flux

! 11 = face 1

! 12 = face 2

! 13 = face 3

! 14 = face 4

! 15 = face 5

! 16 = face 6

! temp currently not used

! press currently not used

! loadtype load type label

! area for surface flux: area covered by the

! integration point

! for body flux: volume covered by the

! integration point

! vold(0..4,1..nk) solution field in all nodes

! 0: temperature

! 1: displacement in global x-direction

! 2: displacement in global y-direction

! 3: displacement in global z-direction

! 4: static pressure

! co(3,1..nk) coordinates of all nodes

! 1: coordinate in global x-direction

! 2: coordinate in global y-direction

! 3: coordinate in global z-direction

! lakonl element label

! konl(1..20) nodes belonging to the element

! ipompc(1..nmpc)) ipompc(i) points to the first term of



9.4 User-defined loading 607

! MPC i in field nodempc

! nodempc(1,*) node number of a MPC term

! nodempc(2,*) coordinate direction of a MPC term

! nodempc(3,*) if not 0: points towards the next term

! of the MPC in field nodempc

! if 0: MPC definition is finished

! coefmpc(*) coefficient of a MPC term

! nmpc number of MPC’s

! ikmpc(1..nmpc) ordered global degrees of freedom of the MPC’s

! the global degree of freedom is

! 8*(node-1)+direction of the dependent term of

! the MPC (direction = 0: temperature;

! 1-3: displacements; 4: static pressure;

! 5-7: rotations)

! ilmpc(1..nmpc) ilmpc(i) is the MPC number corresponding

! to the reference number in ikmpc(i)

! mi(1) max # of integration points per element (max

! over all elements)

! mi(2) max degree of freedomm per node (max over all

! nodes) in fields like v(0:mi(2))...

! sti(i,j,k) actual Cauchy stress component i at integration

! point j in element k. The components are

! in the order xx,yy,zz,xy,xz,yz

! xstateini(i,j,k) value of the state variable i at integration

! point j in element k at the beginning of the

! present increment

! xstate(i,j,k) value of the state variable i at integration

! point j in element k at the end of the

! present increment

! nstate_ number of state variables

! dtime time length of the increment

!

!

! OUTPUT:

!

! flux(1) magnitude of the flux

! flux(2) not used; please do NOT assign any value

! iscale determines whether the flux has to be

! scaled for increments smaller than the

! step time in static calculations

! 0: no scaling

! 1: scaling (default)
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9.4.4 Distribruted load (dload.f)

This subroutine is used for nonuniform pressure, characterized by distributed
load labels of the form PxNUy, cf *DLOAD. The load label can be up to 20
characters long. In particular, y can be used to distinguish different nonuniform
loading patterns. The header and variable description is as follows:

subroutine dload(f,kstep,kinc,time,noel,npt,layer,kspt,

& coords,jltyp,loadtype,vold,co,lakonl,konl,

& ipompc,nodempc,coefmpc,nmpc,ikmpc,ilmpc,iscale,veold,

& rho,amat,mi)

!

! user subroutine dload

!

!

! INPUT:

!

! kstep step number

! kinc increment number

! time(1) current step time

! time(2) current total time

! noel element number

! npt integration point number

! layer currently not used

! kspt currently not used

! coords(1..3) global coordinates of the integration point

! jltyp loading face kode:

! 21 = face 1

! 22 = face 2

! 23 = face 3

! 24 = face 4

! 25 = face 5

! 26 = face 6

! loadtype load type label

! vold(0..4,1..nk) solution field in all nodes

! 0: temperature

! 1: displacement in global x-direction

! 2: displacement in global y-direction

! 3: displacement in global z-direction

! 4: static pressure

! veold(0..3,1..nk) derivative of the solution field w.r.t.

! time in all nodes

! 0: temperature rate

! 1: velocity in global x-direction

! 2: velocity in global y-direction

! 3: velocity in global z-direction

! co(3,1..nk) coordinates of all nodes
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! 1: coordinate in global x-direction

! 2: coordinate in global y-direction

! 3: coordinate in global z-direction

! lakonl element label

! konl(1..20) nodes belonging to the element

! ipompc(1..nmpc)) ipompc(i) points to the first term of

! MPC i in field nodempc

! nodempc(1,*) node number of a MPC term

! nodempc(2,*) coordinate direction of a MPC term

! nodempc(3,*) if not 0: points towards the next term

! of the MPC in field nodempc

! if 0: MPC definition is finished

! coefmpc(*) coefficient of a MPC term

! nmpc number of MPC’s

! ikmpc(1..nmpc) ordered global degrees of freedom of the MPC’s

! the global degree of freedom is

! 8*(node-1)+direction of the dependent term of

! the MPC (direction = 0: temperature;

! 1-3: displacements; 4: static pressure;

! 5-7: rotations)

! ilmpc(1..nmpc) ilmpc(i) is the MPC number corresponding

! to the reference number in ikmpc(i)

! rho local density

! amat material name

! mi(1) max # of integration points per element (max

! over all elements)

! mi(2) max degree of freedomm per node (max over all

! nodes) in fields like v(0:mi(2))...

!

! OUTPUT:

!

! f magnitude of the distributed load

! iscale determines whether the flux has to be

! scaled for increments smaller than the

! step time in static calculations

! 0: no scaling

! 1: scaling (default)

!

9.4.5 Heat convection (film.f)

This subroutine is used for nonuniform convective heat flux, characterized by
distributed load labels of the form FxNUy, cf *FILM. The load label can be
up to 20 characters long. In particular, y can be used to distinguish different
nonuniform film patterns. The header and variable description is as follows:
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subroutine film(h,sink,temp,kstep,kinc,time,noel,npt,

& coords,jltyp,field,nfield,loadtype,node,area,vold,mi,

& ipkon,kon,lakon,iponoel,inoel,ielprop,prop,ielmat,

& shcon,nshcon,rhcon,nrhcon,ntmat_,cocon,ncocon)

!

! user subroutine film

!

!

! INPUT:

!

! sink most recent sink temperature

! temp current temperature value

! kstep step number

! kinc increment number

! time(1) current step time

! time(2) current total time

! noel element number

! npt integration point number

! coords(1..3) global coordinates of the integration point

! jltyp loading face kode:

! 11 = face 1

! 12 = face 2

! 13 = face 3

! 14 = face 4

! 15 = face 5

! 16 = face 6

! field currently not used

! nfield currently not used (value = 1)

! loadtype load type label

! node network node (only for forced convection)

! area area covered by the integration point

! vold(0..4,1..nk) solution field in all nodes;

! for structural nodes:

! 0: temperature

! 1: displacement in global x-direction

! 2: displacement in global y-direction

! 3: displacement in global z-direction

! 4: static pressure

! for network nodes

! 0: total temperature (at end nodes)

! = static temperature for liquids

! 1: mass flow (at middle nodes)

! 2: total pressure (at end nodes)

! = static pressure for liquids

! 3: static temperature (at end nodes; only for gas)

! mi(1) max # of integration points per element (max
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! over all elements)

! mi(2) max degree of freedom per node (max over all

! nodes) in fields like v(0:mi(2))...

! ipkon(i) points to the location in field kon preceding

! the topology of element i

! kon(*) contains the topology of all elements. The

! topology of element i starts at kon(ipkon(i)+1)

! and continues until all nodes are covered. The

! number of nodes depends on the element label

! lakon(i) contains the label of element i

! iponoel(i) the network elements to which node i belongs

! are stored in inoel(1,iponoel(i)),

! inoel(1,inoel(2,iponoel(i)))...... until

! inoel(2,inoel(2,inoel(2......)=0

! inoel(1..2,*) field containing the network elements

! ielprop(i) points to the location in field prop preceding

! the properties of element i

! prop(*) contains the properties of all network elements. The

! properties of element i start at prop(ielprop(i)+1)

! and continues until all properties are covered. The

! appropriate amount of properties depends on the

! element label. The kind of properties, their

! number and their order corresponds

! to the description in the user’s manual,

! cf. the sections "Fluid Section Types"

! ielmat(i) contains the material number for element i

! shcon(0,j,i) temperature at temperature point j of material i

! shcon(1,j,i) specific heat at constant pressure at the

! temperature point j of material i

! shcon(2,j,i) dynamic viscosity at the temperature point j of

! material i

! shcon(3,1,i) specific gas constant of material i

! nshcon(i) number of temperature data points for the specific

! heat of material i

! rhcon(0,j,i) temperature at density temperature point j of

! material i

! rhcon(1,j,i) density at the density temperature point j of

! material i

! nrhcon(i) number of temperature data points for the density

! of material i

! ntmat_ maximum number of temperature data points for

! any material property for any material

! ncocon(1,i) number of conductivity constants for material i

! ncocon(2,i) number of temperature data points for the

! conductivity coefficients of material i

! cocon(0,j,i) temperature at conductivity temperature point
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! j of material i

! cocon(k,j,i) conductivity coefficient k at conductivity

! temperature point j of material i

!

! OUTPUT:

!

! h(1) magnitude of the film coefficient

! h(2) not used; please do NOT assign any value

! sink (updated) sink temperature (need not be

! defined for forced convection)

! ntmat_ maximum number of temperature data points for

! any material property for any material

! ncocon(1,i) number of conductivity constants for material i

! ncocon(2,i) number of temperature data points for the

! conductivity coefficients of material i

! cocon(0,j,i) temperature at conductivity temperature point

! j of material i

! cocon(k,j,i) conductivity coefficient k at conductivity

! temperature point j of material i

!

! OUTPUT:

!

! h(1) magnitude of the film coefficient

! h(2) not used; please do NOT assign any value

! sink (updated) sink temperature (need not be

! defined for forced convection)

! heatnod extra heat flow going to the network node

! (zero if not specified)

! heatfac extra heat flow going to the structural face

! (zero if not specified)

9.4.6 Boundary conditions(uboun.f)

This subroutine is used for user-defined boundary values, characterized by the
parameter USER on the *BOUNDARYQ card. For the header and variable
description the reader is referred to the source code.

9.4.7 Heat radiation (radiate.f)

This subroutine is used for nonuniform radiation heat flux, characterized by
distributed load labels of the form RxNUy, cf *RADIATE. The load label can
be up to 20 characters long. In particular, y can be used to distinguish different
nonuniform radiation patterns. The header and variable description is as follows:

!

subroutine radiate(e,sink,temp,kstep,kinc,time,noel,npt,

& coords,jltyp,field,nfield,loadtype,node,area,vold,mi,
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& iemchange)

!

! user subroutine radiate

!

!

! INPUT:

!

! sink present sink temperature

! temp current temperature value

! kstep step number

! kinc increment number

! time(1) current step time

! time(2) current total time

! noel element number

! npt integration point number

! coords(1..3) global coordinates of the integration point

! jltyp loading face kode:

! 11 = face 1

! 12 = face 2

! 13 = face 3

! 14 = face 4

! 15 = face 5

! 16 = face 6

! field currently not used

! nfield currently not used (value = 1)

! loadtype load type label

! node currently not used

! area area covered by the integration point

! vold(0..4,1..nk) solution field in all nodes

! 0: temperature

! 1: displacement in global x-direction

! 2: displacement in global y-direction

! 3: displacement in global z-direction

! 4: static pressure

! mi(1) max # of integration points per element (max

! over all elements)

! mi(2) max degree of freedomm per node (max over all

! nodes) in fields like v(0:mi(2))...

!

! OUTPUT:

!

! e(1) magnitude of the emissivity

! e(2) not used; please do NOT assign any value

! sink sink temperature (need not be defined

! for cavity radiation)

! iemchange = 1 if the emissivity is changed during
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! a step, else zero.

!

9.4.8 Temperature (utemp.f)

With this subroutine the user can define a temperature field. It is triggered
bythe parameter USER on the *TEMPERATURE card. For the header and
variable description the reader is referred t the source code.

9.4.9 Amplitude (uamplitude.f)

With this subroutine the user can define an amplitude. It is triggered bythe pa-
rameter USER on the *AMPLITUDE card. The header and variable description
is as follows:

subroutine uamplitude(time,name,amplitude)

!

! user subroutine uamplitude: user defined amplitude definition

!

! INPUT:

!

! name amplitude name

! time time at which the amplitude is to be

! evaluated

!

! OUTPUT:

!

! amplitude value of the amplitude at time

!

9.4.10 Face loading (ufaceload.f)

This routine is called at the beginning of each step and can be used to determine
the area of faces on which loading is applied. In that way the flux through the
face can be calculated and stored in an extra file. This can be beneficial for
thermal calculations to check the heat flux due to convection and radiation.

subroutine ufaceload(co,ipkon,kon,lakon,

& nelemload,sideload,nload)

!

!

! INPUT:

!

! co(0..3,1..nk) coordinates of the nodes

! ipkon(*) element topology pointer into field kon

! kon(*) topology vector of all elements

! lakon(*) vector with elements labels
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! nelemload(1..2,*) 1: elements faces of which are loaded

! 2: nodes for environmental temperatures

! sideload(*) load label

! nload number of facial distributed loads

!

! user routine called at the start of each step; possible use:

! calculation of the area of sets of elements for

! further use to calculate film or radiation coefficients.

! The areas can be shared using common blocks.

!

9.4.11 Gap conductance (gapcon.f)

This subroutine is used to define the gap conductance across a contact pair
(penalty contact only). cf *GAP CONDUCTANCE. The header and variable
description is as follows:

subroutine gapcon(ak,d,flowm,temp,predef,time,ciname,slname,

& msname,coords,noel,node,npred,kstep,kinc,area)

!

! user subroutine gapcon

!

!

! INPUT:

!

! d(1) separation between the surfaces

! d(2) pressure transmitted across the surfaces

! flowm not used

! temp(1) temperature at the slave node

! temp(2) temperature at the corresponding master

! position

! predef not used

! time(1) step time at the end of the increment

! time(2) total time at the end of the increment

! ciname surface interaction name

! slname not used

! msname not used

! coords(1..3) coordinates of the slave node

! noel element number of the contact spring element

! node slave node number

! npred not used

! kstep step number

! kinc increment number

! area slave area

!

! OUTPUT:
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!

! ak(1) gap conductance

! ak(2..5) not used

!

9.4.12 Gap heat generation (fricheat.f)

This subroutine is used to define the gap heat generation across a contact pair
(face-to-face penalty contact only), cf *GAP HEAT GENERATION. For the
header and variable description the user is referred to the source code.

9.5 User-defined mechanical material laws.

User-defined mechanical behavior can be implemented using three different in-
terfaces:

• The native CalculiX interface.

• The ABAQUS umat routines for linear materials (small strain analyses).

• The ABAQUSNL umat routines for non linear materials (finite strain
analyses).

There are two ways of introducing user-defined mechanical behavior:

• Modify the CalculiX sources. This option is supported for the three in-
terfaces.

• Call a behavior defined in shared libraries.

Each of these approaches has its own advantages and its own pitfalls.
The first one is intrusive and requires a partial recompilation of CalculiX,

which means having access to the sources and the rights to install the executable
if it is meant to be deployed on a system-wide location.

The second one does not require any modification to CalculiX, is generally
easier to set up and is very flexible. There is no intrinsic limitations on the
number of shared libraries and functions that can be dynamically loaded. It
is thus quite feasible to create mechanical behaviours databases by creating a
shared library by specific material. Such libraries will only be loaded if needed.
In such an approach, the mechanical behaviour is dedicated to a specific ma-
terial and is self-contained: it has no external parameter. Shared libraries can
be shared between co-workers by moving them on a shared folder. However,
experience shows that using shared libraries can be confusing for some user
as they have to update their environment variables (PATH on Windows or
LD LIBRARY PATH on Unixes) for the libraries to be usable. Shared libraries
can also be more sensible to system updates. A drawback of using shared li-
braries is that the behaviors must be written in C or C++ as the name of the
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functions implementing the behaviors must be upper-cased du to CalculiX in-
ternal conventions1 The reason of such a restriction is detailed below. On way
of generating such library with the appropriate naming convention is to use the
MFront code generator:

http://tfel.sourceforge.net

9.5.1 The CalculiX interface

Introduction of a new mechanical behaviour by modifying the sources
This is an extremely important and powerful interface, allowing the user to de-
fine his/her own mechanical material behavior. The subroutine “umat main.f”
is a driver subroutine, calling user-defined routines similar to “umat user.f”, de-
pending on the kind of material present in the model. To create a new material
law, a “umat user.f” routine must be written and an appropriate call must be
inserted in routine “umat main.f”.

For instance, assume you want to write a material user routine for a Drucker-
Prager material model. Let us call this routine umat drucker prager.f. To write
the routine, you can use the umat user.f routine as a template. The header of
this routine shows you the fields which you have at your disposal.

When you finished writing the routine you have to make it available for selec-
tion in routine umat main.f. The selection is done based on the material name.
Let us take DRUCKER-PRAGER for the material name, i.e. if the user wants
to select this model with a *USER MATERIAL card, he has to use a name for
his material starting with DRUCKER-PRAGER. Material names in CalculiX
can be 80 characters long, so the remaining 66 characters after DRUCKER-
PRAGER can be used to distinguish between several Drucker-Prager materials
used within one and the same input deck, e.g. the user could use DRUCKER-
PRAGER1 and DRUCKER-PRAGER2 if he has two different Drucker-Prager
materials in his model. Using the block

elseif(amat(1:4).eq.’USER’) then

!

amatloc(1:76)=amat(5:80)

amatloc(77:80)=’ ’

call umat_user(amatloc,iel,iint,kode,elconloc,emec,emec0,

& beta,xikl,vij,xkl,vj,ithermal,t1l,dtime,time,ttime,

& icmd,ielas,mi(1),nstate_,xstateini,xstate,stre,stiff,

& iorien,pgauss,orab,pnewdt,ipkon)

as template we arrive at:

1Recent versions of the FORTRAN standard allow a more precise control of the name
mangling of FORTRAN functions which could be used to circumvent this issue. However, we
lack experience on that specific point. Another solution is that FORTRAN implementations
can be used using a C wrapper, which is quite feasible but this requires some advanced
knowledge of C and FORTRAN interfacing.
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elseif(amat(1:14).eq.’DRUCKER-PRAGER’) then

!

amatloc(1:66)=amat(15:80)

amatloc(67:80)=’ ’

call umat_drucker-prager(amatloc,iel,iint,kode,elconloc,emec,

& emec0,beta,xikl,vij,xkl,vj,ithermal,t1l,dtime,time,ttime,

& icmd,ielas,mi(1),nstate_,xstateini,xstate,stre,stiff,

& iorien,pgauss,orab,pnewdt,ipkon)

which has to be inserted in routine umat main.f. Notice that the DRUCKER-
PRAGER part is removed from the material name before entering the subrou-
tine, i.e. if the user has named his material DRUCKER-PRAGER1 only 1 will
be transferred to the user subroutine.

After storing umat main.f and umat drucker prager.f, umat drucker prager.f
has to be added to the FORTRAN routines in Makefile.inc and CalculiX has to
be recompiled, i.e. a new executable has to be generated.

After this, the Drucker-Prager material routine is at the disposal of the user.
To select it, he has to use the *USER MATERIAL card and start the name of
this material with DRUCKER-PRAGER. Furthermore, he has to know how
many constants he has to define for this material (should be in the documen-
tation of the material model) and how many internal variables there are (to be
inserted underneath the *DEPVAR card; should also be in the documentation
of the material model). If our Drucker-Prager material is characterized by 4
constants and 2 internal variables (this is out-of-the-blue) the input should look
like:

*MATERIAL,NAME=DRUCKER-PRAGEREXAMPLE

*USER MATERIAL,CONSTANTS=4

constant1,constant2,constant3,constant4

*DEPVAR

2

The header and input/output variables of the umat user routine are as fol-
lows:

subroutine umat_user(amat,iel,iint,kode,elconloc,emec,emec0,

& beta,xokl,voj,xkl,vj,ithermal,t1l,dtime,time,ttime,

& icmd,ielas,mi,nstate_,xstateini,xstate,stre,stiff,

& iorien,pgauss,orab,pnewdt,ipkon)

!

! calculates stiffness and stresses for a user defined material

! law

!

! icmd=3: calcutates stress at mechanical strain

! else: calculates stress at mechanical strain and the stiffness

! matrix

!
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! INPUT:

!

! amat material name

! iel element number

! iint integration point number

!

! kode material type (-100-#of constants entered

! under *USER MATERIAL): can be used for materials

! with varying number of constants

!

! elconloc(21) user defined constants defined by the keyword

! card *USER MATERIAL (max. 21, actual # =

! -kode-100), interpolated for the

! actual temperature t1l

!

! emec(6) Lagrange mechanical strain tensor (component order:

! 11,22,33,12,13,23) at the end of the increment

! (thermal strains are subtracted)

! emec0(6) Lagrange mechanical strain tensor at the start of the

! increment (thermal strains are subtracted)

! beta(6) residual stress tensor (the stress entered under

! the keyword *INITIAL CONDITIONS,TYPE=STRESS)

!

! xokl(3,3) deformation gradient at the start of the increment

! voj Jacobian at the start of the increment

! xkl(3,3) deformation gradient at the end of the increment

! vj Jacobian at the end of the increment

!

! ithermal 0: no thermal effects are taken into account

! >0: thermal effects are taken into account (triggered

! by the keyword *INITIAL CONDITIONS,TYPE=TEMPERATURE)

! t1l temperature at the end of the increment

! dtime time length of the increment

! time step time at the end of the current increment

! ttime total time at the start of the current step

!

! icmd not equal to 3: calculate stress and stiffness

! 3: calculate only stress

! ielas 0: no elastic iteration: irreversible effects

! are allowed

! 1: elastic iteration, i.e. no irreversible

! deformation allowed

!

! mi(1) max. # of integration points per element in the

! model

! nstate_ max. # of state variables in the model
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!

! xstateini(nstate_,mi(1),# of elements)

! state variables at the start of the increment

! xstate(nstate_,mi(1),# of elements)

! state variables at the end of the increment

!

! stre(6) Piola-Kirchhoff stress of the second kind

! at the start of the increment

!

! iorien number of the local coordinate axis system

! in the integration point at stake (takes the value

! 0 if no local system applies)

! pgauss(3) global coordinates of the integration point

! orab(7,*) description of all local coordinate systems.

! If a local coordinate system applies the global

! tensors can be obtained by premultiplying the local

! tensors with skl(3,3). skl is determined by calling

! the subroutine transformatrix:

! call transformatrix(orab(1,iorien),pgauss,skl)

!

!

! OUTPUT:

!

! xstate(nstate_,mi(1),# of elements)

! updated state variables at the end of the increment

! stre(6) Piola-Kirchhoff stress of the second kind at the

! end of the increment

! stiff(21): consistent tangent stiffness matrix in the material

! frame of reference at the end of the increment. In

! other words: the derivative of the PK2 stress with

! respect to the Lagrangian strain tensor. The matrix

! is supposed to be symmetric, only the upper half is

! to be given in the same order as for a fully

! anisotropic elastic material (*ELASTIC,TYPE=ANISO).

! Notice that the matrix is an integral part of the

! fourth order material tensor, i.e. the Voigt notation

! is not used.

! pnewdt to be specified by the user if the material

! routine is unable to return the stiffness matrix

! and/or the stress due to divergence within the

! routine. pnewdt is the factor by which the time

! increment is to be multiplied in the next

! trial and should exceed zero but be less than 1.

! Default is -1 indicating that the user routine

! has converged.

! ipkon(*) ipkon(iel) points towards the position in field
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! kon prior to the first node of the element’s

! topology. If ipkon(iel) is smaller than 0, the

! element is not used.

The parameter ielas indicates whether irreversible effects should be taken
into account. Forced displacements can lead to huge strains in the first iteration.
Therefore, convergence in quasistatic calculations is often enhanced if the first
iteration is completely linear, i.e. material and geometric nonlinearities are
turned off. The parameter ielas is the appropriate flag.

Two extra routines are at the user’s disposal for conversion purposes. “str2mat.f”
can be used to convert Lagrangian strain into Eulerian strain, Cauchy stress into
PK2 stress, or Kirchhoff stress into PK2 stress. The header and a short descrip-
tion are as follows:

subroutine str2mat(str,ckl,vj,cauchy)

!

! converts the stress in spatial coordinates into material coordinates

! or the strain in material coordinates into spatial coordinates.

!

! INPUT:

!

! str(6): Cauchy stress, Kirchhoff stress or Lagrange strain

! component order: 11,22,33,12,13,23

! ckl(3,3): the inverse deformation gradient

! vj: Jakobian determinant

! cauchy: logical variable

! if true: str contains the Cauchy stress

! if false: str contains the Kirchhoff stress or

! Lagrange strain

!

! OUTPUT:

!

! str(6): Piola-Kirchhoff stress of the second kind (PK2) or

! Euler strain

!

The second routine, “stiff2mat.f” converts the tangent stiffness matrix from
spatial coordinates into material coordinates.

subroutine stiff2mat(elas,ckl,vj,cauchy)

!

! converts an element stiffness matrix in spatial coordinates into

! an element stiffness matrix in material coordinates.
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!

! INPUT:

!

! elas(21): stiffness constants in the spatial description, i.e.

! the derivative of the Cauchy stress or the Kirchhoff

! stress with respect to the Eulerian strain

! ckl(3,3): inverse deformation gradient

! vj: Jacobian determinant

! cauchy: logical variable

! if true: elas is written in terms of Cauchy stress

! if false: elas is written in terms of Kirchhoff stress

!

! OUTPUT:

!

! elas(21): stiffness constants in the material description,i.e.

! the derivative of the second Piola-Kirchhoff stress (PK2)

! with respect to the Lagrangian strain

!

Calling mechanical behaviours defined shared libraries Calling shared
libraries is triggered by putting the @ character in front material name. The
material name is then decomposed into two parts, separated by the character:

• The base name of the library (see below).

• The name of the function implementing the behavior. If the function’s
name is ommitted, the “umat ” function name is used.

For instance, if we want to call a small strain behavior in a linear anal-
ysis, implemented by the “CHABOCHE” function in the “libCALCULIXBE-
HAVIOURS.so” shared library2, one would declare the following material name:

@CALCULIXBEHAVIOURS CHABOCHE

Here, the library name has been stripped from system-specific convention
(the leading lib and the .so extension). The base name of the library and the

name of the function must be upper-cased. This is due to the way CalculiX
interprets the input file.

To distinguish two materials using the same external behaviour, one may add
a unique identifier at the end of the material name. This identifier starts with the
@ character. For example, one may use the material names @CALCULIXBEHAVIOURS CHABOCHE@1

and @CALCULIXBEHAVIOURS CHABOCHE@2 to create to distinct materials (with
distinct material properties) which will call the same external behaviour.

2Under windows, the library name has the dll extension.
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9.5.2 ABAQUS umat routines

There are two interfaces to include ABAQUS umat routines: umat abaqus is
meant to include linear materials, umat abaqusnl for nonlinear materials. For
nonlinear materials the logarithmic strain and infinitesimal rotation are calcu-
lated, which slows down the calculation. Consequently, the nonlinear routine
should only be used if necessary.

Calling mechanical behaviours defined shared libraries Calling shared
libraries is triggered by putting the @ character in front material name. The
material name is then decomposed into two parts, separated by the character:

• The base name of the library (see below).

• The name of the function implementing the behavior. If the function’s
name is ommitted, the “umat ” function name is used.

For instance, if we want to call a small strain behavior in a linear anal-
ysis, implemented by the “CHABOCHE” function in the “libCALCULIXBE-
HAVIOURS.so” shared library3, one would declare the following material name:

@CALCULIXBEHAVIOURS CHABOCHE

Here, the library name has been stripped from system-specific convention
(the leading lib and the .so extension). The base name of the library and the

name of the function must be upper-cased. This is due to the way CalculiX
interprets the input file.

To distinguish two materials using the same external behaviour, one may add
a unique identifier at the end of the material name. This identifier starts with the
@ character. For example, one may use the material names @CALCULIXBEHAVIOURS CHABOCHE@1

and @CALCULIXBEHAVIOURS CHABOCHE@2 to create to distinct materials (with
distinct material properties) which will call the same external behaviour.

The linear routine is triggered by putting ABAQUS in front of the material
name. The total length of the material name should not exceed 80 characters,
consequently, 74 characters are left for the proper material name. For instance,
if the material name in the ABAQUS routine is supposed to be “WOOD”,
you must specify “ABAQUSWOOD” in the CalculiX input file. The part
“ABAQUS” is removed from the name before entering the umat routine.

The nonlinear routine is triggered by putting ABAQUSNL in front of the
material name.

Calling shared libraries Calling shared libraries is triggered by putting the
@ character in front material name. The material name is then decomposed into
three parts, separated by the character: - The name of the interface (ABAQUS
or ABAQUSNL). - The base name of the library (see below). - The name of the
function implementing the behavior.

3Under windows, the library name has the dll extension.
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For instance, if we want to call a small strain behavior in a linear anal-
ysis, implemented by the “CHABOCHE” function in the “libABAQUSBE-
HAVIOURS.so” shared library4, one would declare the following material name:

ABAQUS ABAQUSBEHAVIOURS CHABOCHE

Here, the library name has been stripped from system-specific convention
(the leading lib and the .so extension). The base name of the library and the

name of the function must be upper-cased. This is due to the way CalculiX
interprets the input file.

Limitations Notice that the following fields are not supported so far:

Calling shared libraries Calling shared libraries is triggered by putting the
@ character in front material name. The material name is then decomposed into
three parts, separated by the character:

• The name of the interface (ABAQUS or ABAQUSNL).

• The base name of the library (see below).

• The name of the function implementing the behavior. If the function’s
name is ommitted, the “umat ” function name is used.

For instance, if we want to call a small strain behavior in a linear anal-
ysis, implemented by the “CHABOCHE” function in the “libABAQUSBE-
HAVIOURS.so” shared library5, one would declare the following material name:

@ABAQUS ABAQUSBEHAVIOURS CHABOCHE

Here, the library name has been stripped from system-specific convention
(the leading lib and the .so extension). The base name of the library and the

name of the function must be upper-cased. This is due to the way CalculiX
interprets the input file.

To distinguish two materials using the same external behaviour, one may add
a unique identifier at the end of the material name. This identifier starts with the
@ character. For example, one may use the material names @ABAQUS ABAQUSBEHAVIOURS CHABOCHE@1

and @ABAQUS ABAQUSBEHAVIOURS CHABOCHE@2 to create to distinct materials
(with distinct material properties) which will call the same external behaviour.

Limitations sse, spd, scd, rpl, ddsddt, drplde, drpldt, predef, dpred, drot,
pnewdt, celent, layer, kspt. If you need these fields, contact “dhondt@t-online.de”.
Furthermore, the following fields have a different meaning:

• in the linear version:

– stran:

4Under windows, the library name has the dll extension.
5Under windows, the library name has the dll extension.
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∗ in CalculiX: Lagrangian strain tensor

∗ in ABAQUS: logarithmic strain tensor

– dstran:

∗ in CalculiX: Lagrangian strain increment tensor

∗ in ABAQUS: logarithmic strain increment tensor

– temp:

∗ in CalculiX: temperature at the end of the increment

∗ in ABAQUS: temperature at the start of the increment

– dtemp:

∗ in CalculiX: zero

∗ in ABAQUS: temperature increment

• in the nonlinear version:

– temp:

∗ in CalculiX: temperature at the end of the increment

∗ in ABAQUS: temperature at the start of the increment

– dtemp:

∗ in CalculiX: zero

∗ in ABAQUS: temperature increment

Notice that CalculiX uses double precision. Furthermore, it is good practice
to use “implicit none” instead of “implicit real*8(a-h,o-z)”. Therefore it is
advised to use “implicit none” in your ABAQUS routine and to declare all reals
with “real*8”.

9.6 User-defined thermal material laws.

Thermal behavior not available in CalculiX can be coded by the user in subrou-
tine “umatht.f”. This also applies to any behavior of the thermally equivalent
models such as shallow water theory etc. For instance, the thickness of the oil
film in lubrication is part of the equivalent conductivity coefficients. A mechan-
ical part can be coupled with the oil region by incorporating the effect of the
motion of the mechanical part on the oil film thickness in a thermal material
user-subroutine. The header and input/output variables of the umatht routine
are as follows:

subroutine umatht(u,dudt,dudg,flux,dfdt,dfdg,

& statev,temp,dtemp,dtemdx,time,dtime,predef,dpred,

& cmname,ntgrd,nstatv,props,nprops,coords,pnewdt,

& noel,npt,layer,kspt,kstep,kinc,vold,co,lakonl,konl,

& ipompc,nodempc,coefmpc,nmpc,ikmpc,ilmpc,mi)

!
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! heat transfer material subroutine

!

! INPUT:

!

! statev(nstatv) internal state variables at the start

! of the increment

! temp temperature at the start of the increment

! dtemp increment of temperature

! dtemdx(ntgrd) current values of the spatial gradients of the

! temperature

! time(1) step time at the beginning of the increment

! time(2) total time at the beginning of the increment

! dtime time increment

! predef not used

! dpred not used

! cmname material name

! ntgrd number of spatial gradients of temperature

! nstatv number of internal state variables as defined

! on the *DEPVAR card

! props(nprops) user defined constants defined by the keyword

! card *USER MATERIAL,TYPE=THERMAL

! nprops number of user defined constants, as specified

! on the *USER MATERIAL,TYPE=THERMAL card

! coords global coordinates of the integration point

! pnewd not used

! noel element number

! npt integration point number

! layer not used

! kspt not used

! kstep not used

! kinc not used

! vold(0..4,1..nk) solution field in all nodes

! 0: temperature

! 1: displacement in global x-direction

! 2: displacement in global y-direction

! 3: displacement in global z-direction

! 4: static pressure

! co(3,1..nk) coordinates of all nodes

! 1: coordinate in global x-direction

! 2: coordinate in global y-direction

! 3: coordinate in global z-direction

! lakonl element label

! konl(1..20) nodes belonging to the element

! ipompc(1..nmpc)) ipompc(i) points to the first term of

! MPC i in field nodempc

! nodempc(1,*) node number of a MPC term
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! nodempc(2,*) coordinate direction of a MPC term

! nodempc(3,*) if not 0: points towards the next term

! of the MPC in field nodempc

! if 0: MPC definition is finished

! coefmpc(*) coefficient of a MPC term

! nmpc number of MPC’s

! ikmpc(1..nmpc) ordered global degrees of freedom of the MPC’s

! the global degree of freedom is

! 8*(node-1)+direction of the dependent term of

! the MPC (direction = 0: temperature;

! 1-3: displacements; 4: static pressure;

! 5-7: rotations)

! ilmpc(1..nmpc) ilmpc(i) is the MPC number corresponding

! to the reference number in ikmpc(i)

! mi(1) max # of integration points per element (max

! over all elements)

! mi(2) max degree of freedomm per node (max over all

! nodes) in fields like v(0:mi(2))...

!

! OUTPUT:

!

! u not used

! dudt not used

! dudg(ntgrd) not used

! flux(ntgrd) heat flux at the end of the increment

! dfdt(ntgrd) not used

! dfdg(ntgrd,ntgrd) variation of the heat flux with respect to the

! spatial temperature gradient

! statev(nstatv) internal state variables at the end of the

! increment

!

9.7 User-defined nonlinear equations

This user subroutine allows the user to insert his/her own nonlinear equations
(also called Multiple Point Constraints or MPC’s). The driver routine is “non-
linmpc.f”. For each new type of equation the user can define a name, e.g. FUN
(maximum length 80 characters). To be consistent, the user subroutine should
be called umpc fun and stored in “umpc fun.f”. In file “nonlinmpc.f” the lines

elseif(labmpc(ii)(1:4).eq.’USER’) then

call umpc_user(aux,aux(3*maxlenmpc+1),const,

& aux(6*maxlenmpc+1),iaux,n,fmpc(ii),iit,idiscon)

should be duplicated and user (USER) replaced by fun (FUN).
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It is assumed that the nonlinear equation is a function of the displacements
only. Then it can generally be written as

f(u1, u2, u3, ...., un) = 0 (816)

where ui represents the displacement in node ni in direction li. Nonlinear
equations are solved by approximating them linearly and using an iterative
procedure. It is the linearization which must be provided by the user in the
subroutine. Assume we arrived at an intermediate solution u01, u

0
2, ....u

0
n. Then

the above equation can be linearly approximated by:

f(u01, u
0
2, ...., u

0
n) +

i=n∑

i=1

∂f

∂ui

∣∣∣∣
0

(ui − u0i ) = 0 (817)

For more details the user is referred to [19]. To use a user-defined equation
its name must be specified on the line beneath the keyword *MPC, followed by
a list of all the nodes involved in the MPC. This list of nodes is transferred to
the user routine, as specified by the following header and input/output variables
of the umpc user routine:

subroutine umpc_user(x,u,f,a,jdof,n,force,iit,idiscon)

!

! updates the coefficients in a user mpc

!

! INPUT:

!

! x(3,n) Carthesian coordinates of the nodes in the

! user mpc.

! u(3,n) Actual displacements of the nodes in the

! user mpc.

! jdof Actual degrees of freedom of the mpc terms

! n number of terms in the user mpc

! force Actual value of the mpc force

! iit iteration number

!

! OUTPUT:

!

! f Actual value of the mpc. If the mpc is

! exactly satisfied, this value is zero

! a(n) coefficients of the linearized mpc

! jdof Corrected degrees of freedom of the mpc terms

! idiscon 0: no discontinuity

! 1: discontinuity

! If a discontinuity arises the previous

! results are not extrapolated at the start of

! a new increment
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!

The subroutine returns the value of f (f(u01, u
0
2, ...., u

0
n)), the coefficients of

the linearization ( df
dui

∣∣∣
0
) and the degrees of freedom involved.

The parameter idiscon can be used to specify whether a discontinuity took
place. This usually means that the degrees of freedom in the MPC changed
from the previous call. An example of this is a gap MPC. If a discontinuity
occurred in an increment, the results (displacements..) in this increment are
NOT extrapolated to serve as an initial guess in the next increment.

An example is given next.

9.7.1 Mean rotation MPC.

This MPC is used to apply a rotation to a set of nodes. An important ap-
plication constitutes rotations on shell and beam elements, see Sections 6.2.14
and 6.2.33. The rotation is characterized by its size (angle in radians) and its
axis (normal vector). All nodes participating in the rotation should be listed
three times (once for each DOF). The user must define an extra node at the
end in order to define the size and axis of rotation: the coordinates of the extra
node are the components of a vector on the rotation axis, the first DOF of the
node is interpreted as the size of the rotation. This size can be defined using a
*BOUNDARY card. Applying a mean rotation implies that the mean of the ro-
tation of all participating nodes amounts to a given value, but not the individual
rotations per se. The complement of the mean rotation is the torque needed for
the rotation. By selecting RF on a *NODE PRINT or *NODE FILE card this
torque can be saved in the .dat or .frd file. Conversely, instead of specifying the
mean rotation one can also specify the torque (specify a force with *CLOAD on
the first DOF of the extra node) and calculate the resulting mean rotation.

The more nodes are contained in a mean rotation MPC the longer the non-
linear equation. This leads to a large, fully populated submatrix in the system
of equations leading to long solution times. Therefore, it is recommended not
to include more than maybe 50 nodes in a mean rotation MPC.

Example:

*NODE

162,0.,1.,0.

*MPC

MEANROT,3,3,3,2,2,2,14,14,14,39,39,39,42,42,42,

50,50,50,48,48,48,162

..

*STEP

*STATIC

*BOUNDARY

162,1,1,.9
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..

*END STEP

specifies a mean rotation MPC. Its size is 0.9 radians = 51.56◦ and the global
y-axis is the rotation axis. The participating nodes are 3,2,14,39,42,50 and 48.

Example files: beammr, beammrco.

The theory behind the mean rotation MPC is explained in [19], Section 3.6,
in case that all nodes are lying in a plane orthogonal to the rotation axis. If
this is not the case, the derivation in [19] is not correct and has to be extended.
Indeed, for the general case p′

i and u′
i in Equation (3.98) of that reference have

to be replaced by their projection on a plane orthogonal to the rotation vector
a. The projection Py of a vector y is given by:

Py = y − (y · a)a. (818)

Defining bi ≡ Pp′
i Equation (3.101)of the reference has to be replaced by (no

implicit summation in this section)

λi =
(bi × Pu′

i) · a
‖bi‖ · ‖bi + Pu′

i‖
(819)

(recall that the vector product of a vector with itself vanishes). λi is the sinus of
the angle between Pp′

i, which is the projected vector from the center of gravity
of the nodal set for which the mean rotation MPC applies to one of its nodes i,
and Pp′

i + Pu′
i, which is the projection of the vector connecting the deformed

position of the center of gravity with the deformed position of node i. The mean
rotation in the mean rotation MPC is supposed to be equal to a given angle γ,
i.e. the equation to be satisfied is:

N∑

i=1

sin−1 λi ≡
N∑

i=1

γi = Nγ. (820)

In order to find the coefficients of the linearization we concentrate here on the
derivation of ∂λi

∂up
. One readily finds the following relationships:

∂‖y‖
∂u

=
y

‖y‖ · ∂y
∂u

, (821)

∂Py

∂u
= [I − a⊗ a] · ∂y

∂u
≡ P · ∂y

∂u
, (822)

a · (y × P) = a× y. (823)

Furthermore, since bi + Pu′
i ⊥ a one obtains

(bi + Pu′
i) · P = bi + Pu′

i. (824)
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Finally, since (Equation (3.96) of the reference)

u′
i = ui −

1

N

∑

j

uj , (825)

one further finds

∂u′
i

∂up
= I · (δip −

1

N
), (826)

where I is the unit second order tensor. Using the above formulas one arrives
at

∂λi
∂up

=
(δip − 1

N )

‖bi + Pu′
i‖

[
a× bi

‖bi‖
− λi

bi + Pu′
i

‖bi + Pu′
i‖

]
, (827)

and

∂γi
∂up

=
1√

1− λ2i

(δip − 1
N )

‖bi + Pu′
i‖

[
a× bi

‖bi‖
− λi

bi + Pu′
i

‖bi + Pu′
i‖

]
, (828)

which replaces Equation (3.109) of the reference.

9.7.2 Maximum distance MPC.

This MPC is used to specify that the (Euclidean) distance between two nodes a
and b must not exceed a given distance d. A fictitious node c must be defined
using the *NODE card. The distance d should be assigned to the first coordinate
of c, the other coordinates are arbitrary. The first DOF of c should be assigned
a value of zero by means of a *BOUNDARY card. Since all DOFs of nodes a
and b are used in the MPC, these nodes must be listed three times. Notice that
due to this MPC discontinuities can arise.

Example:

*NODE

262,7.200000,0.,0.

*MPC

DIST,129,129,129,10,10,10,262

..

*STEP

*STATIC

*BOUNDARY

262,1,1,0.

..

*END STEP
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specifies a maximum distance MPC. The distance between nodes 129 and
10 is not allowed to exceed 7.2 units.

Example file: dist.

9.7.3 Network MPC.

By using the subroutines networkmpc lhs.f and networkmpc rhs.f in combina-
tion with the keyword *NETWORK MPC the user can define an arbitrary linear
or nonlinear equation between the degrees of freedom in a network, i.e. the total
temperature, total pressure and mass flow. For details the user is referred to
the source code and the *NETWORK MPC keyword.

Example file: networkmpc.

9.8 User-defined elements

9.8.1 Network element

Details on how a user network element can be defined are described in Section
6.4.25. Here, the structure of the network element subroutine is described in
detail. The routine is called for each element of the appropriate user type. For
the list of variables transferred into the routine the user is referred to the skeleton
file user network element p0.f and example file user network element p1.f.

A user network element is described by an equation expressing the relation-
ship between the total pressure at the end nodes, the total temperature at the
end nodes and the mass flow through the element:

f(pt1, pt2, Tt1, Tt2, ṁ) = 0 (829)

Not all these variables have to be present. In order to specify the relevant
variables the fields nodef and idirf and the scalar numf are used. In nodef the
relevant nodes numbers are stored, in idirf the direction: total temperature=0,
mass flow=1 and total pressure=2. If the element was defined by the nodes 50,
108 and 3338 (node1, nodem and node2) and only the total pressures and mass
flow occur in the equation nodef and idir could look like:

• nodef(1)=50, idirf(1)=2

• nodef(2)=108, idirf(2)=1

• nodef(3)=3338, idirf(3)=2

numf is the number of variables, here numf=3.
The structure of the user subroutine is governed by the variable iflag.

If iflag=0 the variable identity should be returned expressing whether the el-
ement routine is needed at all (identity=.false. if the routine is needed). For
instance, if all variables have been defined using boundary conditions the routine
is not relevant.
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If iflag=1 the user should return the mass flow based on the knowledge of
all other variables.

If iflag=2 the actual value of f and the derivative of f w.r.t. all active de-
grees of freedom (expressed by fields nodef and idirf) should be calculated and
returned.

Finally, if iflag=3 fields are calculated for output in the jobname.net file.
At the end of the file an adjustment is made for axisymmetric structures.

Axisymmetric elements in CalculiX are expanded into a 3-dimensional sector of
360◦/iaxial. Therefore, the mass flow, which is usually provided in the network
element routine for 360◦, has to be adjusted appropriately. The same applies to
the derivative of the governing element equation w.r.t. the mass flow.

For a user-defined network element two additional routines have to be com-
pleted:

• calcgeomelemnet.f. In this routine the cross section of the element is
defined. This is only needed for pipe-like elements (label starting with
UP), for which the total and static temperatures differ.

• calcheatnet.f. In this routine the heat generated within the element can
be defined, if any. If nonzero, this heat is inserted into the downstream
node of the element.

For details on these subroutines, the user is referred to the comments at the
start of these routines.

10 Programming rules.

CalculiX CrunchiX is a mixture of FORTRAN77 (with elements from FOR-
TRAN90) and C. C is primarily used for automatic allocation and reallocation
purposes. FORTRAN is the first language I learned and I must admit that I’m
still a FORTRAN addict. I use C where necessary, I avoid it where possible.
Roughly speaking, the main routine and some of the routines called by main
are in C, the others are in FORTRAN. This means that no C routine is called
by a FORTRAN routine, a FORTRAN routine may be called by a C routine
or a FORTRAN routine. There are NO commons in the code. All data trans-
fer is through arguments of subroutine calls. All arguments are transferred by
address, not value (there may be one or two exceptions on this rule in the code).

In summary, the following programming rules apply:

• C calls C or FORTRAN, FORTRAN only calls FORTRAN

• Data transfer to subroutines is ALWAYS by address (not value). This
applies to the C-to-C data transfer and the C-to-FORTRAN transfer.
The reason for this rule is that FORTRAN always transfers by address.

• Subroutines should be written in lower case. Upper case variables or mixed
variables should not be used
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• All FORTRAN routines are started with “implicit none”. For choosing
names of variables, however, you should stick to the “implicit real(a-h,o-
z)” rule, i.e. integers start by the letters i up to n, reals by the letters a
up to h and o up to z. Characters and logicals can start by any character.
This applies to C and FORTRAN.

• In C-routines only one-dimensional arrays or scalar should be defined and
used. More-dimensional arrays should not be used in C. This is because C
and FORTRAN store more-dimensional arrays in different ways. There-
fore, I prefer to limit the use of more-dimensional arrays to the FORTRAN
routines.

• In FORTRAN, common statements should not be used.

• Avoid the transfer of logical variables from C to FORTRAN.

• For sections of the code which are parallellized (multithreading):

– avoid logical variables

– avoid internal read and write statements (use the ichar function in-
stead)

– avoid external read and write statements

This set of rules grew out of my long-year experience with C and FORTRAN.
These are personal preferences, and some of them are really useful in order
to avoid different-to-trace programming errors. If you want to contribute to
CalculiX, I expect you to adhere to these rules.

Starting with version 2.8 the environment variable CCX LOG ALLOC has
been introduced. If set to 1 (default is zero) one gets detailed information on all
allocated, reallocated and deallocated fields during the executation of CalculiX.
This may be particularly important during debugging of segmentation faults.

11 Program structure.

The main subroutine of CalculiX is ccx 2.17.c. It consists roughly of the follow-
ing parts:

• Allocation of the fields

For each step:

1. Reading the step input data (including the prestep data for the first step)

2. Determining the matrix structure

3. Filling and solving the set of equations, storing the results.
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11.1 Allocation of the fields

This section consists of three subroutine calls:

• openfile

• readinput

• allocation

11.1.1 openfile

In this subroutine the input (.inp) and output files (.dat, .frd, .sta, .cvg) are
opened. The .dat file contains data stored with *NODE PRINT and *EL
PRINT, the .frd file contains data stored with *NODE FILE and *EL FILE,
the .sta and .cvg file contain information on the convergence of the calculation.

11.1.2 readinput

This subroutine reads the input and stores it in field inpc. Before storing, the
following actions are performed:

• the blanks are deleted

• all characters are changed to uppercase except file names

• the comment lines are not stored

• the include statements are expanded

Furthermore, the number of sets are counted and stored in nset , the number
of lines in inpc are stored in nline. The variable nset is used for subsequent
allocation purposes. Finally, the order in which inpc is to be read is stored in
the fields ipoinp and inp. Indeed, some keyword cards cannot be interpreted
before others were read, e.g. a material reference in a *SOLID SECTION card
cannot be interpreted before the material definition in the *MATERIAl card
was read. The order in which keyword cards must be read is defined in field
nameref in subroutine keystart.f. Right now, it reads:

1. *RESTART,READ

2. *NODE

3. *USER ELEMENT

4. *ELEMENT

5. *NSET

6. *ELSET

7. *TRANSFORM
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8. *MATERIAL

9. *DISTRIBUTION

10. *ORIENTATION

11. *SURFACE

12. *TIE

13. *SURFACE INTERACTION

14. *INITIAL CONDITIONS

15. *AMPLITUDE

16. *CONTACTPAIR

17. *COUPLING

18. everything else

This means that *RESTART,READ has to be read before all other cards,
then comes *NODE etc. The way inpc is to be read is stored in the fields ipoinp,
inp and ipoinpc. The two-dimensional field ipoinp consists of 2 columns and
nentries rows, where nentries is the number of keyword cards listed in the list
above, i.e. right now nentries=18. The first column of row i in field ipoinp
contains a row number of field inp, for instance j1. Then, the first column of
row j1 in field inp contains the line number where reading for keyword i should
start, the second column contains the line number where reading should end
and the third column contains the line number in field inp where the reading
information for keyword i continues, else it is zero. If it is zero the corresponding
row number in inp is stored in the second column of row i in field ipoinp. Lines
are stored consecutively in field inpc (without blanks and without comment
lines). Line l1 starts at ipoinpc(l1-1)+1 (first character) and ends at ipoinpc(l1)
(last character). Notice that ipoinpc(0)=0. This structure uniquely specifies in
what order field inpc must be read. This is also illustrated in Figure 178

If you want to add keywords in the above list you have to

• update nentries in the parameter statement in the FORTRAN subroutines
allocation.f, calinput.f, keystart.f, getnewline.f and writeinput.f

• update the initialization of nentries in the C-routines ccx 2.17.c, readin-
put.c and readnewmesh.c.

• update the data statement for the field nameref in the FORTRAN sub-
routines keystart.f and writeinput.f

• update the data statement for the field namelen in the FORTRAN sub-
routine keystart.f. It contains the number of characters in each keyword.
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line l1

j1

line l3

line l5

j3

row j1

row j2

row j3

field ipoinp

row j2line l2

row j3line l4

0line l6

row  i

field inp

ipoinpc(l2)

ipoinpc(l1−1)+1

ipoinpc(l3−1)+1

ipoinpc(l4)

ipoinpc(l5−1)+1

ipoinpc(l6)

field inpc

Figure 178: Reading the lines for keyword entry i

• look for the block running

else if(strcmp1(&buff[0],"*ORIENTATION")==0){

FORTRAN(keystart,(&ifreeinp,ipoinp,inp,"ORIENTATION",

nline,&ikey));

}

\item insert the new keyword in the comment list at the beginning of

subroutine keystart.f

\item update this section of the documentation, i.e. insert the new

keyword in the list above and change the value for nentries;

in file readinput.c, copy the block and replace ORIENTATION by the new
keyword.

11.1.3 allocate

In the subroutine allocate.f the input is read to determine upper bounds for the
fields in the program. These upper bounds are printed so that the user can verify
them. These upper bounds are used in the subsequent allocation statements in
ccx 2.17.c. This procedure might seem slightly awkward, however, since the
subroutines reading the input later on are in FORTRAN77, a reallocation is
not possible at that stage. Therefore, upper bounds must have been defined.

It is important to know where fields are allocated, reallocated and deallo-
cated. Most (re-, de-) allocation is done in ccx 2.17.c. Table (19) gives an
overview where the allocation (A), reallocation (R) and deallocation (D) is done
in file ccx 2.17.c. A fundamental mark in this file is the call of subroutine cal-
input, where the input data is interpreted. A couple of examples: field kon
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contains the topology of the elements and is allocated with size nkon, which
is an upper bound estimate, before all steps. After reading the input up to
and including the first step in subroutine calinput the field is reallocated with
the correct size, since at that point all elements are read and the exact size is
known. This size cannot change in subsequent steps since it is not allowed to
define new elements within steps. The field xforc is allocated with the upper
bound estimate nforc before entering subroutine calinput. After reading the
input up to and including the first step its size is reallocated with the true size
nforc. Before entering calinput to read the second step (or any subsequent step)
xforc is reallocated with size nforc , since new forces can be defined in step two
(and in any subsequent step). After reading step two, the field is reallocated
with the momentary value of nforc, and so on. All field which can change due
to step information must be reallocated in each step.
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Table 19: Allocation table for file ccx 2.17.c.

before calinput after calinput size
< step 1 > step 1 = step 1 > step 1 ≥ step 1 step 1 or

ntrans > 0
co A R R 3*nk
kon A R nkon
ipkon A R ne
lakon A R 8*ne
ielprop A nprop>0: R nprop > 0 and ne

else D network> 0: R
prop A nprop>0: R nprop

else D
nodeboun A R R nboun
ndirboun A R R nboun
typeboun A R R nboun
xboun A R R nboun
ikboun A R R nboun
ilboun A R R nboun

iamboun A nam > 0: R nam ≤ 0: D nam > 0: R nboun
nodebounold irstrt(1) < 0: A A R/R nboun
ndirbounold irstrt(1) < 0: A A R/R nboun
xbounold irstrt(1) < 0: A A R/R nboun
ipompc A R R nmpc
labmpc A R R 20*nmpc+1
ikmpc A R R nmpc
ilmpc A R R nmpc
fmpc A R R nmpc

nodempc A 3*memmpc
coefmpc A memmpc
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Table 19: (continued)

before calinput after calinput size
< step 1 > step 1 = step 1 > step 1 ≥ step 1 step 1 or

ntrans > 0
nodeforc A R R 2*nforc
ndirforc A R R nforc
xforc A R R nforc
ikforc A R R nforc
ilforc A R R nforc

iamforc A nam > 0: R nam ≤ 0: D nam > 0: R nforc
xforcold irstr < 0: A A R nforc
idefforc A A D

nelemload A R network >0: R 2*nload
sideload A R network >0:R 20*nload
xload A R network >0:R 2*nload

iamload A nam > 0: R nam ≤ 0: D nam > 0 2*nload
network >0: R

xloadold irstrt(1) < 0: A A R network >0: R 2*nload
idefload A A D
cbody A R R 81*nbody
ibody A R R 3*nbody
xbody A R R 7*nbody

xbodyold A R R 7*nbody
idefbody A A D
nodeflow A R R 2*nflow
xflow A R R nflow

iamflow A nam > 0: R nam ≤ 0: D nam > 0: R nflow
xflowold A R 2*nflow
nodeprint A R R noprint
nelemprint A R R neprint
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Table 19: (continued)

before calinput after calinput size
< step 1 > step 1 = step 1 > step 1 ≥ step 1 step 1 or

ntrans > 0
noelplab A 4*nlabel
noelflab A 4*nlabel
filab A
prlab A
prset A
set A R 81*nset

istartset A R nset
iendset A R nset
ialset A R nalset
elcon A R (ncmat +1)*

*ntmat *nmat
nelcon A R 2*nmat
rhcon A R 2*ntmat *nmat
nrhcon A R nmat
shcon A R 4*ntmat *nmat
nshcon A R nmat
cocon A R 7*ntmat *nmat
ncocon A R nmat
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Table 19: (continued)

before calinput after calinput size
< step 1 > step 1 = step 1 > step 1 ≥ step 1 step 1 or

ntrans > 0
alcon A R 7*ntmat *nmat
nalcon A R 2*nmat
alzero A R nmat
plicon A npmat > 0: R (2*npmat +1)*

else: D *ntmat *nmat
nplicon A npmat > 0: R (ntmat +1)*nmat

else: D
plkcon A npmat > 0: R (2*npmat +1)*

else: D *ntmat *nmat
nplkcon A npmat > 0: R (ntmat +1)*nmat

else: D
orname A norien > 0: R 80*norien

else:D
orab A norien > 0: R 7*norien

else:D
ielorien A norien > 0: R norien > 0 and mi[2]*ne

else:D network >0: R
trab A ntrans > 0: R 7*ntrans

else:D
inotr A ntrans > 0: R ntrans ≤ 0: D ntrans > 0: R 2*nk

amname A nam > 0: R nam > 0: R nam > 0: R 80*nam
else:D

amta A nam > 0: R nam > 0: R nam > 0: R 2*namta*
else:D (3*nam-2)

namta A nam > 0: R nam > 0: R nam > 0: R 3*nam
else:D
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Table 19: (continued)

before calinput after calinput size
< step 1 > step 1 = step 1 > step 1 ≥ step 1 step 1 or

ntrans > 0
t0 A ithermal 6= 0 ithermal = 0: D ithermal 6= 0 nk (3D)

R R 3*nk (1D/2D)
t1 A ithermal 6= 0 ithermal = 0: D ithermal 6= 0 nk (3D)

R R 3*nk (1D/2D)
iamt1 A ithermal 6= 0: R nam ≤ 0 or ithermal 6= 0 nk

ithermal = 0: D and nam > 0: R
t1old irstrt(1) < 0, ithermal 6= 0: A ithermal 6= 0: R nk

ithermal 6= 0: A
t0g if 1D/2D: A if 1D/2D and if 1D/2D and if 1D/2D 2*nk

ithermal 6= 0: R ithermal = 0: D ithermal 6= 0: R
t1g if 1D/2D: A if 1D/2D and if 1D/2D and if 1D/2D 2*nk

ithermal 6= 0: R ithermal = 0: D ithermal 6= 0: R
ielmat A R mi[2]*ne

matname A R 80*nmat
vold A R R R mt*nk
veold A nmethod 6= 4 and nmethod = 4/5 or mt*nk

(nmethod 6= 1 or (‖nmethod‖ = 1 and
iperturb < 2): A iperturb ≥ 2): R

else: R else: D
accold nmethod = 4 and 4*nk

iperturb > 1: A
only if ne1d 6= 0 or ne2d 6= 0

iponor A R 2*nkon
xnor A R infree[0]
knor A R infree[1]
thickn A D -
thicke A R mi[2]*nkon
offset A R network>0: R 2*ne
iponoel A R infree[3]
inoel A R 3*(infree[2]-1)
rig A R infree[3]
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Table 19: (continued)

before calinput after calinput size
< step 1 > step 1 = step 1 > step 1 ≥ step 1 step 1 or

ntrans > 0
ics ncs > 0 or R ncs

npt > 0: A R
dcs ncs > 0 or D -

npt > 0: A D
cs ntie > 0: A mcs > 0: R

else: D
sti irstrt(1) < 0: A A network >0: R 6*mint *ne
eme irstrt(1) < 0: A A network >0: R 6*mint *ne
ener irstrt(1) < 0 and nener=1 and mint *ne*2

nener=1: A nenerold=0: A
xstate A R nstate *

*mint * ne
tieset ntie ≥ 0: A
tietol ntie ≥ 0: A
prestr A iprestr = 1/2: R iprestr > 0 and 6*mi[0]*ne

else:D

Note: ithermal(1) and ithermal are in this manual synonymous.
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11.2 Reading the step input data

For each step the input data are read in subroutine calinput.f. For the first step
this also includes the prestep data. The order in which the data is read was
explained in the previous section (fields ipoinp and inp).

For each keyword card there is a subroutine, most of them are just the key-
word with the letter ’s’ appended. For instance, *STEP is read in subroutine
steps.f, *MATERIAL in materials.f. Some obey the plural building in English:
*FREQUENCY is read in frequencies.f. Some are abbreviated: *CYCLIC SYM-
METRY MODEL is read in cycsymmods.f. Treating more than 60 keyword
cards accounts in this way for roughly one fourth of all subroutines.

At this point it may be useful to talk about a couple of important structures
in the code.

11.2.1 SPC’s

The first one is the cataloguing algorithm for SPC’s (single point constraints,
*BOUNDARY). Let’s say a boundary condition m is defined for node i in di-
rection j, 0 ≤ j ≤ 6, direction 0 stands for temperature, directions 1 to 3 for
translations in global x-, y- and z- direction, direction 4 stands for static pres-
sure, directions 5 to 7 stand for rotations about the global x-, y- and z-axis.
Then a degree of freedom idof = 8 ∗ (i − 1) + j is assigned to this boundary
condition. Then, it is stored at location k in the one-dimensional field ikboun,
where all previous boundary degrees of freedom are stored in numerical order
such that ikboun(k−1) < idof < ikboun(k+1). Furthermore the number of the
boundary condition (m) is stored in ilboun: ilboun(k)=m, and the node of the
boundary condition, its direction and value are stored in the one-dimensional
fields nodeboun, ndirboun and xboun: nodeboun(m) = i, ndirboun(m) = j and
xboun(m) = value. If an amplitude definition applies to the boundary condition,
its number n is stored in the one-dimensional field iamboun: iamboun(m) = n.

The SPC type is stored in the one-dimensional field typeboun. SPC’s can be
of different types, depending on whether the were defined by a genuin *BOUND-
ARY CARD, or introduced for other reasons. The field typeboun is a one-
dimensional character*1 field. Other reasons to introduce SPC’s are:

• fixing of the midplane in expanded plane stress/plane strain/axisymmetric
elements

• taking care of the inhomogeneous term in nonlinear MPC’s such as the
PLANE *MPC, the STRAIGHT *MPC, a *RIGID BODY definition or
USER *MPC.

The corresponding type code is:

• B = prescribed boundary condition

• M = midplane constraint (plane stress/plane strain/axisymmetric ele-
ments)
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• P = PLANE MPC

• R = RIGID BODY definition

• S = STRAIGHT MPC

• U = USER MPC

The total number of boundary conditions is stored in variable nboun.
Consequently, ikboun contains all degrees of freedom of the boundary con-

ditions in numerical order, and ilboun contains the corresponding boundary
condition numbers. This assures that one can quickly check whether a given
degree of freedom was used in a SPC. For example, if the SPC’s look like:

*BOUNDARY

8,1,1,0.

10,1,2,0.

7,3,3,-1.

the fields look like:

nodeboun =





8
10
10
7




, ndirboun =





1
1
2
3




, xboun =





0.
0.
0.
−1.





(830)

typeboun =





B
B
B
B




, ikboun =





45
50
64
65




, ilboun =





4
1
2
3




. (831)

and nboun=4.
Finally, the following one-dimensional fields are also used:

• nodebounold: contains the node numbers of the SPC’s at the end of the
last step

• ndirbounold: contains the directions of the SPC’s at the end of the last
step

• xbounold: contains the values of the SPC’s at the end of the last step, or,
if this is the first step, zero values.

• xbounact: contains the values of the SPC’s at the end of the present
increment, or, for linear calculations, at the end of the present step. The
field xbounact is derived from the fields xbounold and xboun by use of the
present time and/or amplitude information. How this is done depends on
the procedure and is explained later on.
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• xbounini: contains the values of the SPC’s at the end of the last increment,
or, if this is the first increment in the first step, zero’s. This field is used
for nonlinear calculations only.

Notice that among the boundary conditions SPC’s are somewhat special.
They are sometimes called geometric boundary conditions to distinguish them
from the natural boundary conditions such as the application of a concentrated
or distributed load. To remove a natural boundary condition, just set it to zero.
This is not true for geometric boundary conditions: by setting a SPC to zero, the
corresponding node is fixed in space which usually does not correspond to what
one understands by removing the SPC, i.e. free unconstrained motion of the
node. Therefore, to remove a SPC the option OP=NEW must be specified on
the *BOUNDARY keyword card. This removes ALL SPC constraints. Then,
the constraints which the user does not wish to remove must be redefined.
Depending on the procedure (*STATIC, *DYNAMIC...), the change of SPC’s
is applied in a linear way. This means that the old SPC information must be
kept to establish this linear change. That’s why the fields nodebounold and
ndirbounold are introduced. The relationship between the old and new SPC’s
is established in subroutine spcmatch, called from ccx 2.17.c.

11.2.2 Homogeneous linear equations

Homogeneous linear equations are of the form

a1ui1 + a2ui2 + . . .+ anuin = 0. (832)

The variable n can be an arbitrary integer, i.e. the linear equation can
contain arbitrarily many terms. To store these equations (also called MPC’s)
the one-dimensional field ipompc and the two-dimensional field nodempc, which
contains three columns, are used. For MPC i, row i in field ipompc contains
the row in field nodempc where the definition of MPC i starts: if ipompc(i) = j
then the degree of freedom of the first term of the MPC corresponds to direction
nodempc(j, 2) in node nodempc(j, 1). The coefficient of this term is stored in
coefmpc(j). The value of nodempc(j, 3) is the row in field nodempc with the
information of the next term in the MPC. This continues until nodempc(k, 3) =
0 which means that the term in row k of field nodempc is the last term of MPC
i.

For example, consider the following MPC:

5.u1(10) + 3.u1(147) + 4.5u3(58) = 0. (833)

where u1(10) stands for the displacement in global x-direction of node num-
ber 10, similar for the other terms. Assume this MPC is equation number i.
Then, the storage of this equation could look like in Figure 179.

The first term in a MPC is special in that it is considered to be the dependent
term. In the finite element calculations the degree of freedom corresponding to
such a dependent term is written as a function of the other terms and is removed
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j1

row j1

row j2

row j3

row  i

field ipompc field nodempc

4.5

3.

5.j2

j3

110

1147

0358

field coefmpc

Figure 179: Example of the storage of a linear equation

from the system of equations. Therefore, no other constraint can be applied to
the DOF of a dependent term. The DOF’s of the dependent terms of MPC’s are
catalogued in a similar way as those corresponding to SPC’s. To this end, a one-
dimensional field ikmpc is used containing the dependent degrees of freedom in
numerical order, and a one-dimensional field ilmpc containing the corresponding
MPC number. The meaning of these fields is completely analogous to ikboun
and ilboun and the reader is referred to the previous section for details.

In addition, MPC’s are labeled. The label of MPC i is stored in labmpc(i).
This is a one-dimensional field consisting of character words of length 20 (in
FORTRAN: character*20). The label is used to characterize the kind of MPC.
Right now, the following kinds are used:

• CYCLIC: denotes a cyclic symmetry constraint

• MEANROT: denotes a mean rotation constraint

• PLANE: denotes a plane constraint

• PRETENSION: pretension SPC expressing the pretension condition

• RIGID: denotes a rigid body constraint

• STRAIGHT: denotes a straight constraint

• SUBCYCLIC: denotes a linear MPC some terms of which are part of a
cyclic symmetry constraint

• THERMALPRET: thermal boundary condition in the newly created nodes
in a pretension section; this is necessary for purely mechanical calculations.
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The MEANROT, PLANE and STRAIGHTMPC’s are selected by the *MPC
keyword card, a RIGID MPC is triggered by the *RIGID BODY keyword card,
and a CYCLIC MPC by the *CYCLIC SYMMETRY MODEL card. A SUB-
CYCLIC MPC is not triggered explicitly by the user, it is determined internally
in the program.

Notice that non-homogeneous MPC’s can be reduced to homogeneous ones
by introducing a new degree of freedom (introduce a new fictitious node) and
assigning the inhomogeneous term to it by means of a SPC. Nonlinear MPC’s
can be transformed in linear MPC’s by linearizing them [19]. In CalculiX this
is currently done for PLANE MPC’s, STRAIGHT MPC’s, USER MPC’s and
RIGID BODY definitions. Notice that SPC’s in local coordinates reduce to
linear MPC’s.

Finally, there is the variable icascade. It is meant to check whether the
MPC’s changed since the last iteration. This can occur if nonlinear MPC’s
apply (e.g. a coefficient is at times zero and at other times not zero) or under
contact conditions. This is not covered yet. Up to now, icascade is assumed to
take the value zero, i.e. the MPC’s are not supposed to change from iteration
to iteration. (to be continued)

11.2.3 Concentrated loads

Concentrated loads are defined by the keyword card *CLOAD. The internal
structure to store concentrated loads is very similar to the one for SPC’s, only
a lot simpler. The corresponding one-dimensional field for nodeboun, ndirboun,
xboun, iamboun, ikboun and ilboun are nodeforc, ndirforc, xforc, iamforc, ikforc
and ilforc. The actual number of concentrated loads is nforc, an estimated upper
bound (calculated in subroutine allocation.f) is nforc . The field xforcold and
xforcact are the equivalent of xbounold and xbounact, respectively. There is no
equivalent to nodebounold, ndirbounold, xbounini and typeboun. These fields
are not needed. Indeed, if the option OP=NEW is specified on a *CLOAD
card, all values in xboun are set to zero, but the entries in nodeforc and ndirforc
remain unchanged. Notice that DOF zero (heat transfer calculations) has the
meaning of concentrated heat source.

11.2.4 Facial distributed loads

The field architecture discussed here applies to loads on element faces and heat
sources per unit of mass. Consequently, it is used for the following keyword
cards:

• *DFLUX: S and BF load labels

• *DLOAD: P load labels

• *FILM: F load labels

• *RADIATE: R load labels
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• *TRANSFORMF: T load labels. This label only applies to CFD-calculations,
for which transformations are applied to element faces (and not to nodes
as for others types of calculations).

It does not apply to gravity and centrifugal loads. These are treated sepa-
rately.

The two-dimensional integer field nelemload contains two columns and as
many rows as there are distributed loads. Its first column contains the element
number the load applies to. Its second column is only used for forced convection
in which case it contains the fluid node number the element exchanges heat
with. The load label is stored in the one-dimensional field sideload (maximum 20
characters per label). The two-dimensional field xload contains two columns and
again as many rows as there are distributed loads. For *DFLUX and *DLOAD
the first column contains the nominal loading value, the second column is not
used. For *FILM and *RADIATE loads the first column contains the nominal
film coefficient and the emissivity, respectively, and the second column contains
the sink temperature. For forced convection, cavity radiation and non uniform
loads some of the above variables are calculated during the program execution
and the predefined values in the input deck are not used. The nominal loading
values can be changed by defining an amplitude. The number of the amplitude
(in the order of the input deck) is stored in the one-dimensional field iamload.
Based on the actual time the actual load is calculated from the nominal value
and the amplitude, if any. It is stored in the one-dimensional field xloadact.

In the subroutine calinput.f, the distributed loads are ordered according to
the element number they apply to. Accordingly, the first load definition in the
input deck does not necessarily correspond to the first row in fields nelemload,
xload, iamload, xloadact and sideload.

As an example, assume the following distributed loads:

*DLOAD

10,P3,8.3

*FILM

6,F4,273.,10.

12,F4FC,20,5.

then the loading fields will look like:

nelemload =



6 0
10 0
12 20


 , xload =



10. 273.
8.3 0.
5. 0.


 . (834)

sideload =





F4
P3

F4FC



 , iamload =




0
0
0



 . (835)
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11.2.5 Mechanical body loads

The field architecture discussed here applies to centrifugal loads and gravity
loads. Consequently, it is used for the *DLOAD card with the following labels:

• CENTRIF: centrifugal load

• GRAV: gravity load with known gravity vector

• NEWTON: generalized gravity

The two-dimensional integer field ibody contains three columns and as many
rows as there are body loads. Its first column contains a code identifying the
kind of load:

• 1 = centrifugal load

• 2 = gravity load with known gravity vector

• 3 = generalized gravity

Its second column contains the number of the amplitude to be applied, if
any. The third column contains the load case. This is only important for steady
state dynamics calculations with harmonic loading. The default values is 1
and means that the loading is real (in-phase); if the value is 2 the loading is
imaginary (out-of-phase). The element number or element set, for which the
load is defined is stored in the one-dimensional character field cbody. It contains
as many entries as there are body loads. The nominal value of the body load
is stored in the first column of field xbody. This is a two-dimensional field
containing 7 columns and as many rows as there are body loads. The second
to fourth column is used to store a point on the centrifugal axis for centrifugal
loads and the normalized gravity vector for gravity loading. If the gravity vector
is not known and has to be determined by the mass distribution in the structure
(also called generalized gravity) columns two to seven remain undefined. This
also applies to columns five to seven for non-generalized gravity loading. For
centrifugal loading columns five to seven of field xbody contain a normalized
vector on the centrifugal axis.

Based on the actual time the actual body load is calculated from the nominal
value and the amplitude, if any. It is stored in the first column of field xbodyact.
Columns two to seven of xbodyact are identical to the corresponding columns
of xbody.

The body loads are not stored in the order in which they are defined in
the input deck. Rather, they are ordered in alphabetical order according to
the element number or element set name they apply to. An element number is
interpreted as a character.

As an example, assume the following body loads:

*DLOAD

Eall,CENTRIF,1.E8,0.,0.,0.,1.,0.,0.
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8,GRAV,9810.,0.,0.,-1.

E1,NEWTON

then the loading fields will look like:

ibody =



2 0 1
3 0 1
1 0 1


 , cbody =





8
E1
Eall



 , (836)

xbody =



9810. 0. 0. −1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.

1.E8 0. 0. 0. 1. 0. 0.


 . (837)

11.2.6 Sets

A set is used to group nodes or elements. In the future, it will also be used
to define surface based on nodes and surfaces based on element faces. A set i
is characterized by its name set(i) and two pointers istartset(i) and iendset(i)
pointing to entries in the one-dimensional field ialset. The name set(i) consists of
at most 81 characters, the first eighty of which can be defined by the user. After
the last user-defined character the character ’N’ is appended for a node set and
’E’ for an element set. For surfaces, which are internally treated as sets, these
characters are ’S’ for nodal surfaces and ’T’ for element facial surfaces. The
extra character allows the user to choose identical names for node and elements
sets and/or surfaces. The nodes or elements a set consists of are stored in field
ialset between row istartset(i) and row iendset(i). If the parameter GENERATE
was not used in the set definition, the entries in ialset are simply the node or
element numbers. If GENERATE is used, e.g.

*NSET,NSET=N1,GENERATE

20,24

the start number, the end number and increment preceded by a minus sign
are stored, in that order. Accordingly, for the above example: 20,24,-1. Conse-
quently, a negative number in field ialset always points to an increment to be
used between the two preceding entries. For example, if the only two sets are
defined by:

*NSET,NSET=N1,GENERATE

20,24

*NSET,NSET=N1

383,402,883

*ELSET,ELSET=N1,GENERATE

3,8

the fields set, istartset, iendset and ialset read:
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set =

{
N1N
N1E

}
, istartset =

{
1
7

}
, iendset =

{
6
9

}
, ialset =





20
24
−1
383
402
883
3
8
−1





. (838)

11.2.7 Material description

The size of the fields reserved for material description is governed by the scalars
nmat , nmat, ncmat , ntmat and npmat . Their meaning:

• nmat : upper estimate of the number of materials

• nmat: actual number of materials

• ncmat : maximum number of (hyper)elastic constants at any temperature
for any material

• ntmat : maximum number of temperature data points for any material
property for any material

• npmat : maximum number of stress-strain data points for any tempera-
ture for any material for any type of hardening (isotropic or kinematic)

An elastic material is described by the two-dimensional integer field nelcon
and three-dimensional real field elcon. For material i, nelcon(1,i) contains for
linear elastic materials the number of elastic constants. For hyperelastic ma-
terials and the elastic regime of viscoplastic materials nelcon(1,i) contains an
integer code uniquely identifying the material. The code reads a follows:

• -1: Arruda-Boyce

• -2: Mooney-Rivlin

• -3: Neo-Hooke

• -4: Ogden (N=1)

• -5: Ogden (N=2)

• -6: Ogden (N=3)

• -7: Polynomial (N=1)

• -8: Polynomial (N=2)
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• -9: Polynomial (N=3)

• -10: Reduced Polynomial (N=1)

• -11: Reduced Polynomial (N=2)

• -12: Reduced Polynomial (N=3)

• -13: Van der Waals (not implemented yet)

• -14: Yeoh

• -15: Hyperfoam (N=1)

• -16: Hyperfoam (N=2)

• -17: Hyperfoam (N=3)

• -50: deformation plasticity

• -51: incremental plasticity (no viscosity)

• -52: viscoplasticity

• < -100: user material routine with -kode-100 user defined constants with
keyword *USER MATERIAL

Notice that elconloc is also used to store

• user-defined constants for user-defined materials

• the creep constants for isotropic viscoplastic materials (after the two elastic
constants).

Entry nelcon(2,i) contains the number of temperature points for material i.
The field elcon is used for the storage of the elastic constants: elcon(0,j,i)

contains the temperature at the (hyper)elastic temperature point j of material
i, elcon(k,j,i) contains the (hyper)elastic constant k at temperature point j of
material i. Notice that the first index of field elcon starts at zero.

Suppose only one material is defined:

*MATERIAL,NAME=EL

*ELASTIC

210000.,.3,293.

200000.,.29,393.

180000.,.27,493.

then the fields nelcon and elcon look like:

nelcon =
[
2 3

]
, elcon(∗, ∗, 1) =




293. 393. 493.
210000. 200000. 180000
.3 .29 .27


 , (839)
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and nmat=1, ntmat = 3, ncmat =2.

Other material properties are stored in a very similar way. The expansion
coefficients are stored in fields nalcon and alcon, the conductivity coefficients
in fields ncocon and cocon. The density and specific heat are stored in fields
nrhcon, rhcon, nshcon and shcon, respectively. Furthermore, the specific gas
constant is also stored in shcon. The fields nrhcon and nshcon are only one-
dimensional, since there is only one density and one specific heat constant per
temperature per material (the specific gas constant is temperature independent).

The isotropic hardening curves for viscoplastic materials are stored in the
two-dimensional integer field nplicon and the three-dimensional real field plicon.
The entry nplicon(0,i) contains the number of temperature data points for the
isotropic hardening definition of material i, whereas nplicon(j,i) contains the
number of stress-strain data points at temperature point j of material i. Entry
plicon(2*k-1,j,i) contains the stress corresponding to stress-plastic strain data
point k at temperature data point j of material i, plicon(2*k,j,i) contains the
plastic strain corresponding to stress-plastic strain data point k at temperature
data point j of material i. Similar definitions apply for the kinematic hardening
curves stored in nplkcon and plkcon.

11.3 Expansion of the one-dimensional and two-dimensional
elements

Typical one-dimensional elements are beams, typical two-dimensional elements
are shells, plane stress elements, plane strain elements and axisymmetric ele-
ments. Their dimension in thickness direction (for two-dimensional elements)
or orthogonal to their axis (for beam elements) is much smaller than in the other
directions. In CalculiX these elements are expanded to volume elements. Only
quadratic shape functions are accepted.

The expansion of the elements requires several steps:

• cataloguing the elements belonging to one and the same node

• calculating the normals in the nodes

• generating the expanded volume elements

• taking care of the connection of 1D/2D elements with genuine 3D elements

• applying the SPC’s to the expanded structure

• applying the MPC’s to the expanded structure

• applying the temperatures and temperature gradients

• applying nodal forces to the expanded structure
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Figure 180: Structures to store all elements to which a given node belongs

11.3.1 Cataloguing the elements belonging to a given node

A node can belong to several elements of different types. The structure to store
this dependence consists of two fields: a one-dimensional field iponoel and a
two-dimensional field inoel. For node i the value j1=iponoel(i) points to row
j1 in field inoel containing in its first column the number k1 of an element to
which node i belongs, in its second column the local number l1 which node i
assumes in the topology of the element and in its third column the row number
j2 in field inoel where another element to which node i belongs is listed. If no
further element exists, this entry is zero (Figure 180).

Notice that this structure allows the node to belong to totally different ele-
ment types, e.g. a beam element, a shell element and a plane stress element.

11.3.2 Calculating the normals in the nodes

The calculation of the normals (subroutine “gen3dnor.f”) in the nodes is per-
formed using a rather complicated algorithm explained in Sections 6.2.14 and
6.2.33. In a node several normals can exist, think for instance of a node on the
fold of a roof. Each normal is used to perform an expansion, i.e. in a node
with two normals two expansions are performed which partially overlap (Figure
86). Theoretically, as many expansions can be needed as there are elements to
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which the node belongs to. Therefore, to store the expansions and the normals
a structure is used similar to the field kon to store the topology of the elements.

The field kon is a one-dimensional field containing the topology of all ele-
ments, one after the other. The entry ipkon(i) points to the location in field
kon just before the start of the topology of element i, i.e. the first node of
element i is located at position ipkon(i)+1 in field kon, the last node at position
ipkon(i)+numnod, where numnod is the number of nodes of the element, e.g.
20 for a 20-node element. Thus, local position m of element j corresponds to
global node number kon(ipkon(j)+m). Now, a similar structure is used for the
normals and nodes of the expansions since these variables are linked to a local
position within an element rather than to a global node number. To this end
the two-dimensional field iponor and one-dimensional fields xnor and knor are
used.

The entry iponor(1,ipkon(j)+m) points to the location of the normal at local
position m of element j within field xnor, i.e. the three components of the normal
are stored in xnor(iponor(1,ipkon(j)+m)+1), xnor(iponor(1,ipkon(j)+m)+2) and
xnor(iponor(1,ipkon(j)+m)+3). In the same way the entry iponor(2,ipkon(j)+m)
points to the location of the new nodes of the expansion at local position m of
element j within field knor, i.e. the three new node numbers are stored at
knor(iponor(2,ipkon(j)+m)+n), n=1,2,3. The order of the node numbers is
illustrated in Figure 85. This applies to the expansion of two-dimensional el-
ements. For the expansion of beam elements xnor contains six entries: three
entries for unit vector 1 and three entries for unit vector 2 (Figure 89), i.e.
xnor(iponor(1,ipkon(j)+m)+1),...,xnor(iponor(1,ipkon(j)+m)+6). Since the ex-
pansion of a beam element leads to 8 extra nodes (Figure 90) 8 entries are pro-
vided in field knor. The field xnor is initialized with the values from keyword
card *NORMAL.

The procedure runs as follows: for a node i all 2D elements to which the node
belongs are determined. Then, the normals on these elements are determined
using the procedure explained in Section 6.2.14 starting with the normals prede-
fined by a *NORMAL keyword card. Notice that extra normals are also defined
at thickness discontinuities, offset discontinuities or element type changes (e.g.
a plane stress element adjacent to a shell element). Therefore, this step is more
about how many different expansions are needed rather than different normals:
if, for instance the thickness of a flat plate changes discontinuously, two different
expansions are needed at the discontinuity nodes although the normal does not
change. Next, all beam elements to which node i belongs are determined and
normals are determined in a similar way. For each normal appropriate nodes
are generate for the expansion (three for 2D elements, eight for 1D elements).
If overall only one normal suffices, no knot exists and no rigid body needs to
be defined, unless the rotational degrees of freedom in the node are constrained
or moments applied. If more than one normal ensues or the rotational degrees
of freedom are addressed by the user in any way, a rigid body is generated. In
a rigid body definition all expansion nodes of shells and beam participate, for
plane stress, plane strain or axisymmetric elements only the midside nodes take
part.
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Caution is due to the fact that the entries in the fields kon and iponor do not
correspond to the same nodes any more after leaving gen3delem.f. This is be-
cause the original element topology of the elements is shifted in field kon to allow
the storage of the expanded topology. For instance, suppose that element i is a
S8 element. Upon entering gen3delem.f the topology of this element is stored in
entries (kon(ipkon(i)+j,j=1,8) and soon afterwards the pointers to the expanded
nodes and normals are stored in (ipkon(ipkon(i)+j,j=1,8). However, upon leav-
ing gen3delem.f the original topology is shifted to (kon(ipkon(i)+20+j,j=1,8) (a
S8 element is expanded into a 20-node element) and the expanded topology is
stored in (kon(ipkon(i)+j),j=1,20). Field iponor, however, is not changed.

11.3.3 Expanding the 1D and 2D elements

The 1D elements are expanded in subroutine “gen3dfrom1d.f”, the 2D elements
in “gen3dfrom2d.f”.

Expanding the 1D elements involves changing the topology of the element
from a 3-node 1D element to a 20-node 3D element using the expanded nodes
stored in field knor. Notice that the old node numbers are not used, so at
this stage conditions applied to the old node numbers are not yet transferred
to the new nodes. To calculate the position of the new nodes the unit vectors
1 and 2, stored in xnor, are used together with the information defined by
*BEAM SECTION on the dimensions and the form of the cross section. Both
rectangular and elliptical cross sections are allowed.

Expanding the 2D elements requires the thickening of the elements using
the expanded node numbers stored in knor and the normals stored in xnor.
The element numbers remain, only the topology changes. Notice that the old
node numbers are not used, so at this stage conditions applied to the old node
numbers are not yet transferred to the new nodes. Plane strain, plane stress and
axisymmetric elements require some additional care: these are special elements
taking into account specific geometrical configurations. Remember that 8-node
2D elements are expanded into one layer of 20-node brick elements and 6-node
2D elements into one layer of 15-node brick elements. Plane strain, plane stress
and axisymmetric elements are defined in one plane, traditionally the x-y plane.
Now, for the expansion into 3D this plane is assumed to correspond to z=0.
It is the middle plane of the expansion. The elements are expanded half in
positive z-direction, half in negative z-direction. Let us call the expanded nodes
in positive z-direction the positive-z nodes, the ones in the plane z=0 the zero-z
nodes and the rest the negative-z nodes. For plane strain the positive-z and
negative-z nodes exhibit exactly the same displacements as the zero-z nodes.
These conditions are expressed in the form of multiple point constraints, and
are also generated in subroutine “gen3dfrom2d.f”. These MPC’s greatly reduce
the size of the ensuing matrix system. For plane stress elements the positive-
z nodes and the negative-z nodes have the same displacements in x- and y-
direction as the zero-z nodes. For axisymmetric elements the positive-z nodes
and the negative-z nodes have the same displacements as the zero-z nodes for
all directions in cylindrical coordinates. Finally, for plane strain, plane stress
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Figure 181: Beam element connection

and axisymmetric elements the displacement in z for the zero-z nodes is zero.

11.3.4 Connecting 1D and 2D elements to 3D elements

The connection of 1D and 2D elements with genuine 3D elements also requires
special care and is performed in subroutine “gen3dconnect.f”. Remember that
the expanded elements contain new nodes only, so the connection between these
elements and 3D elements, as defined by the user in the input deck, is lost. It
must be reinstated by creating multiple point constraints. This, however, does
not apply to knots. In a knot, a expandable rigid body is defined with the orig-
inal node as translational node (recall that a knot is defined by a translational,
a rotational and an expansion node). Thus, for a knot the connection with the
3D element is guaranteed. What follows applies to nodes in which no knot was
defined.

For 1D beam elements the connection is expressed by the equation (see
Figure 181 for the node numbers)

u1 + u2 + u3 + u4 − 4u0 = 0 (840)

where u stands for any displacement component (or temperature compo-
nent for heat transfer calculations), i.e. the above equation actually represents
3 equations for mechanical problems, 1 for heat transfer problems and 4 for
thermomechanical problems. Notice that only edge nodes of the beam element
are used, therefore it can also be applied to midside nodes of beam elements. It
expresses that the displacement in the 3D node is the mean of the displacement
in the expanded edge nodes.

For 2D shell elements the connection is expressed by equation (see Figure
182 for the node numbers)

u1 + u2 − 2u0 = 0. (841)

The same remarks apply as for the beam element.
Finally, for plane strain, plane stress and axisymmetric elements the connec-

tion is made according to Figure 183 and equation:

u1 − u0 = 0. (842)
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Figure 183: Plane and axisymmetric element connection

Node 1 is the zero-z node of the expanded elements. Although a twenty-node
brick element does not use zero-z nodes corresponding the the midside nodes of
the original 2D element, they exist and are used in MPC’s such as the above
equation. The connection is finally established through the combination of the
above MPC with the plane strain, plane stress and axisymmetric MPC’s linking
the zero-z nodes with the negative-z and positive-z nodes.

11.3.5 Applying the SPC’s to the expanded structure

Here too, the problem is that the SPC’s are applied by the user to the nodes
belonging the the original 1D and 2D elements. The expanded nodes, however,
have different numbers and a link must be established with the original nodes.
This is again performed by multiple point constraints. They are generated in
subroutine “gen3dboun.f”.

For knots the translational node of the rigid body formulation is the original
node number. Consequently, translational SPC’s are automatically taken into
account. If a rotational SPC is applied, it must be transferred to the rotational
node of the knot, e.g. degree of freedom 4 of the original node (rotation about
the x-axis) is transformed into degree of freedom 1 of the rotational node.

If no knot is generated in the node to which a translational SPC is applied,
the way this node is connected to the newly generated nodes in the expanded
elements depends on the type of element. For 1D elements MPC’s are gen-
erated according to Equation 840 and Figure 181. For 2D shell elements the
MPC’s correspond to Equation 841 and Figure 182. Finally, for 2D plane and
axisymmetric elements the MPC’s correspond to Equation 842 and Figure 183.
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The application of a rotational SPC to a node in which no knot is defined
is performed by generating a mean rotation MPC (cf. Section 9.7.1) about the
rotation axis. The rotation axis can be along a global coordinate direction or
along a local one. Contrary to translational SPC’s, rotational SPC’s in a local
coordinate system are not converted into MPC’s. Rather, the local rotation axis
is taken right away as the axis of the mean rotation.

For the temperature degrees of freedom in heat transfer calculations the
MPC’s generated in beam and shell nodes in which no knot is defined are not
sufficient. Indeed, the MPC only specifies the mean of corner nodes (for beams)
or the mean of the upper and lower node (for shells). In practice, this corre-
sponds to any bilinear (for beams) or linear (for shells) function across the cross
section. In CalculiX, it is not possible to specify this gradient, so a constant
function is defined. This is done by assigning the temperature SPC to nodes 2,
3 and 4 (for beams, Equation 840) and to node 2 (for shells, Equation 841).

11.3.6 Applying the MPC’s to the expanded structure

The procedure applied here (and coded in subroutine “gen3dmpc.f”) is similar
to the one in the previous section. The problem consists again of connecting
the nodes to which the MPC is applied with the newly generated nodes of the
expansion. Each term in the MPC is considered separately. If a knot is defined
in the node of the term at stake, nothing needs to be done if a translational
degree of freedom is addressed, whereas for a rotational degree of freedom the
node is replaced by the rotational node of the knot. If no knot is defined,
MPC’s satisfying Equation 840 are generated for 1D elements, MPC’s satisfying
Equation 841 for 2D shell elements and MPC’s described by Equation 842 for
plane and axisymmetric elements. For the latter elements only the nodes in the
zero-z plane are connected, see Figure 183. No rotational degrees of freedom
are allowed in nodes of MPC’s in which no knot was created.

11.3.7 Applying temperatures and temperature gradients

Temperatures and temperature gradients applied to 1D and 2D elements are
transformed into temperatures in the nodes of the expanded elements. To this
end the normals and thickness are used to convert the temperature gradients
into temperatures in the 3D elements. This is only needed in mechanical cal-
culations with temperature loading. Indeed, in heat transfer calculations the
temperatures are unknown and are not applied. Temperature application to 1D
and 2D elements is done in subroutine “gen3dtemp.f”.

11.3.8 Applying concentrated forces to the expanded structure

This is similar to the application of SPC’s: if a knot is defined in the node
nothing is done for applied translational forces. For moments (which can be
considered as rotational forces) their values are applied to the rotational node
of the knot, i.e. the node number is changed in the force application.
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Figure 184: Expansion of a beam element

If no knot is defined in a node in which a force is applied MPC’s are generated
between the node at stake and the new nodes in the expanded structure in the
case of 1D elements and 2D shells. For 2D plane and axisymmetric elements the
force is applied to the zero-z node in the expanded structure. If a moment is
applied (only applicable to shells and beams) a mean rotation MPC is generated.

For axisymmetric structures the concentrated forces are assumed to apply
for the whole 360◦. Since the expansion is done for a small sector only (must
be small to keep enough accuracy with only one layer of elements, the size of
the sector is specified by the user underneath the *SOLID SECTION card) the
force is scaled down appropriately.

Application of nodal forces is done in subroutine “gen3dforc.f”.

11.3.9 Integrating the stresses in beams to obtain the section forces

In beam elements the section forces can be requested at the end nodes. To this
end the stresses in the expanded faces at the end nodes are integrated. How
this is done can be explained by looking at Figure 184.
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The stresses in the expanded element are at first determined in the inte-
gration points (e.g. the Gauss-Kronrod points, cf. Figure 92). Then, they are
expanded to the nodes of the element. Consequently, the stresses are available
at all 20 nodes of the element in Figure 184. In order to obtain the section force
the following local coordinate systems are introduced:

• The local element ξ − η− ζ-system. ξ is along the axis of the beam (from
the first node of the element to the last node), ζ is along the user-defined
1-direction of the beam, η corresponds to the minus 2-direction. The 2-
direction is defined such that ξ-1-2 corresponds to a positive axis system.

• On the positive face of the beam element (the face corresponding to the
last end node of the beam definition, i.e. ξ = 1) the positive direction
for the section forces, which is denoted by I, II and III in Figure 184
corresponds to the element 1-direction, 2-direction and ξ.

• On the negative face of the beam element the positive direction for the
section forces, denoted by I, II and III points in the other direction of the
corresponding axes on the positive face (action=reaction).

• The local node numbering within the positive face is labeled by 1 to 8 in
small circles and corresponds to a local coordinate system ξl, ηl = ζ,−η
coinciding with the system I-II.

• The local node numbering within the negative face is also labeled by 1
to 8 in small circles and corresponds to a local coordinate system ξl, ηl =
-I,II = ζ, η.

The system I-II-III in the faces denotes the positive direction of the section
forces. The location of the integration points in the corresponding ξl, ηl system
is obtained from the local element coordinate system ξ−η−ζ through the above
face-dependent relationships.

In order to get the section forces the stresses are calculated in the integration
points of the positive and negative face by interpolation from the stresses at the
nodes belonging to the respective face. The integration point scheme depends
on the beam section.

11.4 Contact

Contact is triggered by the keyword card *CONTACT PAIR. It defines an in-
teraction between a nodal or element face slave surface and a element face
master surface. The master surface is triangulated using standard triangulation
schemes for the different kind of faces (3-node, 4-node, 6-node or 8-node). This
is done in subroutines allocont.f, triangucont.f and trianeighbor.f. This trian-
gulation is a topological one and does not depend on the concrete coordinates.
It is performed at the start of nonlingeo.c. The resulting triangles are stored in
field koncont (Figure 185): for triangle i the locations koncont(1..3,i) contain the
nodes belonging to the triangle, koncont(4,i) contains the element face to which
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the triangle belongs. The element face is characterized by a code consisting of
10*(element number)+face number. So the code for face 4 of element 33 is 334.
The triangles are stored in the order of the contact tie constraints they belong
to. For tie constraint i the location of the first triangle in field koncont is given
by itietri(1,i), the location of the last one by itietri(2,i).

The triangulation of the master surfaces allows for fast algorithms to deter-
mine the master face opposite of a given slave node. To facilitate this search, a
field imastop is created: imastop(i,j) yields for triangle j the triangle opposite of
node koncont(i,j). This is the neighboring triangle containing the edge to which
node koncont(i,j) does not belong. This adjacency information is needed to ap-
ply the search algorithms in Section 1.7 of [25]. To facilitate the construction
of imastop (done in subroutine trianeighbor.f), the edges of the triangulation
are catalogued by use of two auxiliary fields ipe(*) and ime(4,*). An edge is
characterized by two nodes i and j, suppose i < j. Then, if no other edge was
encountered so far for which i was the lowest node, the present edge is stored in
ime(1..4,ipe(i)), where ime(1,ipe(i)) contains j, ime(2,ipe(i)) contains one of the
triangles to which the edge belongs, e.g. t1, ime(3,ipe(i)) contains the local po-
sition in koncont(1..3,t1) of the node belonging to t1 but not on the edge i-j and
ime(4,ipe(i)) is a pointer to ime(1..4,ime(4,ipe(i))) containing any other edge
for which i is the lowest node number, else it is zero. ’For node-to-face penalty
contact these auxiliary fields are deleted upon leaving trianeighbor. For face-
to-face penalty contact they are further used in slavintpoints.f and for mortar
contact in slavintmortar.f.

For further calculations both the slave nodes and the slave surfaces have to
be catalogued. In case the slave surface is defined by nodes, the corresponding
faces have to be found. To this end, all external faces of the structure are cat-
alogued by fields ipoface and nodface in subroutine findsurface.f (Figure 186).
Assuming face f1 to contain corner nodes i < j < k < l, f1 is stored in nod-
face(1..5,ipoface(i)). The entries 1..5 contain: node j, node k, node l, a face
label in the form 10*element number + local face number and a pointer to any
other face for which i is the lowest node.

The slave nodes are stored in field islavnode(*) (Figure 187), tie per tie
and sorted in increasing order for each tie separately. nslavnode(i) contains the
position in islavnode before the first slave node of tie i. If ntie is the number
of ties, nslavnode contains ntie+1 entries, in order to mark the end of the field
islavnode as well. The total number of slave nodes is denoted by nslavs. For
face-to-face contact the field clearslavnode contains the difference between the
clearance specified by the user with the keyword card *CLEARANCE and the
clearance calculated based on the actual coordinates. This field is zero in the
absence of the *CLEARANCE card. The field clearini contains the clearance
for each node belonging to the slave face at stake. This information is copied
from field clearslavnode.

The slave faces are stored in islavsurf(1..2,*) (Figure 188 and Figure 189).
islavsurf(1,*) contains the slave faces, tie per tie (not in any way sorted),
whereas islavsurf(2,*) is an auxiliary field not further needed for node-to-face
contact. itiefac(1,i) is a pointer into field islavsurf marking the first face for tie
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i, itiefac(2,i) points to the last face. The total number of slave faces is iface-
count. The area of the slave faces is stored in a corresponding field areaslav. For
face-to-face penalty contact the second column of islavsurf is used as a pointer
to locations in field pslavsurf, preceding the integration points in the face (local
coordinates and weights). If for a given integration point in the slave face an
opposite master face is found, the local coordinates, the label of the master face
and the local normal to the master face are stored in field pmastsurf.

For the purpose of calculating the area corresponding to a given slave node,
the fields iponoels and inoels are used (Figure 190). For a slave node i, the
value iponoels(i) points towards an entry inoels(1..3,iponoels(i)) containing the
position within field islavsurf(1,*) of a face to which node i belongs and an entry
inoels(2,iponoels(i)) pointing to any other faces to which node i belongs. Field
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xnoels contains the weight of the node within the face. This information is
gathered in subroutine inicont.c.

The master nodes are catalogued in field imastnode in the sane way that
the slave nodes are stored in islavnode (Figure 191). The master nodes are
stored tie per tie, within each tie they are sorted in ascending order. For tie i
nmastnode(i) points towards the location in imastnode immediately before the
master node with the smallest number within tie i, nmastnode(i) points towards
the master node within tie i with the largest number. The size of imastnode is
nmastnode(ntie+1), where ntie is the number of ties. In each iteration and/or
increment the topological information of each master triangle is complemented
by geometrical information consisting of the center of gravity (in field cg) and the
equations of the triangle plane and the planes quasi-perpendicular to the triangle
and containing its edges. For triangle i the coordinates of the center of gravity
are stored in cg(1..3,i). The coefficients of the equation of the plane orthogonal
to the triangle and containing the first edge are stored in straight(1..4,i). The
first edge is defined as the edge through nodes koncont(1,i) and koncont(2,i).
Similar for edge 2 (straight(5..8,i)) and edge 3 (straight(9..12,i)). The coeffi-
cients of the triangle plane are stored in straight(13..16,i). The geometrical
information is calculated in routine updatecontpen.f. The planes bordering the
triangles are quasi-orthogonal to the triangle in the sense that they are in-
between the truly orthogonal planes and the planes through the triangle edges
and orthogonal to the neighboring triangles. To this end the mean normals are
stored in field xmastnor(3,*) (Figure 191).

Further geometrical information is the area of each slave face i, stored in
areaslav(i), the area corresponding to slave node i, stored in springarea(1,i) and
the penetration at the start of each step in slave node i (< 0 if any penetration
, else 0), stored in springarea(2,i). These calculations are performed each time
gencontelem n2f.f or gencontelem f2f.f is called.

Subsequently, contact spring elements are generated (routine gencontelem.f).
To this end, each node belonging to the dependent contact slave surface is
treated separately. To determine the master surface the node interacts with,
a triangle belonging to the triangulation of the corresponding master surface
are identified, such that its center of gravity is closest to the dependent node.
Then, a triangle is identified by adjacency, such that the orthogonal projection
of the slave node is contained in this triangle. If such a triangle is found, a
contact spring element is generated consisting of the dependent node and the
independent surface the triangle belongs to, provided the node penetrates the
structure or the clearance does not exceed a given margin. Before checking the
penetration or clearance an adjustment of the geometry is performed in case
the user has activated the ADJUST parameter. If any of these conditions is not
satisfied, no contact spring element is generated for this dependent node and the
next node is treated. The sole purpose of the triangulation of the master surface
is the fast identification of the independent face a dependent node interacts with.

The stiffness matrix of the contact spring elements is calculated in springs-
tiff.f, called by mafillsm.f. In order to determine the stiffness matrix the local
coordinates of the projection of the dependent node onto the independent sur-
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Figure 191: Storage of the master nodes
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face are needed. This is performed in attach.f. Use is made of a cascaded regular
grid to determine the location within the independent surface which is closest to
the dependent node. The local coordinates are needed to determine the shape
functions and their derivatives. The contact force is determined in springforc.f,
called by results.f. Here too, routine attach.f is called.

Since the geometrical information is recalculated in every iteration, large de-
formations are taken into account, unless the user has specified SMALL SLID-
ING in which case the geometry update takes place once at the start of each
new increment.

The material properties of the contact spring, defined by means of the
*SURFACE INTERACTION, the *SURFACE BEHAVIOR and the *FRIC-
TION card, are stored in the same fields as the *MATERIAL and *ELAS-
TIC,TYPE=ISOTROPIC card.

The general structure of the contact algorithms for nonlinear geometric cal-
culations is as follows. The contact topology is determined in inicont.c. This
routine is called once at the start of a new step and calls the following routines:

• allocont: determining the number of master triangles and slave entities
(nodes or faces, depending on whether the slave surface is nodal or facial)

• triangucont: triangulation of the master side

• trianeighbor: determining the triangle neighbors in the triangulation of
the master side

• findsurface (only for node-to-face contact): catalogueing the external faces
and creating the fields ipoface and nodface

• tiefaccont: determinnig the field islavsurf and itieface (slave nodes), islavn-
ode and nslavnode (slave faces), iponoels, xnoels and inoels (only for node-
to-face contact) and imastnode and nmastnode (master nodes).

For face-to-face penalty contact the routine precontact.c is called at the start
of each new increment. Its purpose is:

• to calculate the center of gravity and the quasi-orthogonal planes to the
master triangles (updatecontpen.f).

• to calculate the clearance (if the *CLEARANCE keyword card is used)
and/or adjust the slave nodes (if the ADJUST parameter is used on the
*CONTACT PAIR card) at the start of the first step (adjustcontactn-
odes.f).

• to determine the location of the integration points in the slave faces based
on the matching of the slave and the master faces (slavintpoints.f).

Furthermore, for face-to-face penalty contact the routine interpolatestate is
called at the start of each new increment. It interpolates the state variables
(internal variables such as the slip accumulated so far) from the integration
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Figure 192: Topology of the node-to-face contact elemetns
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Figure 193: Topology of the face-to-face penalty contact elements
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points at the end of the previous increment, if any, to the new integration
points determined in slavintpoints.f. Indeed, at the start of a new increment
the matching between the slave and master surfaces is done anew and usually
leads to a change in the location of the integration points.

For contact with friction there are 9 internal variables (state variables). They
are:

• 1-3: the slip vector

• 4-6: the relative displacement between slave and master surface

• 7-9: the relative tangential displacement between slave and master surface

All of them are stored in global Carthesian coordinates.
The contact.c routine is called once per iteration. This applies to node-to-

face as well as face-to-face penalty contact. For node-to-face contact the purpose
of contact.c is:

• to update the center of gravity and the quasi-orthogonal planes of the
master triangles (updatecontpen.f).

• to generate contact spring elements at those slave nodes for which the
clearance does not exceed a predefined value c0 (gencontelem n2f.f). Ad-
ditionally, gencontelem 2nf performs the calculation of:

– the area of all slave faces (stored in areaslav).

– the area corresponding to each slave node and the overlap at the start
of the first step (stored in springarea).

If a spring element is generated, its topology is stored in field kon in accor-
dance to Figure 192. The parameter igauss is needed to identify the area and
overlap.

For face-to-face penalty contact contact.c only calls routine gencontelem f2f.
At the start of a new increment the field pmastsurf is filled for those slave
integration points for which an opposite master face is found. It contains the
local coordinates of the master face, its label (10*element+local face number)
and the local normals. Furthermore, field springarea is filled containing the
corresponding slave area and the overlap at the start of each increment in the
first step. Please note that pmastsurf and springarea are calculated at the
start of an increment and kept constant for all iterations across the complete
increment. The contact spring elements, however, are generated anew in each
iteration based on the sign of the clearance. A contact element is generated only
if the clearance is negative (i.e. in case of penetration). The topology of the
spring element is stored in field kon (Figure 193) and contains the total number
of nodes (slave+master), the master nodes, the slave nodes, the address of the
integration point in pslavsurf and the address of the slave face in islavsurf.

Contact properties (*SURFACE BEHAVIOR, *FRICTION, *CONTACT
DAMPING, *GAP HEAT GENERATION) are preceded by a *SURFACE IN-
TERACTION card and are internally treated as material properties, i.e. the
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Table 20: Storage of contact data in elcon.

entry kind exponential linear tabular tied
1 *SURFACE BEHAVIOR β σ∞ - -
2 *SURFACE BEHAVIOR p0 K - K
3 *SURFACE BEHAVIOR 1 2 3 4
4 *SURFACE BEHAVIOR - c0coef c0coef = 10−3 not used
5 *CONTACT DAMPING cd cd cd not used
6 *FRICTION µ µ µ -
7 *FRICTION λ λ λ λ
8 *CONTACT DAMPING ct ct ct -
9 *GAP HEAT GENERATION η η η -
10 *GAP HEAT GENERATION f f f -
11 *GAP HEAT GENERATION ‖vrel‖ ‖vrel‖ ‖vrel‖ -

*SURFACE INTERACTION card is treated in the same way as a *MATE-
RIAL card. All data are stored in the elastic field elcon, except for the tabular
pressure-overclosure data, which are stored in the isotropic hardening field pli-
con, and the gap conductance data, which are stored in the kinematic hardening
field plkcon. The contact properties in elcon are stored in the order of Table 20
for exponential, linear, tabular and tied pressure-overclosure behavior.

The following remarks are due:

• “entry” is the index inside elcon. For instance, for linear pressure-overclosure
behavior elcon(2,1,i)=K, where “1” is the temperature label (no tempera-
ture dependence for this constant) and “i” is the internal material number.

• β and p0 are the constants describing the exponential pressure-overclosure
behavior.

• K is the normal spring stiffness; σ∞ is the tensile stress at infinity for
a regularized linear pressure-overclosure behavior (only for node-to-face
contact).

• the third line in the table is the number of the method, i.e. exponential
pressure-overclosure = 1 etc. These numbers are stored as reals by adding
0.5.

• c0 = c0coef
√
slave area, where c0 > 0 is the clearance below which a con-

tact spring element is generated. For tabular pressure-overclosure behav-
ior the value of c0coef is fixed. c0 is only used in this form for node-to-face
contact. For face-to-face contact c0 = 0.

• cd is the normal damping coefficient, ct is the tangent damping function.
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• η is the fraction of dissipated energy converted into heat, f is the surface
distribution factor while ‖vrel‖ is the relative velocity between the parts in
contact. The latter value is only meant for two-dimensional axisymmetric
calculations in which the relative velocity between the stator and rotor is
known (rotary machinery). In that case, no friction should be defined.

• tied pressure-overclosure is only available for face-to-face penalty contact

11.5 Storing distributions for local coordinate systems

In CalculiX distributions can be used to define local coordinate systems in an
elementwise fashion. The corresponding keyword is *DISTRIBUTION. Since
this option is strongly related to the *ORIENTATION keyword, the latter’s
data structure is used to cover distributions as well.

An orientation i is described by its name in orname(i), the coordinates of
its defining points a and b in orab(1..6,i) and a flag defining whether the local
coordinate system is rectangular (value 1.) or cylindrical (value -1.) in orab(7,i).
For each layer j of element k the entry ielorien(j,k) points to the local orientation
(default: 0, i.e. no local system).

The *DISTRIBUTION cards in an input deck are always treated before any
*ORIENTATION cards (independent of the order in which the user has set up
his input deck; the key routine taking care of this is keystart.f). As soon as a
*DISTRIBUTION card is encountered, as may orientations are created as there
are lines underneath the *DISTRIBUTION card. For each of these orientations
i the distribution name (let us call this distname) is stored in orname(i) and
the defining points a and b in orab(1..6,i). The entry orab(7,i) takes the default
zero. For each element k in which a distribution is defined (first entry in all lines
underneath the *DISTRIBUTION card except the first one, which defines the
default) ielorien(1,k) is set to the appropriate orientation i containing the correct
distribution for this element, preceded by a minus sign, i.e. ielorien(1,k)=-i.
The minus sign indicates that this orientation is optional and not yet active. It
can only be activated by the correct combination of an *ORIENTATION and
*SOLID SECTION card.

As soon as an *ORIENTATION card (e.g. with name ornam) is encountered
using this distribution all orientations i are checked on whether their name
coincides with the name of the distribution, i.e. whether orname(i)=distname.
If so:

• the name of the orientation is replaced by ornam, i.e. orname(i)=ornam.

• orab(7,i) is set to the kind of local system defined on the *ORIENTATION
card

• If an additional rotation angle about a local axis is defined on the *ORI-
ENTATION card, orab(1..6,i) is modified appropriately

Notice that distname and ornam may be identical. The only way in which
to detect that orname(i) points to an orientation and not just a distribution is
by checking orab(7,i). If this is zero it is a distribution, else it is an orientation.
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As soon as a *SOLID SECTION card is encountered pointing to an orien-
tation (e.g. OR) the following steps are undertaken:

• In a loop over all orientations i the first occurrence of the orientation name
on the *SOLID SECTION card (i.e. OR) is checked for. This orientation
is the default one (if the *ORIENTATION was defined by a distribution
it corresponds to the first line underneath a *DISTRIBUTION card).

• For all elements k belonging to the element set on the *SOLID SECTION
card: if m=ielorien(1,k) is negative AND orname(-m)=OR AND orab(7,-
m) is nonzero then ielorien(1,k) is set to -m. Else it is set to the default
orientation.

11.6 Determining the matrix structure

This part consists of the following subparts:

• matching the SPC’s

• de-cascading the MPC’s

• determining the matrix structure

11.6.1 Matching the SPC’s

In each step the SPC’s can be redefined using the OP=NEW parameter. To
assure a smooth transition between the values at the end of the previous step and
the newly defined values these must be matched. This matching is performed in
subroutine spcmatch.f. For each SPC i active in a new step the following cases
arise:

• a SPC j in the same node and in the same direction was also active in the
previous step; this SPC is identified and the corresponding value, which
was stored in position j of field xbounold before calling spcmatch, is now
stored in position i of field xbounold.

• in the previous step no corresponding SPC (i.e. in the same direction in
the same node) was applied. The appropriate displacement value at the
end of the previous step is stored in position i of field xbounold.

11.6.2 De-cascading the MPC’s

Multiple point constraints can depend on each other. For instance:

5.u1(10) + 8.u1(23) + 2.3u2(12) = 0 (843)

u1(23)− 3.u1(2) + 4.u1(90) = 0 (844)
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The first equation depends on the second, since u1(23) belongs to the inde-
pendent terms of the first equation, but it is the dependent term in the second
(the first term in a MPC is the dependent term and is removed from the global
system, the other terms are independent terms). Since the dependent terms
are removed, it is necessary to expand (“de-cascade”, since the equations are
“cascaded” like falls) the first equation by substituting the second in the first,
yielding:

5.u1(10) + 24.u1(2)− 32.u1(90) + 2.3u2(12) = 0 (845)

This is done in subroutine cascade.c at least if the MPC’s which depend
on each other are linear. Then, the corresponding terms are expanded and the
MPC’s are replaced by their expanded form, if applicable.

However, the expansion is not done if any of the MPC’s which depend on
each other is nonlinear. For nonlinear MPC’s the coefficients of the MPC are
not really known at the stage in which cascade.c is called. Indeed, in most
cases the coefficients depend on the solution, which is not known yet: an itera-
tive procedure results. Therefore, in a nonlinear MPC terms can vanish during
the solution procedure (zero coefficients) thereby changing the dependencies be-
tween the MPC’s. Thus, the dependencies must be determined in each iteration
anew and subroutine cascade.c is called from within the iterative procedure in
subroutine nonlingeo.c. This will be discussed later.

In cascade.c there are two procedures to de-cascade the MPC’s. The first one
(which is the only one productive right now) is heuristic and iteratively expands
the MPC’s until no dependencies are left. This procedure worked very well thus
far, but lacks a theoretical convergence proof. The second procedure, which is
assured to work, is based on linear equation solving and uses SPOOLES. The
dependent terms are collected on the left hand side, the independent ones on the
right hand side and the sets of equations resulting from setting one independent
term to 1 and the others to 0 are subsequently solved: the system of equations

[
A
] {
Ud
}
=
[
B
] {
Ui
}

(846)

is solved to yield

{
Ud
}
=
[
A
]−1 [

B
] {
Ui
}

(847)

in which
[
Ud
]
are the dependent terms and

[
Ui
]
the independent terms.

However, in practice the MPC’s do not heavily depend on each other, and the
SPOOLES procedure has proven to be much slower than the heuristic procedure.

11.6.3 Determining the matrix structure.

This important task is performed in mastruct.c for structures not exhibiting
cyclic symmetry and mastructcs.c for cyclic symmetric structures. Let us focus
on matruct.c.

The active degrees of freedom are stored in a two-dimensional field nactdof.
It has as many rows as there are nodes in the model and four columns since each
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node has one temperature degree of freedom and three translational degrees.
Because the 1-d and 2-d elements are expanded into 3-d elements in routine
“gen3delem.f” there is no need for rotational degrees of freedom. In C this field
is mapped into a one-dimensional field starting with the degrees of freedom
of node 1, then those of node 2, and so on. At first, all entries in nactdof are
deactivated (set to zero). Then they are (de)activated according to the following
algorithm:

• In a mechanical or a thermomechanical analysis the translational degrees
of freedom of all nodes belonging to elements are activated.

• In a thermal or a thermomechanical analysis the temperature degree of
freedom of all nodes belonging to elements are activated.

• All degrees of freedom belonging to MPC’s are activated (dependent and
independent)

• The degrees of freedom corresponding to SPC’s are deactivated by setting
them to -2*i (i.e. a negative number) where i is the number of the SPC.

• The degrees of freedom corresponding to the dependent side of MPC’s are
deactivated by setting them to -(2*i-1) (i.e. a negative number) where i
is the number of the MPC.

Then, the active degrees of freedom are numbered (positive numbers). Sub-
sequently, the structure of the matrix is determined on basis of the topology of
the elements and the multiple point constraints.

For SPOOLES, ARPACK and the iterative methods the storage scheme is
limited to the nonzero SUBdiagonal positions of the matrix only. The scheme
is as it is because of historical reasons, and I do not think there is any reason
not to use another scheme, such as a SUPERdiagonal storage. The storage is
described as follows:

• the field irow contains the row numbers of the SUBdiagonal nonzero’s,
column per column.

• icol(i) contains the number of SUBdiagonal nonzero’s in column i.

• jq(i) contains the location in field irow of the first SUBdiagonal nonzero
in column i

All three fields are one-dimensional, the size of irow corresponds with the
number of nonzero SUBdiagonal entries in the matrix, the size of icol and jq
is the number of active degrees of freedom. The diagonal entries of the matrix
stored separately and consequently no storage information for these items is
needed.

The thermal entries, if any, are stored after the mechanical entries, if any.
The number of mechanical entries is neq[0] (C-notation), the total number of
entries (mechanical and thermal) is neq[1]. In the same way the number of
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nonzero mechanical SUBdiagonal entries is nzs[0], the total number of SUBdi-
agonal entries is nzs[1]. In thermomechanical applications the mechanical and
thermal sub-matrices are assumed to be distinct, i.e. there is no connection in
the stiffness matrix between the mechanical and the thermal degrees of freedom.
Therefore, the mechanical and thermal degrees of freedom occupy two distinct
areas in the storage field irow.

File mastructcs calculates the storage for cyclic symmetric structures. These
are characterized by the double amount of degrees of freedom, since cyclic sym-
metry results in a complex system which is reduced to a real system twice the
size. The cyclic symmetry equations are linear equations with complex coeffi-
cients and require a separate treatment. The fields used for the storage, however,
are the same.

11.7 Filling and solving the set of equations, storing the
results

In this section a distinction is made between the types of analysis and the solver
used:

• for linear static calculations with SPOOLES or the iterative solver the
appropriate routine is prespooles.c

• for nonlinear static or dynamic calculations (which implies the use of
SPOOLES or the iterative solver) routine nonlingeo.c is called. This in-
cludes all thermal calculations.

• for frequency analysis without cyclic symmetry routine arpack.c is called.

• for a frequency analysis with cyclic symmetry conditions the appropriate
routine is arpackcs.c

• for a buckling analysis arpackbu.c is called

• for linear dynamic calculations (i.e. modal dynamic analysis) the routine
is dyna.c

• finally, for steady state dynamics calculations the routine is steadystate.c

11.7.1 Linear static analysis

For a linear static analysis (prespooles.c) the structure is as follows:

• determine the loads at the end of the step in routine tempload.f

• fill the matrix (routine mafillsm)

• solve the system of equations (routines spooles or preiter)
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• determine the required results for all degrees of freedom, starting from the
displacement solution for the active degrees of freedom. This is done in
subroutine results.f, including any storage in the .dat file.

• store the results in the .frd file. For structures not exhibiting cyclic sym-
metry this is performed in routine out.f, for cyclic symmetric structures
routine frdcyc.c is called before calling out. If an error occurred during
the matrix fill the output is reduced to the pure geometry.

The different routines in the above listing will be discussed separately, since
they are common to most types of analysis.

11.7.2 Nonlinear calculations

For nonlinear calculations the solution is found by iteration. Because a step
is possibly too large to obtain convergence, the option exists to subdivide the
step into a finite number of increments. The size of the initial increment in
a step is defined by the user (line beneath *STATIC, *DYNAMIC, *VISCO,
*HEAT TRANSFER or *COUPLED TEMPERATURE-DISPLACEMENTS) and
also the number of increments can be controlled by the user (parameter DI-
RECT). However, in most cases it is advisable to let the program determine the
size of the increments, based on the convergence rate of the previous increments.
The solution in each increment is obtained by iteration until the residual forces
are small enough.

Therefore, the structure of nonlingeo corresponds to the flow diagram in
Figure 194. It lists all subroutines, each line is a subroutine. On the upper
right “preliminary” is an abbreviation for five subroutines which recur often. If
a subroutine or a group of subroutines is enclose by square brackets, it means
that it is only run under certain conditions. In detail, the structure of nonlingeo
looks like:

• before the first increment

– determine the number of advective degrees of freedom and the num-
ber of radiation degrees of freedom (envtemp.f)

– expanding the radiation degrees of freedom in case of cyclic symmetry
(radcyc.c)

– initialization of contact fields and triangulation of the independent
contact surfaces (inicont.c)

– take into account time point amplitudes, if any (checktime.f).

– calculate the initial acceleration and the mass matrix (specific heat
matrix for transient heat transfer calculations) for dynamic calcula-
tions. (initialaccel.c). This includes:

∗ determine the load at the start of the increment (tempload.f)

∗ for thermal analyses: determine the sink temperature for forced
convection and cavity radiation boundary conditions (radflowload.f)
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inicont.c

preliminary
prediction.c
results.f

preliminary

mafillsm.f or rhs.f
calcresidual.c
spooles or equivalent
results.f
calcresidual.c
checkconvergence.c

[preliminary
 results.f
   mafillsm.f
 spooles.c or equivalent]

[envtemp.f]

[results.f]

initial acceleration

end of iteration loop

end of increment loop

start of increment loop

start of iteration loop

preliminary =[radcyc.c]

checktime.f

tempload.f
[radflowload.c]
[contact.c]
nonlinmpc.f
[remastruct.c]

[results.f
frdcyc.c or out.f]

[results.f
frdcyc.c or out.f]

Figure 194: Flow diagram for subroutine nonlingeo
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∗ update the location of contact and redefine the nonlinear contact
spring elements (contact.f)

∗ update the coefficients of nonlinear MPC’s, if any.

∗ if the topology of the MPC’s changed (dependence of nonlinear
MPC’s on other linear or nonlinear ones) or contact is involved:
call remastruct

∗ determine the internal forces (results.f).

∗ construction of the stiffness and mass matrix and determination
of the external forces (mafillsm.f); This is also done for explicit
calculations in order to get the mass matrix.

∗ subtract the internal from the external forces to obtain the resid-
ual forces;

∗ solving the system of equations with in spooles.c, preiter.c or
any other available sparse matrix solver. For explicit dynamic
calculations explicit calculation of the solution (no system needs
to be solved). The solution is the acceleration at the start of the
step.

• for each increment

– before the first iteration

∗ determine the load at the end of the increment (tempload.f)

∗ for thermal analyses: determine the sink temperature for forced
convection and cavity radiation boundary conditions (radflowload.f)

∗ update the location of contact and redefine the nonlinear contact
spring elements (contact.f)

∗ update the coefficients of nonlinear MPC’s, if any.

∗ if the topology of the MPC’s changed (dependence of nonlinear
MPC’s on other linear or nonlinear ones) or contact is involved:
call remastruct.

∗ prediction of the kinematic vectors

∗ determination of the internal forces (results.f). The difference be-
tween the internal and the external forces are the residual forces.
If the residual forces are small enough, the solution is found. If
they are not, iteration goes on until convergence is reached. The
residual forces are the driving forces for the next iteration.

– in each iteration

∗ determine the load at the end of the increment (tempload.f)

∗ for thermal analyses: determine the sink temperature for forced
convection and cavity radiation boundary conditions (radflowload.f)

∗ update the location of contact and redefine the nonlinear contact
spring elements (contact.f)

∗ update the coefficients of nonlinear MPC’s, if any.
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∗ if the topology of the MPC’s changed (dependence of nonlinear
MPC’s on other linear or nonlinear ones) or contact is involved:
call remastruct and redetermine the internal forces (results.f).

∗ construct the system of equations and determination of the ex-
ternal forces (mafillsm.f); for explicit dynamic calculations no
system has to be set up, only the external forces are determined
(rhs.f).

∗ subtract the internal from the external forces to obtain the resid-
ual forces (calcresidual.c);

∗ solving the system of equations with in spooles.c, preiter.c or
any other available sparse matrix solver. For explicit dynamic
calculations explicit calculation of the solution (no system needs
to be solved).

∗ calculating the internal forces and material stiffness matrix in
each integration point in results.f

∗ deriving the new residual by subtracting the updated internal
forces from the external forces (calcresidual.c).

∗ If the residual is small enough iteration ends (checkconvergence.c).
The convergence criteria are closely related to those used in
ABAQUS.

– after the final iteration, if output was not suppressed by user input
control:

∗ determining the required results for all degrees of freedom, start-
ing from the displacement solution for the active degrees of free-
dom. This is done in subroutine results.f, including any storage
in the .dat file.

∗ storing the results in the .frd file. For structures not exhibit-
ing cyclic symmetry this is performed in routine out.f, for cyclic
symmetric structures routine frdcyc.c is called before calling out.
If an error occurred during the matrix fill the output is reduced
to the pure geometry.

• after the final increment (only if no output resulted in this final increment
due to user input control)

– determining the required results for all degrees of freedom, starting
from the displacement solution for the active degrees of freedom.
This is done in subroutine results.f, including any storage in the .dat
file.

– storing the results in the .frd file. For structures not exhibiting cyclic
symmetry this is performed in routine out.f, for cyclic symmetric
structures routine frdcyc.c is called before calling out. If an error
occurred during the matrix fill the output is reduced to the pure
geometry.
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11.7.3 Frequency calculations

Frequency calculations are performed in subroutines arpack.c for structures not
exhibiting cyclic symmetry and arpackcs.c for cyclic symmetric structures. Fre-
quency calculations involve the following steps:

• filling the stiffness and mass matrix in mafillsm.f. The stiffness matrix
depends on the perturbation parameter: if iperturb=1 the stress stiffness
and large deformation stiffness of the most recent static step is taken into
account ([19])

• solving the eigenvalue system using SPOOLES and ARPACK

• calculating the field variables in results.f, including storing in the .dat file

• storing the results in .frd format in out.f

The eigenvalues and eigenmodes are solved in shift-invert mode. This cor-
responds to Mode 3 in ARPACK ([44]). Suppose we want to solve the system

[
K
] {
U
}
= ω2

[
M
] {
U
}

(848)

then the shift-invert mode requires algorithms for solving

[
K − σM

] {
U
}
=
{
X1

}
(849)

and for calculating

{
Y
}
=
[
M
] {
X2

}
(850)

where
{
X1

}
and

{
X2

}
are given and σ is a parameter. In CalculiX, it is set

to 1. These operations are used in an iterative procedure in order to determine
the eigenvalues and the eigenmodes. For the first operation SPOOLES is used.
SPOOLES solves a system by using a LU decomposition. This decomposition
is performed before the iteration loop initiated by ARPACK since the left hand
side of Equation (849) is always the same. Only the backwards substitution is
inside the loop. The second operation (Equation (850)) is performed in routine
op.f and is a simple matrix multiplication. Notice that this routine depends on
the storage scheme of the matrix.

For cyclic symmetric structures the following additional tasks must be per-
formed:

• Expanding the structure in case more than one segment is selected for out-
put purposes (parameter NGRAPH on the *CYCLIC SYMMETRY MODEL
keywork card). This is done before the mafillsm call.

• Calculating the results for the extra sectors based on the results for the
basis sector. This is performed after the call of routine results.f.



688 11 PROGRAM STRUCTURE.

11.7.4 Buckling calculations

To calculate buckling loads routine arpackbu.c is called. The following steps are
needed in a buckling calculation:

• calculation of the stresses due to the buckling load. This implies setting
up the equation system in mafillsm.f, solving the system with SPOOLES
and determining the stresses in results.f

• setting up the buckling eigenvalue system consisting of the stiffness matrix[
K
]
of the previous static step (including large deformation stiffness and

stress stiffness) and the stress stiffness matrix
[
KG

]
of the buckling load

[19].

• loop with starting value for σ = 1

– LU decomposition of
[
K − σKG

]

– iterative calculation of the buckling factor with ARPACK

– determination of the buckling mode

– if 5σ < buckling factor < 50000σ exit loop, else set σ = buckling factor/500
and cycle

• determine the stresses and any other derived fields

The buckling mode in ARPACK (Mode 4, cf [44]) is used to solve a system
of the form

[
K
] {
U
}
= λ

[
KG

] {
U
}

(851)

where
[
K
]
is symmetric and positive definite and

[
KG

]
is symmetric but

indefinite. The iterative procedure to find the eigenvalues requires routines to
solve

[
K − σKG

] {
U
}
=
{
X1

}
(852)

and to calculate

{
Y
}
=
[
K
] {
X2

}
. (853)

Similar to the frequency calculations, the LU decomposition (SPOOLES)
to solve Equation (852) is performed before the loop determining the buckling
factor, since the left hand side of the equation does not vary. The matrix
multiplication in Equation (853) is taken care of by routine op.f.

A major difference with the frequency calculations is that an additional
iteration loop is necessary to guarantee that the value of the buckling factor is
right. Indeed, experience has shown that the value of σ matters here and that
the inequality 5σ < buckling factor < 50000σ should be satisfied. If it is not,
the whole procedure starting with the LU decomposition is repeated with a new
value of σ = buckling factor/500. If necessary, up to four such iterations are
allowed.
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11.7.5 Modal dynamic calculations

For modal dynamic calculations the response of the system is assumed to be a
linear combination of the lowest eigenmodes. To this end, the eigenvalues and
eigenmodes must have been calculated, either in the same run, or in a previous
run. At the end of a frequency calculation this data, including the stiffness
and mass matrix, is stored in binary form in a .eig file, provided the STOR-
AGE=YES option is activated on the *FREQUENCY or *HEAT TRANS-
FER,FREQUENCY card. This file is read at the beginning of file dyna.c.

In file dyna.c the response is calculated in an explicit way, for details the
reader is referred to [19]. Modal damping is allowed in the form of Rayleigh
damping. Within file dyna the following routines are used:

• tempload, to calculate the instantaneous loading

• rhs, to determine the external force vector of the system

• results, to calculate all displacements, stresses and/or any other variables
selected by the user

Notice that if nonzero boundary conditions are prescribed (base loading,
e.g for earthquake calculations) the stiffness matrix of the system is used to
calculate the steady state response to these nonzero conditions. It serves as
particular solution in the modal dynamic solution procedure.

11.7.6 Steady state dynamics calculations

For steady state dynamics calculations the steady state response of the system
to a harmonic excitation is again assumed to be a linear combination of the
lowest eigenmodes. To this end, the eigenvalues and eigenmodes must have
been calculated, either in the same run, or in a previous run. At the end of
a frequency calculation this data, including the stiffness and mass matrix, is
stored in binary form in a .eig file, provided the STORAGE=YES option is
activated on the *FREQUENCY or *HEAT TRANSFER,FREQUENCY card.
This file is read at the beginning of file steadystate.c.

In file steadystate.c the response is calculated in an explicit way, for details
the reader is referred to [19]. Modal damping is allowed in the form of Rayleigh
damping. Within file steadystate the following routines are used:

• tempload, to calculate the instantaneous loading

• rhs, to determine the external force vector of the system

• results, to calculate all displacements, stresses and/or any other variables
selected by the user

Notice that if nonzero boundary conditions are prescribed (base loading,
e.g for earthquake calculations) the stiffness matrix of the system is used to
calculate the steady state response to these nonzero conditions. It serves as
particular solution in the modal dynamic solution procedure.
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11.8 Major routines

11.8.1 mafillsm

In this routine the different matrices are constructed. What has to be set up
is summarized in the logicals mass, stiffness, buckling, rhsi and stiffonly. For
instance, if the mass matrix must be calculated, mass=true, else mass=false.
Notice that mass and stiffonly are defined as vectors of length 2. The first entry
applies to mechanical calculations, the second entry to thermal calculations. If
mass(1)=true the mass matrix for mechanical calculations or the mechanical
part of coupled temperature-displacement calculations is determined and sim-
ilarly, if mass(2)=true the specific heat matrix for thermal calculations or the
thermal part of coupled temperature-displacement calculations is determined.
This distinction is necessary to account for differences between mechanical and
thermal calculations. It suffices to calculate the mass matrix in mechanical cal-
culations only once, whereas the outspoken dependence of the specific heat on
temperature requires the calculation of the specific heat matrix in each itera-
tion. In what follows the mechanical stiffness matrix and thermal conductivity
matrix will be simply called the stiffness matrix, the mechanical mass matrix
and thermal heat capacity matrix will be called the mass matrix.

The routine consists of two major loops over all elements. The first loop
constructs the mechanical part of the matrices, if applicable, the second loop
constructs the thermal part, if applicable. Each loop runs over all elements,
thereby collecting the element stiffness matrix and/or mass matrix from routine
e c3d and e c3d th for mechanical and thermal calculations, respectively, and
inserting them into the global stiffness matrix and/or mass matrix, taking into
account any linear multiple point constraints. The right-hand side matrices are
also constructed from the element right-hand sides and any point loading.

To compose the element stiffness matrices the material stiffness matrices
(dσ/dǫ) in the integration points of the elements are needed. These are re-
covered from storage from the last call to subroutine results.f. For the mass
matrices the density and/or specific heat in the integration points is needed.
These quantities are obtained by interpolation in the appropriate temperature
range. No other material data need to be interpolated.

11.8.2 results

In subroutine results.f the dependent quantities in the finite element calculation,
such as the displacements, stress, the internal forces, the temperatures and the
heat flux, are determined from the independent quantities, i.e. the solution
vector of the equation system. There are several modes in which results.f can
be called, depending on the value of the variable iout:

• iout=-1: the displacements and temperatures are assumed to be known
and used to calculate strains, stresses...., no result output

• iout=0: the displacements and temperatures are calculated from the sys-
tem solution and subsequently used to calculate strains, stresses..., no
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result output

• iout=1: the displacements and temperatures are calculated from the sys-
tem solution and subsequently used to calculate strains, stresses..., result
output is requested (.dat or .frd file)

• iout=2: the displacements and temperatures are assumed to be known
and used to calculate strains, stresses...., result output is requested (.dat
or .frd file)

Calculating the displacements and/or temperatures from the result vector
only involves the use of the relationship between the location in the solution
vector and the physical degrees of freedom in the nodes (field nactdof), together
with SPC and MPC information.

To obtain derived quantities such as stresses and heat flux a loop over all
element integration points is performed. This is first done for mechanical quan-
tities, then for heat transfer quantities.

In the mechanical loop the strain is determined from the displacements.
For linear geometric calculations this is the infinitesimal strain, else it is the
Lagrangian strain tensor [19]. For certain materials (e.g. the user defined mate-
rials) the deformation gradient is also determined. Then, materialdata me.f is
called, where the material data are obtained for the integration point and actual
temperature (such as Young’s modulus, thermal strain etc.). A subsequent call
to mechmodel.f determines the local material gradient (dσ/dǫ) and the stress.
From this the internal forces can be calculated.

The heat transfer loop is very similar: after calculation of the thermal gra-
dient, the material data are interpolated in materialdata th.f, the heat flux and
tangent conductivity matrix (dq/d∆θ) are determined in thermmodel.f and the
concentrated internal heat vector is calculated.

The tangent material matrices determined in mechmodel.f and thermmodel.f
are stored for further use in the construction of the element stiffness matrices
(cf. mafillsm.f). An overview of the subroutine structure to calculate the stress
and tangent material matrices and any related quantities is shown in Figure
195.

Notice that the stresses and heat flux determined so far was calculated in
the integration points. In the last part of results.f these values are extrapolated
to the nodes, if requested by the user.

11.9 Aerodynamic and hydraulic networks

Aerodynamic and hydraulic networks are solved separately from the structural
equation system. This is because networks generally lead to small sets of equa-
tions (at most a couple of thousand equations) which are inherently asymmetric.
If solved together with the structural system, the small network contribution
would lead to a complete asymmetric matrix and increase the computational
time significantly. Moreover, especially aerodynamic networks are very nonlin-
ear and require more iterations than structural nonlinearities. Consequently,
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Figure 195: Flow diagram for subroutine results

the small network contribution would also lead to a lot more iterations. There-
fore, the matrices of networks are set up and solved on their own taking the
structural solution from the previous structural iteration as boundary condi-
tion. In a similar way, the network solution acts as boundary condition for the
next structural iteration.

11.9.1 The variables and the equations

In Sections 6.9.16 and 6.9.17 the governing equations for aerodynamic and hy-
draulic networks were derived. It was shown that the basic variables for aerody-
namic networks are the total temperature, the total pressure and the mass flow.
In addition, one geometric parameter may be defined per element as additional
unknown. This option has to be coded in the program in order to be active.
Right now, this option only exists for the gate valve. All other variables can
be calculated based on these three quantities. This is actually not a unique
choice but seems to be best suited for our purposes. For hydraulic networks
these reduce to the pressure, temperature and mass flow. This is completely
different from the structural unknowns, which are taken to be the temperature
and the displacements. Therefore, the degrees of freedom 0 to 3 which are used
for structural calculations are redefined for networks according to Table (21)

A distinction is being made between corner nodes and midside nodes of fluid
elements. Remember that network elements consist of two corner nodes and
one middle node (Section 6.2.37). The mass flow is not necessarily uniquely de-
termined at the corner nodes, since more than two branches can come together.
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Table 21: Variables in fluid nodes.

DOF corner node midside node
0 total temperature -
1 - mass flow
2 total pressure -
3 static temperature geometry

Table 22: Degrees of freedom in fluid nodes (field nactdog).

DOF corner node midside node
0 total temperature -
1 - mass flow
2 total pressure -
3 - geometry

Therefore, it is logical to define the mass flow as unknown in the middle of a
network element. The same applies to the geometric parameter, if applicable.
Similarly, the total temperature or total pressure may not be known within
the element, since the exact location of discontinuities (such as enlargements
or orifices) is not necessarily known. Consequently, it is advantageous to define
the total temperature and total pressure as unknowns in the corner nodes. The
static temperature is not a basic variable. Once the total temperature, mass
flow and total pressure are known, the static temperature can be calculated. It
is a derived quantity.

Similar to field nactdof for structural applications a field nactdog is intro-
duced for network applications. It can be viewed as a matrix with 4 rows and as
many columns as there are nodes in the model (including structural nodes; this
is done to avoid additional pointing work between the local gas node number
and the global node number). It indicates whether a specific degree of freedom
in a gas node is active: if the entry is nonzero (actually positive; contrary to
nactdof nactdof does not take negative values) it is active, else it is inactive
(which means that the value is known or not applicable because the node is a
structural node). The degrees of freedom correspond to the first three rows of
Table 21 and are repeated in Table 22 for clarity. Here too, only the first three
rows are relevant.

Consequently, if nactdog(2,328) is nonzero, it means that the total pressure
in node 328 is an unknown in the system. Actually, the nonzero value represents
the number of the degree of freedom attached to the total pressure in node 328.
The number of the degree of freedom corresponds with the column number in
the resulting set of equations. What nactdog is for the degrees of freedom is
nacteq for the equations. It is a field of the same size of nactdog but now a
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Table 23: Conservation equations in fluid nodes (field nacteq).

DOF corner node midside node
0 energy -
1 mass -
2 - momentum
3 if > 0: independent node of isothermal -

element the node belongs to;

nonzero entry indicates that a specific conservation equation applies to the node,
cf. Table 23.

If nacteq(1,8002) is nonzero, it means that the conservation of mass equa-
tion has to be formulated for node 8002. The nonzero value is actually the
row number of this equation in the set of equations. If the value is zero, the
equation does not apply, e.g. because the mass flow in all adjacent elements
is known. The last row in field nacteq (at least for corner nodes) is used to
account for isothermal conditions. These only apply to gas pipes of type GAS
PIPE ISOTHERMAL and exit restrictors preceded by an isothermal gas pipe
element. An isothermal element introduces an extra equation specifying that
the static temperature in the two corner nodes of the pipe is equal. This can
be transformed into a nonlinear equation in which the total temperature in one
node (the dependent node) is written as a function of the total temperature in
the other node and the other variables (total pressure in the nodes, mass flow).
To account for this extra equation, the conservation of energy is not expressed
for the dependent node (indeed, one can argue that, in order for the static
temperatures to be equal an unknown amount of heat has to be introduced
in the dependent node. So if nacteq(3,8002)=n is nonzero it means that node
8002 is the dependent node in an isothermal relation linking the static nodal
temperature to the one of node n.

Field ineighe(i),i=1,...,ntg is used to determine the static temperature in an
end node. If it is zero, node i is a mid-node. If it is equal to -1, the node is a
chamber, for which the static temperature equals the total temperature. If it is
positive, its value is the element number of a gas pipe element or restrictor ele-
ment, but not equal to a restrictor wall orifice, for which the static temperature
is different from the total temperature. The mass flow of the referred element
is used to calculate the static temperature from the total temperature.

11.9.2 Determining the basic characteristics of the network

In subroutine envtemp.f the basic properties of the network are determined. It
is called at the start of nonlingeo.c. At first the gas nodes are identified and
sorted. A node is a gas node if any of the following conditions is satisfied:

• it is used as environment node of a forced convection *FILM boundary
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condition. The temperature in such a node is an unknown. This also
implies that a midside node of a network element cannot be used as envi-
ronment node in a *FILM condition.

• it is used as environment node of a forced convection *DLOAD bound-
ary condition. The total pressure in such a node is unknown (the static
pressure may be more applicable for gas networks, this has not been im-
plemented yet).

• it belongs to a network element. If it is an corner node the total tempera-
ture and the total pressure are unknowns, if it is a midside node the mass
flow is unknown and the geometry may be unknown too.

In that way also the field nactdog is filled (with the value 1 for an unknown
variable, 0 else). Next, the known boundary values (*BOUNDARY cards) are
subtracted, and the unknown DOFs are numbered consecutively yielding the
final form for nactdog. Notice that the global number of gas node i is itg(i).
Since field its is ordered in an ascending order, subroutine nident.f can be used
to find the local gas node number for a given global number. In the remaining
test “gas node i” refers to the local number whereas “node i” refers to a global
number.

In a loop over all network elements the necessary equations are determined.
In a given corner node the conservation of mass equation is formulated if the
mass flow in at least one of the adjacent network elements is unknown. The con-
servation of energy is written if the temperature in the corner node is unknown.
Finally, conservation of momentum equation (also called element equation) is
formulated for a midside node of a network element if not all quantities in the
element equation are known. This latter check is performed in the subroutine
flux.f (characterized by iflag=0). It contains on its own subroutines for several
fluid section types, e.g. subroutine orifice.f for the fluid section of type ORI-
FICE. The number of unknowns relevant for the network element depends on
its section type. After having identified all necessary equations in field nacteq
they are numbered and the number of equations is compared with the number
of unknowns. They must be equal in order to have a unique solution.

Next, multiple point constraints among network nodes are taken into ac-
count. They are defined using the *EQUATION keyword card. It is not allowed
to use network nodes and non-network nodes in one and the same equation.

Finally, dependent and independent nodes are determined for each isother-
mal element and the appropriate entries in field nacteq (third row, cf. previous
section) are defined. If at the stage of the matrix filling an corner node is a
dependent node of an isothermal element the conservation of energy equation
in that node is replaced by an equation that the static temperature in the de-
pendent and independent node are equal. Fields ipogn and ign are deleted after
leaving envtemp.f



696 11 PROGRAM STRUCTURE.

11.9.3 Initializing the unknowns

Solving the structural system and the network is done in an alternating way. At
the start of a network loop the unknowns (mass flow, total temperature, total
pressure) are initialized. This is especially important for gas networks, since the
initial values are taken as starting solution. Since the gas equations are very
nonlinear, a good initial guess may accelerate the Newton-Raphson convergence
quite a bit (or make a convergence possible in the first place).

At first an initial pressure distribution is determined. To that end the pres-
sure value for nodes with a pressure boundary condition is stored in v (2,i),
where i is the global node number. If no pressure boundary conditions applies,
the minus the number of elements to which the node belongs is stored in the
same field. If a node belongs to only one element, it is a boundary node and a
fictitious initial pressure slightly smaller than the minimum pressure boundary
condition is assigned to it. In that way, all boundary nodes are guaranteed
to have a value assigned. The initial pressure in all other nodes is determined
by solving for the Laplace equation in the network, i.e. the value in a node
is the mean of the values in all surrounding nodes. To obtain a more realistic
distribution the values are biased by an inverse tangent function, i.e. the values
upstream decrease more slowly than on the downstream side of the network.

Another item taken care of at the start of initialnet.f is the determination
of the number of gas pipe or restrictor elements the nodes belong to. If an end
node i belongs to at most 2 elements of type gas pipe or restrictor and to no
other elements one of the global element numbers is stored in ineighe(i) and the
static temperature is determined from the other variables using the mass flow
in this element. If not, the node is considered to be a big chamber for which
total and static values coincide.

The temperature initial conditions are fixed at 293 K (only for those nodes for
which no temperature boundary condition applies). In general, the temperature
initial conditions are not so critical for the global convergence. For geometric
quantities the initial value is zero. For the gate valve this is changed to the
minimum allowable value of 0.125 (cf. liquidpipe.f).

Based on the total temperature and total pressure the mass flow in the
elements is determined using the element equations. This is the second task to
be accomplished by the element routines (characterized by iflag=1).

Finally, the static temperature is calculated for the nodes not identified as
chambers based on the total pressure, total temperature and mass flow.

11.9.4 Calculating the residual and setting up the equation system

The residual of the governing equations is calculated in subroutine resultnet.f.
At the start of the routine the static temperature is calculated for the nodes not
identified as chambers based on the total pressure, total temperature and mass
flow. Then, a loop is initialized covering all network elements. For each element
the contributions to the conservation of mass equation and to the conservation of
energy equation (or, equivalently, to the isothermal equation if the element is an
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isothermal gas pipe element) of its corner nodes are determined. Subsequently,
the satisfaction of the element equation is verified. This is the third mode
the element routines are called in, characterized by iflag=2. Finally, the energy
contributions resulting from the interaction with the walls and due to prescribed
heat generation in the network are taken into account. The residual constitutes
the right hand side of the network system.

Setting up the equation system is done in subroutine mafillnet.f. The struc-
ture of the routine is very similar to the resultnet routine: in a loop over all
elements the coefficients of the equations (conservation of mass and momentum
and the conservation of energy, or, if applicable, the isothermal condition) are
determined. This includes effects from the interaction with the walls. This leads
to the left hand side of the system of equations.

11.9.5 Convergence criteria

Convergence is checked for the total temperature, mass flow, total pressure and
geometry separately. Convergence is reaches if the change in solution in the last
iteration does not exceed 10−4x5x10−3 of the largest change in this network
calculation or 10−8 times the largest absolute value within the network (cf.
checkconvnet.c).

11.10 Three-Dimensional Navier-Stokes Calculations (FEM)

The major routine for three-dimensional Navier-Stokes Calculations (compress-
ible and incompressible fluids) is compfluid.c. The flow diagram for incom-
pressible and compressible fluids is shown in Figure 196 and 197, respectively.
Right now, compfluid.c is called once in routine nonlingeo.c. Later on, combined
fluid-structure calculations are planned.

The theory behind the fluid calculations is explained in Section 6.9.19. In-
compressible fluids (liquids) are calculated using a semi-implicit scheme (the
variables compressible and explicit take the value 0), for compressible fluids
(gases) an explicit scheme is used (θ2 = 0, the variables compressible and ex-
plicit take the value 1).

Depending on the application different systems of equations have to be
solved, corresponding to the transport equations of mass, momentum, total in-
ternal energy, turbulent kinetic energy k and turbulence frequency ω. According
to the Characteristic Based Split Method (CBS) [96], a complete increment in
time consists of the following steps :

1. First part of the momentum equation: determination of the first time
change of the momentum ∆(ρv∗)

2. Conservation of mass: determination of the pressure time change ∆p for
incompressible fluids and the density time change ∆ρ for compressible
fluids

3. Second part of the momentum equation: determination of the second time
change of the momentum ∆(ρv∗∗)
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4. Conservation of energy: determination of the time change of the total
internal energy per unit of volume ∆(ρǫt)

5. Turbulence equations: calculation of the time change of the total kinetic
energy ∆(ρk) and the turbulence frequency ∆(ρω)

The total time change of the momentum is ∆(ρv) = ∆(ρv∗) + ∆(ρv∗∗).
Notice that all variables are written in their conservative form. Indeed, it is not
v which is conserved, but ρv and so on.

Each of the above sets leads to a linear equation system to be solved for that
increment.

11.10.1 Topological information

Although the major calculations take place in compfluid.c there is one routine
placed at the start of nonlingeo.c to collect topological information, which is not
changed due to the deformation of the structural components (in fluid-structure
interaction calculations). This information includes:

• Storage of all external faces of the mesh (i.e. faces which belong to only
one element) in fields nelemface (element number) and sideface (face num-
ber). The field nelemface is sorted in ascending order. The face number
corresponds to the load face numbering in Section 6.11.2.

• Storage of all solid surface nodes in field isolidsurf in ascending order. A
solid surface node is a node for which all velocity components are pre-
scribed to be zero. Solid surface nodes belong to external faces of the
mesh. The in-stream neighbor of a solid surface node is stored in field
neighsolidsurf, the distance between both is stored in field xsolidsurf. The
distance is a geometrical entity and is determined in routine initialcfd.f.

• Storing all freestream nodes in field ifreestream in ascending order. A
freestream node is a node belonging to an external face which is not a
solid surface node and which does not belong to a cyclic MPC.

• Determining the fluid elements to which a given node belongs and storing
them in field iponoel and inoel. For a given node i one fluid element to
which it belongs are stored in inoel(1,iponoel(i)). inoel(3,iponoel(i)) is a
pointer into field inoel pointing to the next fluid element to which the node
belongs. This is continued until inoel(3,inoel(3,inoel(3.....inoel(3,iponoel(i))))))
is zero.

11.10.2 Determining the structure of the system matrices

In mastructf.c the structure of the matrices of the linear equation systems is
determined. Indeed, the structure is usually sparse and therefore it is impor-
tant to know which elements are nonzero. Only these elements are stored. This



11.10 Three-Dimensional Navier-Stokes Calculations (FEM) 699

Start

matrix structure

initial calculations

LHS ρǫt + lumping

LHS V + lumping

LHS p

LU-decomposition p-matrix

LHS ρk, ρω + lumping

i = 0

determine ∆t

determine external loading

RHS ∆V ∗ and solve

BC ρivi+1 → ∆V ∗

RHS ∆p and solve

BC pi+1 → ∆p

RHS ∆V ∗∗ and solve

∆V = ∆V ∗ +∆V ∗∗

BC ρivi+1 → ∆V

RHS ∆(ρǫt) and solve

RHS ∆(ρk),∆(ρω) and solve

xi+1 = xi +∆x, x = ρǫt,V , p, ρk, ρω

determine Ti+1,vi+1

find ‖xi+1‖, ‖∆x‖, x = ρǫt,V , p, ρk, ρω

BC Temperature → Ti+1

BC Turbulence → (ρk)i+1, (ρω)i+1

write output to file

‖∆x‖ < ǫ‖xi+1‖?

yes

no

End

i++

Figure 196: Flow diagram for liquids



700 11 PROGRAM STRUCTURE.

Start

matrix structure

initial calculations

LHS ρǫt + lumping

LHS V + lumping

LHS ρ + lumping

LHS ρk, ρω + lumping

i = 0

determine ∆t

determine external loading

RHS ∆V ∗ and solve

BC ρivi+1 → ∆V ∗

RHS ∆ρ and solve

RHS ∆V ∗∗ and solve

∆V = ∆V ∗ +∆V ∗∗

BC ρivi+1 → ∆V

RHS ∆(ρǫt) and solve

RHS ∆(ρk),∆(ρω) and solve

xi+1 = xi +∆x, x = ρǫt,V , ρ, ρk, ρω

determine Ti+1, pi+1,vi+1

find ‖xi+1‖, ‖∆x‖, x = ρǫt,V , ρ, ρk, ρω

determine ∇pi+1

smooth xi+1 → xi+1, x = ρǫt,V , ρ, ρk, ρω

BC ρi+1vi+1 → V i+1

determine T i+1, pi+1,vi+1

BC pi+1 → pi+1

BC Ti+1 → T i+1

BC Turbulence → (ρk)i+1, (ρω)i+1

write output to file

‖∆x‖ < ǫ‖xi+1‖?

yes

no

End

i++

Figure 197: Flow diagram for compressible fluids
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is the equivalent routine to mastruct.c for solid mechanics applications. How-
ever, contrary to solid mechanics the single point constraints and multiple point
constraints are not taken into account while calculating the structure of the
matrix, i.e. boundary conditions do not reduce the system of equations. So
the equations are built and solved in the assumption that no SPC’s or MPC’s
are applied. They are taken into account at a later stage of the calculation.
This, however, does not apply to the matrix of the pressure equations for in-
compressible fluids. In the latter equations the SPC’s are taken into account,
but not the MPC’s. The reason for this is that the pressure equation system is
the only system for which a regular linear equation solver such as SPOOLES is
used. All other systems are diagonalized (lumped). In the absence of SPC’s the
solution to the pressure equations is not unique and the corresponding matrix
is singular. This cannot be handled by a standard solver.

11.10.3 Initial calculations

In subroutine initialcfd.f the following fields are calculated:

• For each node in the fluid, the distance from this node to the nearest
solid surface node. This distance is stored in field yy. It is needed for the
turbulence model.

• For each solid surface node, the distance to the nearest in-flow node. It is
stored in field xsolidsurf. This quantity is also needed for the turbulence
model.

• For each node the adjacent element height. This is the shortest distance
to from this node to all nodes belonging to elements to which the node
belongs. This height is stored in field dh and is used to determine the
local increment time ∆ti.

• The value of the conservative variables in all fluid nodes starting from the
physical variables. The conservative variables, stored in field voldaux, are
ρǫt, ρvi(i = 1, 2, 3) and ρ. The physical variables are the static tempera-
ture T , the velocity components vi and the static pressue p.

The fields calculated in initialcfd frequently contain distances between nodes,
which may have changed since the last call to compfluid.

11.10.4 The left hand sides of the equation systems

Subsequently the left hand side for the energy system, the momentum system,
the pressure system and the turbulence system are calculated in subroutines
mafilltlhs.f, mafillvlhs.f, mafillplhs.f and mafillklhs.f, respectively. For compress-
ible fluids all systems are lumped in subroutine lump.f. The lumped matrix is
diagonal. However, the lumped matrix is not stored as such. Indeed, out of effi-
ciency considerations the diagonal of the original matrix, stored in field adb, is
replaced by itself minus the lumping matrix. The inverse of the lumping matrix
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is stored in adl. For incompressible fluids all equation systems except for the
pressure equations are lumped. For the pressure equations a LU decomposition
is performed for later use in the solution phase of all systems of equations.

At this point the preparation phase is finished an the major loop starts
calculating the solution at the subsequent time points

11.10.5 Determining the time increment

The first action within the major loop is the determination of the time increment
in subroutine compdt. The formulas for doing so are Formulas 453 and 455 for
liquids and gases, respectively. Notice that the solution influences the time
increment, so the increment has to be recalculated at the start of the major
loop.

11.10.6 Determining the loading

Next is the calculation of the loading. This includes the nodal forces, the facial
and volumetric distributed loads, the given velocities, the given static pressure
and the given static temperature. These quantities are applied as step values
(no ramping), unless an amplitude is defined to change their values.

11.10.7 Step 1: determining ∆V ∗

In this step the first correction to the momentum is determined. To this end
the Right Hand Side (RHS) of the equation system is calculated. This part
is parallelized (multithreading) since it involves a loop over all elements which
can be nicely cut into pieces. The equations are solved in routine solveeq in
an iterative way. This is necessary, since the LHS has been approximated by
lumping. The number of iterations is set in solveeq.f and is called maxit. Right
now, it has the value 1, which means that no iterations take place. If the user
wishes to change this, the source code has to be recompiled. After solving the
equations the variables are moved from a degree of freedom representation to a
nodal based storage in resultsv1 (and stored in field v(1,*),v(2,*) and v(3,*)).
Notice that ∆V ∗ is not added to V at this point. Next, ∆V ∗ is changed
such that the velocity boundary conditions are matched. These conditions are
applied in the form ρiV i+1, where ρi is the density at the start of the increment
and V i+1 is the velocity boundary condition corresponding to the time at the
end of the increment (ρi+1 is not known at this point).

11.10.8 Step 2: determining the pressure/density correction

In the second step the pressure is determined for liquids and the density for
gases. For liquids this involves the solution of a regular system of equations, the
LHS of which has been LU-decomposed. This can be performed in a parallel way
if the user has activated the multithreading option for the linear equation solver,
e.g. the option -DUSE MT for SPOOLES in the Makefile and specified the
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number of cpus by means of the environment variable NUM CPU SOLVE. For
gases a lumped system is solved leading to the density correction. In both cases
the corrections are stored on a nodal basis in resultsp.f (in field v(4,*)). Finally,
for fluids the pressure boundary conditions are applied in routine applybounp.f.
For gases this has to wait till later, since the gas pressure is not known at this
point.

11.10.9 Step 3: determining the second momentum correction

In step 3 the second correction to the momentum is determined. The lumped
equations are solved and the solution is added to ∆V ∗ in routine resultsv2.f
(again in fields v(1,*), v(2,*) and v(3,*)). Finally, the fluid boundary conditions
in the form ρiV i+1 are applied and ∆V ∗∗ is changed appropriately.

11.10.10 Step 4: determining the energy correction

In step 4 the correction to the energy is determined. The lumped equations
are solved and the solution is stored in field v(0,*) (routine resultst.f). No
boundary conditions are applied, since the (static) temperature is not known at
this point. Step 4 is only performed for gases (which exhibit a strong coupling of
density, temperature and pressure) and for liquids for which initial temperature
conditions have been defined. In general the coupling in liquids is rather weak.

11.10.11 Step 5: determining the turbulence corrections

In step 5 the turbulence corrections are determined. This section is not active
yet.

11.10.12 Updating the conservative variables

In the previous five steps all corrections to the conservative variables have been
determined. Now in subroutine updatecfd.f, these corrections, which were stored
in field v, are added to the conservative variables at the start of the increment
(stored in field voldaux). The sum is saved again in voldaux, i.e. this field
is updated. Subsequently, the physical variables temperature and velocity are
determined and stored in field vold(0..3,*). Furthermore, for gases the pressure
is calculated and stored in vold(4,*). The L2 norm of the conservative variables
and their increments is calculated and stored for later use in the convergence
check.

11.10.13 Smoothing the conservative variables for gases

For gases the conservative variables are smoothed on basis of the local pressure
gradient. This gradient is calculated in subroutine presgradient. Subsequently,
the smoothing is done in routine smoothshock.f. Next, the velocity boundary
conditions are applied in the form ρi+1vi+1 to V i+1, after which the static
temperature, pressure and velocity is determined in routine updatecfd on basis
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of the smoothed conservative variables. Next, the pressure boundary conditions
are applied. At the point the smoothing diversion for gases finishes and liquids
and gases are treated again in the same way.

11.10.14 Application of temperature BC’s and convergence check

Finally, the temperature and turbulent boundary conditions are applied to both
liquids and gases, the requested output is stored to file and the convergence
criterion is checked. Right now, convergence is reached if the norm of the
change of the conservative variables does not exceed 10−8 of the norm of the
variables themselves.

11.10.15 Three-dimensional interpolation

In a couple of instances three-dimensional interpolation is necessary:

• for submodels the boundary conditions (displacements at the nodes or
stresses at the integration points of the faces) are interpolated from the
global model

• for CFD computations with cyclic symmetry an extra row of elements is
appended on each cyclic symmetry side. The values in the extra nodes
are linked to the other side through interpolation.

For interpolation purposes each master mesh element is remeshed into linear
tetrahedra. This results in a number of fields such as kontet, cotet, ipofa, inodfa,
planfa and ifatet. Kontet(1..4,i) contains the nodes belonging to the tetrahedral
element i, cotet(1..3,i) contains the coordinates for nodes i. The other fields are
used to catalogue the faces of the tetrahedra. Ipofa(i) is a pointer into field
inodfa, containing all faces of the tetrahedral mesh. Let index=ipofa(i), then
inodfa(1..3,index) contains the nodes i, j and k belonging to a face for which
node i is the lowest node number, i.e. i<j<k. Entry inodfa(4,index) is a pointer
to another face in inodfa for which i is the lowest node number. If no other
exists, this value is zero. Each face occurs only once in field inodfa. Therefore,
the index of the face in field inodfa can be considered as the number of the face.
For a face stored in inodfa(1..4,index), the equation of the plane containing the
face and of the form ax+by+cz+d=0, the coefficients a, b, c and d are stored
in planfa(1..4,index). The field ifatet(1..4,i) contains the numbers of the 4 faces
belonging to the tetrahedron i. Let the nodes of a tetrahedron a be i, j, k and
l and assume that the number of the face to which nodes i,j and k belong is
stored in ifatet(1,a). Let the coordinates of node l be p, q and r. Then, the
entry ifatet(1,a) gets a negative sign if ap+bq+cr+d<0, else it gets a positive
sign. In that way one can distinguish for each face of each element between the
half space to which the tetrahedron the face we are looking at belongs and the
half space to which it does not belong.
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11.11 Three-Dimensional Navier-Stokes Calculations (FVM)

11.12 Sensitivity Analysis

The coding for sensitivity analysis is concentrated within the sensitivity.c sub-
routine. The objective functions and the parameters describing them are stored
in a character*81 field objectset(4,nobject), where nobject is the number of ob-
jective functions. In the absence of constraints there can be an arbitrary number
of objective functions specified by the user. In the presence of constraints, there
is exactly one objective function and an arbitrary number of constraints. Re-
garding the field objectset, constraints are treated in exactly the same way as
objective functions. However, in the presence of constraints, in addition to the
sensitivity of the objective function and each of the constraints, the sensitivity
of the constrained objective function is calculated too. Therefore, nobject is in
that case 1(for the unconstrained objective function) + number of constraints
+ 1 (for the constrained objective function)

The structure of the field objectset is as follows:

• objectset(1,*)

– 1-18: objective/constraint (e.g. DISPLACEMENT)

– 19-20: LE or GE (for constraints)

– 21-40: boundary weighting distance

– 41-60: relative constraint value

– 61-80: absolute constraint value

– 81-81: R for reading the sensitivities from file jobname.sen, W for
writing the sensitivities to file jobname.sen (only stored in object-
set(1,1))

• objectset(2,*)

– 1-5: filter type

– 6-8: BOU if boundary weighting is active, else empty

– 10-12: EDG if edge conservation is active, else empty

– 14-16: DIR if direction weighting is active, else empty

– 17-19: MIN for minimization, MAX for maximization

– 21-40: filter radius

– 41-60: ρ of the Kreisselmeier-Steinhauser function

– 61-80: σ̄ of the Kreisselmeier-Steinhauser function

• objectset(3,*)

– 1-81: node or element set to which the objective/constraint applies

• objectset(4,*)
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– set of opposite nodes for THICKNESS constraint

The structure of subroutine sensitivity.c is made up of a preprocessing part,
a processing part and a postprocessing part. The preprocessing part is executed
only once, for frequency sensitivities the processing and postprocessing part is
executed as many times as there are eigenvalues, else they are executed only
once.

11.12.1 Preprocessing the sensitivity

The Structure of the preprocessing part is shown in Figure 198. At first all
elements belonging to one and the same node are determined and stored in the
data structure shown in Figure 199. Then, the program flow is split according
to whether the design variables are the coordinates or the material orientations.

For coordinate design variables the following steps are performed:

• The external faces of the structure are determined and stored in the data
format explained in Figure 186 as well as in the data format shown in
Figure 200 (findextsurface.f)

• All external faces to which a given node belongs are stored in fields ipo-
noelfa and inoelfa according to the data structure shown in Figure 201
(extfacepernode.f)

• The design variables (i.e. nodes) are stored in ascending order in field
nodedesi(*). The total number of design variables is ndesi (getdesiinfo.f)

• All elements belonging to one and the same design variable are stored
in fields istartdesi and ialdesi according to the structure in Figure 202
(elemperdesi.f)

• The calculation of the normals to the external surfaces. At the design
variables, this is the direction in which the nodes are moved and for which
the sensitivity is calculated. In each node there can be only one normal.
This is the mean of the normals on all external faces to which the node
belongs. If the EDGE PRESERVATION=YES parameter is activated on
the *FILTER card only external surfaces “internal” to the “domain” of
design variables are taken into account for the calculation of the normal.
An external surface is “internal” to the “domain” of more than half of its
nodes are design variables (normalsonsurface se.f).

• The calculation of the normals to the external surfaces. Although it seems
to be the same task as in the previous item, it is not. The normals cal-
culated here are needed for the mesh modifications in an optimization
procedure. Usually the performance of a sensitivity study is not a goal
itself, rather it is part of an optimization loop during which the sensitivi-
ties, which are nothing else than the derivative of the objective w.r.t. the
design variables, are recalculated in each iteration and used in optimiza-
tion strategies such as steepest descent or conjugate gradient. At the end
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Figure 198: Structure of the preprocessing part
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iponoel

node i

El # 1

El # 2 0

inoel

pointer

Figure 199: Data structure for all elements belonging to a given node

of each iteration the design variables are moved a small amount in the
normal direction (calculated in the previous item), all other nodes are not
moved in normal direction. This deforms the mesh and may lead to bad
elements. Hence the mesh has to be improved, e.g. with a Laplace opera-
tor. However, the external surface of the structure should not be changed
during this operation. This latter requirement can be taken care of by
defining multiple point constraints based on the local normal(s). Indeed,
now more than one normal may be needed, e.g. at sharp corners which
need be preserved. Therefore, the way the normals are determined here
(normalsforequ se.f) is different from the way this is done in normalson-
surface se.f. The equations are stored in file jobname.equ for further use
in a CalculiX input deck.

• Determination of the active nodes, i.e. the nodes belonging to elements
(createinum.f) and storage of the normals determined in normalsonsur-
face se.f in frd-format in jobname.frd (frd sen.c).

• Determination of the smallest distance between two nodes belonging to
one and the same element. Based on this distance a measure is derived
(actually this distance/10000.) which is used to calculate the sensitivities
on element-to-element basis with finite differences (smalldist.f).

For orientation design variables the following steps are performed:
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lakonfa ipkonfa konfa

node1

node2

node4
node3

S4

face nsurfs

nodes

belonging

S3/S4/S6/S8

pointer
face i

external

external

to external

face i

Figure 200: Data structure storing the kind of external face and the nodes
belonging to that face
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node i
pointer

face loc pointer

face 0loc

inoelfaiponoelfa

face = external faces only

Figure 201: Data structure for all external faces belonging to a given node

pointer
variable i

design

istartdesi

element 1
element 2

element 3

element 4

element 5

element 1

element 2

elements belonging

to design variable i

ialdesi

Figure 202: Data structure for all elements belonging to a specific design variable
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• Storage of the orientation design variables in the jobname.dat file. Each
local orientation leads to exacty three design variables, which are the com-
ponents of the rotation vector describing the orientation (writedesi.f).

• Determining all elements corresponding to a given orientation. They are
stored in fields ipoorel(*) and iorel(2,*) in exactly the same way as fields
iponoel(*) and inoel(2,*) were used to store all elements to which a given
node belongs, cf. Figure 199 (elemperorien.f).

• All elements belonging to one and the same design variable are stored
in fields istartdesi and ialdesi according to the structure in Figure 202
(elemperdesi.f). This is analogous to the case in which the coordinates
are the design variables.

The next four routines are common to coordinate design variables as well as
orientation design variables:

• First the design variables per element are determined and stored in fields
istartelem(*) and ialelem(*) in exactly the same way as fields istartdesi(*)
and ialdesi(*) were used to store the elements per design variable according
to Figure 202 (desiperelem.f).

• The actual external load is determined (tempload.f)

• The matrix structure of the sensitivity matrix df is determined and stored
using the variables irows(*) and jqs(*). The sensitivity matrix is used
to store ∂Fext

∂s , ∂Fint

∂s , ∂K
∂s · U or a combination of these. The dimensions

are neq x ns, where neq is the number of independent degrees of freedom
and ns is the number of design variables. This matrix is very sparse,
since only the degrees of freedom belonging to the nodes to which the
design variable belongs will be nonzero. The nonzero’s are stored column
by column according to ascending row numbers for each column. Field
irows contains the corresponding row numbers (size = total number of
nonzero’s), field jqs(i) contains the location of the first entry in irows
beloning to column i.

• Each degree of freedom in field df corresponds to a specific direction in a
specific node. In gennactdofinv.f field nactdofinv(i) is determined yield-
ing the direction and node for a degree of freedom i in the form (node-
1)*mt+direction, where mt is the maximum number of directions (=mi(2),
cf. List of variables and their meaning) + 1.

At this point the preprocessing part is split according to whether the ob-
jectives are the eigenvalues or Green functions, in which case the eigenvalues,
eigenmodes, stiffness matrix and mass matrix are read from file (generate in
a previous *FREQUENCY or *GREEN step), or whether the objective is the
mass, the stress or the shape energy, in which case the stiffness matrix and the
matrix structure are read from file (generated in a previous *STATIC step).
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11.12.2 Processing the sensitivity

The sensitivity is calculated in routines results se.c, mafillsmmain se.c and ob-
jectivemain se.c.

In routine results se.c ∂Fint

∂s is determined. For geometrically nonlinear cal-
culations (parameter NLGEOM on the *STEP card) the unperturbed displace-
ments leading to the internal force correspond to the displacements at the end
of the previous static step, if any, augmented by the actual prescribed dis-
placements. For linear geometric calculations the unperturbed displacements
correspond to zero augmented by the actual prescribed displacements. Indeed,
nonzero prescribed displacements lead to internal forces in linear calculations.
Therefore, the term ∂F

∂s in Equation (523) can be replaced by ∂Fext

∂s − ∂Fint

∂s for
linear calculations, noting that only nonzero initial displacement boundary con-
ditions lead to internal forces (and not any previous displacements). The second
reason why results se.c has to be called for linear calculations too is that the ma-
terial tangent ∂S

∂E at each integration point, which is needed in mafillsmmain se.c
for the set up of the stiffness matrix, is also determined in results se.c.

Routine objectivemain se.c calculates the derivative of the external forces
and of the stiffness matrix (and similar matrices):

• For static nonlinear geometric calculations

∂Fext

∂s
(854)

is calculated.

• For static linear calculations

∂Fext

∂s
− ∂K

∂s
· U (855)

is determined.

• For frequency and Green calculations

− ∂(K − σM)

∂s
· U (856)

is calculated, where σ is an appropriately defined scalar.

Out of computational efficiency the latter terms are calculated at the element
level and assembled into a global matrix thereupon.

The last major routine, objectivemain se.c assembles the previous informa-
tion to obtain the final sensitivity. For the orientation as design variable these
sensitivities are immediately stored in the .dat or the .frd file. The sensitivity
for the geometry (normal directions of nodes on the external surface) as design
variable, however, is kept for further postprocessing in sensitivity.c.

For the objective G the total sensitivity ∂G(s,U(s))
∂s is written as ∂G

∂s + ∂G
∂U .

The routine is split according to the objective function:
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• The MASS objective function does not depend on the displacements, i.e.
the deformation of a body does not change its mass. So only the first term
in the above equation is needed. This term examines how the change of
the design variables directly changes the mass. For the orientation as de-
sign variable the mass does not change at all. For coordinates as design
variables, however, ∂G∂s is appropriately calculated. This is done by deter-
mining G for the unperturbed geometry and for the geometry in which one
of the design variables (the geometric change in normal direction in a node
on the external surface) is changed by a small amount (finite difference
approximation). The routine in which this is done is objective mass dx.f.

In general, the objective function does not have to apply to the total
structure, e.g. one can define the mass of part of the structure as design
variable. In that case all other elements are deactivated. This is done in
routine actideacti.f. This applies to all objective functions, for which only
part of the structure is included.

• For the STRAIN ENERGY as objective function a distinction has to be
made whether the calculation is geometrically linear or nonlinear. For a
linear geometric calculation Equation (524) reduces to:

DG

Ds
=
∂G

∂s
+ U

(
∂F

∂s
− ∂K

∂s
· U
)
. (857)

The first term on the right hand side is calculated in a similar way as
for the MASS in routine objective shapeener dx.f. The term in brack-
ets on the right hand side was already determined in results se.f and
mafillsmmain se.f. Premultiplying it with the displacements from the pre-
vious static step and adding the first term yields the sensitivities (objec-
tive shapeener tot.f).

For a nonlinear geometric calculation Equation (524) reduces to:

DG

Ds
=
∂G

∂s
+ FTintK

−1

(
∂Fext

∂s
− ∂Fint

∂s

)
. (858)

Now, Y ≡ FTintK
−1 is calculated by solving the set of equationsKY = Fint.

The remaining operations are similar to the linear case.

• For the EIGENFREQUENCY as objective function the sensitivity reduces
to:

∂λi
∂s

= UTi ·
(
∂K

∂s
− λi

∂M

∂s

)
· Ui. (859)

The part starting with the brackets on the right hand side has been de-
termined in mafillsmmain se.f. Consequently,the sensitivity of the eigen-
frequencies only requires the premultiplication with the eigenmodes. This
is done in objective freq.f and objective freq cs.f (cyclic symmetry).
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For the sensitivity of the eigenmodes (only calculated for the orientation
as design variable) the relevant equation is Equation (528), which can also
be written as:

(K − λiM)
∂Ui
∂s

= Fi. (860)

Assuming the sensitivity to be a linear combination of the eigenmodes:

∂Ui
∂s

=
∑

j

cjUj, (861)

leads to the following expressions for cj :

cj =
UTj Fi

λj − λi
, i 6= j (862)

and ci = 0. The latter equation results from the differentiation of the
mass normalization condition UTi MUi = 1. The determination of

Fi = −
(
∂K

∂s
− λi

∂M

∂s
− ∂λi

∂s
M

)
· Ui (863)

is straightforward and is based on the expression calculated in mafillsm-
main se.f and the sensitivity of the eigenfrequencies.

• For the sensitivity of the Green functions (only calculated for the orienta-
tion as design variables) the relevant equation reads:

(K − ω2
0M)

∂Ui
∂s

=
∂K

∂s
· Ui. (864)

and requires the solution of a system of equations for each design variable.
The system matrix, however, does not change, so the LU-decomposition
of the matrix has only to be done once.

For the orientation as design variable the frequency sensitivities are stored
in the .dat file, whereas the sensitivities of the eigenmodes and/or Green
functions are stored in the .frd file (frd sen.c, called from objectivemain se.c).
For the geometry as design variable only the frequency sensitivities are de-
termined. They are not stored in objectivemain se.c since they may need
further postprocessing in sensitivity.c.

• The DISPLACEMENT objective function is differently defined for orienta-
tion design variables than for geometric design variables. The processing,
however, is similar. The relevant equation is
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∂U

∂s
= K−1

(
∂Fext

∂s
− ∂Fint

∂s

)
, (865)

for geometrically nonlinear calculations and

∂U

∂s
= K−1

(
∂F

∂s
− ∂K

∂s
· U
)

(866)

for geometrically linear calculations. In both cases the term in brackets on
the right hand side (let us call it F ) has been calculated before. Therefore,
the complete right hand side is determined by solving KY = F for each
design variable. Since the matrix of the system does not depend on the
design variable, it has only to be LU-decomposed once.

For orientation design variables the result is transferred from the degrees
of freedom to the (node,direction) representation in resultsnoddir.f and
stored in the .frd file in frd sen.c. For geometrical design variables the
result is processed in objective disp dx.f. This is due to the fact that
the displacement geometric function for geometrical design variables is
defined as the square root of the sum of the square of the displacements
in all design nodes. After leaving objective disp dx the result is kept for
further postprocessing.

• Results for the STRESS as objective are immediately based on the dis-
placement sensitivities. Indeed, one can write:

S = f(U(s), s), (867)

i.e. the stress S is a direct function of the design variables and an indi-
rect function through the displacements. Indeed, the stress is the result
of the “multiplication” of the material contants with the derivative of
the displacements with respect to the geometry. Therefore, the indirect
dependence through the displacements is clear. For geometrical design
variables the direct dependence follow from “WITH RESPECT TO THE
GEOMETRY” in the previous sentence, for the orientation design vari-
ables it follows from “THE MATERIAL CONSTANTS”. Therefore, the
sensitivity of the stress can be written as:

∂S

∂s
≈ S(U(s+∆s), s+∆s)− S(U(s), s)

∆s
, (868)

where U(s+∆s) is approximated by

U(s+∆s) ≈ U(s) +
∂U

∂s
∆s. (869)

So the stress sensitivities generally require the knowledge of the displace-
ment sensitivities. For orientation design variables the above operations



716 11 PROGRAM STRUCTURE.

require the routines resultsnoddir.f and resultsstr.c (and their subrou-
tines). The results (i.e. the sensitivity of the von Mises stress at all nodes
w.r.t. a change in an anisotropic orientation) are stored in the frd-file.

For geometrical design variables stress sen.c and its subroutines are needed.
The evaluation of the Kreisselmeier-Steinhauser function based on the von
Mises Stress is done in subroutine objective stress dx.f. These results are
kept for further postprocessing.

• The THICKNESS objective can only be used as a constraint to another
objective function. For a LE constraint the sensitivity is 1 if the actual
thickness exceeds the reference thickness, else it is 0. For a GE constraint
the sensitivity is 1 if the actual thickness is less than the reference thick-
ness, else is is 0.

11.12.3 Postprocessing the sensitivity

Postprocessing is only done for geometrical design variables. The postprocessing
procedure is coded in sensitivity.c and consists of the following steps:

• Changing from a shape function smeared sensitivity representation to local
sensitivities.

• For quadratic elements: interpolating the sensitivities at the middle nodes
to the vertex nodes

• Filtering the sensitivities

• Creating a transition region from the design node region to its complement

• Modifying the sensitivities due to constraint conditions

Now the steps are treated in more detail:

• The sensitivity for geometric design variables is calculated by moving each
design variable an infinitesimal distance in a direction normal to the ex-
ternal surface. Through the shape functions this motion extends across
an area consisting of all external faces to which the design node belongs.
The sensitivity is localized through division by the integral of the shape
functions taking the value 1 at the node at stake (distributesens.f).

• For quadratic faces frequently a checkerboard pattern arises for the sensi-
tivities. For this type of elements it has proven advantageous to disregard
the sensitivities calculated at the vertex nodes. They are replaced by an
interpolation of the values at the midnodes of all external design faces
(quadraticsens.f).

• Filtering the sensitivities boils down to a local smoothing. The sensitivity
values at a given node are thereby replaced by a weighted sum of the
sensitivities of the nodes within a sphere with a user-defined radius. The
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weighting function is 1 at the node at stake and decreases radially in a user-
defined way to zero at the edge of the sphere. The available filter functions
are linear, quadratic, cubic and gauss. If the parameter DIRECTION
WEIGHTING is active on the *FILTER card the sensitivity values at a
node i are replaced by a weighted sum of the sensitivities at the nodes j
within the sphere multiplied by the scalar product of the normal vector
at j and the normal vector at i.

• If the parameter BOUNDARY WEIGHTING=YES is selected on the
*FILTER card the sensitities are linearly decreased to zero at the edge of
the design domain. This edge is defined by all nodes which are not design
variables but belong to external faces which contain at least one design
variable. If a design node lies within a user-defined boundary weighting
distance from this edge a linear reduction proportional to the actual dis-
tance is applied. This assures a smooth transition of the sensitivities to
zero at the edge of the design domain.

• Constraints are taken into account by projecting the unconstrained sen-
sitivities on the complement of the subspace consisting of the active con-
straints. Suppose the domain is n-dimensional (n design variables) and
the subspace has the dimension m (m constraints). Then the sensitivi-
ties of the constraints can be arranged as basis vectors in a nxm matrix.
The projection p of a vector b on the subspace satisfies the orthogonality
condition:

NT (b − p) = 0. (870)

Since p belongs to the subspace it can be written as a linear combination
of the basis vectors p = Nx, where x is a mx1 vector of coefficients.
Consequently:

NTNx = NT b, (871)

from which x can be solved yielding:

p = N(NTN)−1NT b. (872)

The complement of the projection vector is I − N(NTN)−1NT . Denot-
ing A = (NTN)−1, the constrained sensitivies c are obtained from the
unconstrained sensitivities b by:

c = (I −NANT )b, (873)

or, in component notation:

ci = bi −
∑

k

wik, (874)
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where

wik =


∑

j

NijAjk



(
∑

l

(NT )klbl

)
(875)

(no summation over k in the last equation).

Active constraints are constraints which

– are fulfulled AND

– for which the Lagrange multiplier points to the non-feasible part of
the space

To this end the algorithm starts with all constraints which are fulfilled
an removes the constraints one-by-one for which the Lagrange multiplier
points to the feasible part of the space.

11.13 Mesh refinement

The mesh refinement procedure starts from the mesh in the input deck. All
elements which are not of type C3D4 or C3D10 are kept and their element
numbers are not modified. All other elements are deleted and the gaps in the
numbering between the elements which are not tetrahedral are filled from low
to high by the newly generated tetrahedral elements. The procedure for the
refinement is based on the book by P.-L. George and H. Borouchaki [25].

The mesh refinement procedure uses a lot of mesh description fields, most
of which are dynamically modified during the refinement. These fields are in-
troduced first.

11.13.1 Nodal fields

The primary nodal field is cotet(3,*), which contains the actual coordinates
of the mesh. This includes the coordinates of these parts of the mesh which
are not meshed by tetrahedral elements. During the refinement only nodes are
created, existing nodes are not deleted. The actual maximum node number is
nktet, the actual nodal allocation size is nktet . Both numbers change during
the refinement.

iexternnode(*) is a nodal field which indicates whether the node is on the
surface (value 1) or internal (value 0). The field h(*) specifies the desired edge
length at each node. Both these fields change dynamically during the refinement.
The structure of fields cotet(3,*), iexternnode(*) and h(*) is illustrated in Figure
203.

Finally, the fields ipoeln and ieln are used to specify the elements containing
a specific node (Figure 204). For a node i the value ipoeln(i) points to an entry
ieln(1,ipoeln(i)) containing an element to which the node belongs. If there are
more such elements, the next element is stored in ieln(1,ieln(2,ipoeln(i))) and
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cotet(3,*) iexternnode(*)

node

h(*)

Figure 203: Nodal fields

ipoeln(node)

El 1

El 2 0

if not used:

next free position

ieln(2,*)

ifreeln: current

free position

Figure 204: Element per node relationship
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no 1 <

no 1 <

iedg(3,*)

ipoed(no 1)

no 3

ifreeed: current
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iexternedg(*)

if > 0
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iedgext(3,*) iedgeextfa(2,*) isharp(*)
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size: nexternedg

.......

.......

Figure 205: Node per edge relationship

so on until ieln(2,ieln(2,ieln(2...,ipoeln(i))))=0. At any time during the scalar
ifreeln contains the next free position in ieln, whereas the entry ieln(2,j) for any
not used position j in the field points to a next free position.

11.13.2 Edge fields

During the mesh refinement no middle nodes are considered. Consequently,
edges only contain two nodes. They are numbered according to their storage in
field iedg(1..3,*) (Figure 205). In this field entry iedg(1,i) contains the first node
of edge i and iedg(2,i) contains the second node, such that iedg(1,i) < iedg(2,i).
For a node j ipoed(j) points to an edge in field iedg for which j is the smallest
node number. If there is more than one such edge iedg(3,i) points to the next
entry in iedg containing an edge for which j is again the smallest node number.
If no more such edge exists the value of iedg(3,..)=0. This is a construct similar
to field ieln. An actual free entry in field iedg is pointed to by ifreeed, and for
any free line k iedg(3,k) points to a next free line.

Fields containing a similar number of lines as iedg are d(*) containing the
length of the edges, n(*) containing the number of new nodes to be inserted
on the edge for the mesh refinement (can only take the value 0 or 1 in each
iteration depending on whether a node is to be inserted), r(*) containing the
bias for the node insertion (if any) and iedgmid(*) containing the number of
the midnode on the edge. The latter field is only introduced at the end of the
mesh refinement (in projectnodes.f) and only if quadratic tetrahedral elements
are requested. Finally, there is the field iexternedg(*) which takes the value:

• -1 if the edge is external but is not part of an edge of the unrefined mesh
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El 1

El 2 0

if not used:

next free position

free position

ipoeled(edge)

ieled(2,*)

ifreele: current

Figure 206: Element per edge relationship

• 0 if the edge is not external

• i > 0 if the edge is external and part of an external edge i of the unre-
fined mesh. This edge i is described by its nodes n1, n2 (middle node, if
any, else 0) and n3 which are stored in field iedgext(1..3,i). Field iedgext
is a static field (i.e. it does not change during refinement) since it de-
scribes the unrefined mesh. Entries iedgeextfa(1..2,i) are the two external
faces to which external edge i belongs. Data on these external faces, e.g.
j=iedgeextfa(1,i) is stored in ifacext(1..6,j) and ifacexted(1..3,j). These
fields are discussed in the face field section. Finally, isharp(i) indicates
whether an external edge is sharp. Whether an external edge is sharp is
decided on at the end of the refinement at the time of the node projection.
An external edge is sharp if

– it is used as parent edge for at least one newly generated edge during
mesh refinement AND

– the normals on the adjacent external faces have an angle of less than
about 0.05◦.

Fields iedgeextfa, ifacext, ifacexted and isharp are static, the contents of
field isharp, however, is modified at the end of the refinement in routine
projectnodes.f. All of these fields are needed for the projection of the
newly generated nodes after mesh refinement.
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no 1 <
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size: nexternfa

Figure 207: Node per face relationship

The last fields ipoeled(i) and ieled(2,*) point to the elements to which edge i
belongs in the same way the element per node relationship is stored in ipoeln(*)
and ieln(2,*), Figure 206.

11.13.3 Face fields

Faces are stored in field ifac(1..4,*). For a given node i ipofa(i) points to a face
in ifac for which i is the lowest node number. The node numbers of this face are
stored in entries ifac(1..3,ipofa(i)) in ascending order. The entry ifac(4,ipofa(i))
points to another face for which node i is also the lowest node, if any. If there
exists no face for which i is the lowest node number ipofa(i)=0 (Figure 207).
The scalar ifreefa points to a free entry in field ifac. For any line j in ifac which
is not used yet ifac(4,j) points to the next free entry.

Other fields with a similar number of lines as ifac are itetfa, planfa and
iexternfa. They contain:

• itetfa(1..2,i): the tetrahedral elements to which face i belongs. For an
external face the second entry is zero.

• planfa(1..4,i): the equation of the face in the form ax+by+cz+d=0, with
‖(a, b, c)‖ = 1.

• iexternfa(i): takes a nonzero value j for an external face, else zero. A
nonzero value points to a parent external face (an external face belonging
to the unrefined mesh) which is in the immediate neighborhood of face
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i. The parent external face information is stored in fields ifacext(1..6,*)
and ifacexted(1..3,*). These fields are static and created at the start
of the refinement. ifacext(1..6,j) contains the nodes belonging to face j,
ifacexted(1..3,j) contains the external edges belonging to the face. Infor-
mation on these external edges, e.g. external edge j, is stored in isharp(j),
iedgext(1..3,j) and iedgeextfa(1..2,j). The reader is referred to the previ-
ous section for information on these fields. All of these fields are needed
for the nodal projection at the end of the refinement.

All these fields (except the external ones) are dynamically adjusted during
mesh refinement.

11.13.4 Element fields

The topology of the tetrahedral elements is stored in field kontet(1..4,*). This
field is dynamically updated during mesh refinement. The next free entry in
kontet is pointed to by ifreetet, the entries kontet(4,*) of entries in the field
which have not been used yet point to a next free entry. The field kontet is
special in the sense that element numbers in the unrefined mesh which are no
tetrahedral elements cannot be used for newly generated tetrahedral elements,
i.e. the element numbers of such elements are kept. At the start of the mesh
refinement the tetrahedral elements are renumbered such that they occupy the
lowest possible element numbers. The corresponding middle nodes of these
elements, if any, are stored in field kontetor(1..6,*). The field kontetor is static,
i.e. it only contains the middles nodes of the quadratic tetrahedral elements of
the unrefined mesh. This field is used to calculate field ifacext and is discarded
immediately afterwards.

Fields with the same number of lines as kontet are ifatet(1..4,*), bc(1..4,*),
cg(1..3,*) and iedtet(1..6,*). They contain:

• ifatet(1..4,*): the numbers of the faces belonging to the tetrahedral ele-
ment. The order corresponds to Figure 208. The sign of the face number is
the sign of the expression for the face equation in which the coordinates of
the node opposite to the face (within the same element) were substituted.

• bc(1..4,*): bc(1..3,*) contains the coordinates of the center of the circum-
scribed sphere of the element, bc(4,*) contains its radius.

• cg(1..3,*): contains the coordinates of the center of gravity of the element.

• iedtet(1..6,*): contains the number of the edges belonging to the element
corresponding to the order in Figure 208.

All these fields are dynamic. The actual size used for allocation purposes is
netet .
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Figure 208: Node, edge and face numbering within a tetrahedral element
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11.13.5 Mesh refining procedure

In this section the procedure how the mesh is refined is explained in detail.
Figure shows the global picture. The refinemesh.c routine is a subroutine of
routine frd.c, which is used for the general frd-output. At first the following
routines are called (in this section “element” and “tet” are used as synonyms):

cattet.f In this routine the unrefined tetrahedral mesh is catalogued. It con-
sists of the folowing tasks:

• initialize kontet (take non-tet elements into account, close the gaps in the
tet numbering)

• determine the nodes/tet relationship (kontet)

• calculate the circumscribed spheres of the tets (bc)

• calculate the center of gravity of the tets (cg)

• determine the tets/node relationship (ieln)

• catalogue the faces in ifac: nodes/face relationship

• determine the face equations (planfa)

• determine the faces/tet (ifatet)

• determine the tets/face (itetfa)

Notice that the tetrahedral elements are stored as if all of them were linear,
ie. C3D4-elements. The only quadratic information of the unrefined mesh is
stored in fields iedgext and ifacext, to be discussed below.

catedges.f This routine catalogues the edges. This includes:

• catalogue the nodes/edge relationship (iedg)

• determine the element/edge relationship (ieled)

determineextern.f Next, the external nodes, edges and faces are identified.

A face is external if it belongs to only one element. If face is is external
iexternfa(i) is set to 1, else it is 0.

All nodes in an external face are external. For these nodes iexternnode is
set to 1, else it is 0.

All edges in an external face are external. The value for these edges in
iexternedg is at first set to 1, else it is 0.
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midexternaledges.f Nodes generated on external edges of the unrefined mesh
are after the refinement projected onto the unrefined external edges (in pro-
jectnodes.f). These edges may be quadratic. In routine midexternaledges.f the
external edges are stored in consecutive order (no gaps in the numbering) in
field iedgext(1..3,*). The second entry is the middle node, if any, else this entry
takes the value 0. Now, for those edges i for which iexternedg(i)=1 at the start
of the routine (i.e. the external edges) iexternedg(i) is changed to j, where j is
the number of the external edge in field iedgext.

Field iexternedg is dynamic, i.e. it is changed during the mesh refinement. If
an edge i is remeshed in two new sub-edges (due to the insertion of a node) and
if this edge is external, the value of iexternedg(i) is inherited by the sub-edges
it is split into.

midexternalfaces.f Nodes generated on the exterior of the body and which
do not belong to external edges of the unrefined mesh are projected onto the
unrefined surface at the end of the remeshing routine (in projectnodes.f). To
that end the external face information of the unrefined mesh is first copied
from field iexternfa into iexternfaor (or for “original”). Then, the value of 1 in
iexternfaor(i) for the external faces i is replaced by a value j, pointing to the
entries ifacext(1..6,j) containing the six nodes of the face (node numbering as
in Figure 82. The number of external faces is called nexternfa (= number of
lines in field ifacext). The combination of field iexternfaor and ifacext allows
the program to

• determine whether a face of the unrefined mesh was external

• what nodes are contained in this face (including the middle nodes).

The elements in the unrefined mesh adjacent to the external faces are stored
in element set ialsete, the number of such elements is called nexternel.

At this point the preliminary work is finished and the major refinement loop
starts. It consists of two parts: refinement of the external edges followed by the
refinement of the internal edges.

START OF MAJOR LOOP

first loop: calculateh.f The first time the loop is run, the tetrahedral mesh
is still the unrefined mesh. The following actions are performed in calculateh.f:

• determine the length of each edge and store it in field d(*)

• determine for each node the mean length of the edges to which it belongs.
Multiply this value with the limit value specified by the user and divide it
by the actual value of the user-defined criterion. Store the resulting value
in field h(*). For instance, if the user has selected the stress criterion, the
limit value is 50. and the actual stress value in the node is 200., then an
average edge length in the node of 0.1 will lead to a value of 0.025 in this
node, i.e. the desired edge length is locally 0.025.
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• determine the minimum value of d(*) across the complete mesh and store
it in dmin.

first loop: getlocalresults.f In getlocalresults.f the global mesh is stored
together with the h(*) values for later interpolation values, i.e. to determine
the h-value of a newly generated node an interpolation is performed within
the h-values of the unrefined mesh. To this end the tetrahedral elements are
numbered consecutively. The procedure is similar to the submodel interpolation
procedure with the parent elements identical to the tetrahedral elements and
the field ielemnr containing the non-consecutive numbering of the tetrahedral
elements.

all but the first loop: calculated.f For the second and further loops only
the field d(*) containing the length of the edges and dmin has to be determined.
The h-field is obtained by interpolation within the unrefined mesh.

START OF THE REFINEMENT OF THE EXTERNAL EDGES

edgedivide.f An external edge i with length d and h-value at its nodes of h1
and h2 is divided into n(i)+1 edges satisfying:

n(i) = min

{
int

[
d(

h1+h2

2

) − 1

]
, 1

}
, (876)

where int(x) is the integer smaller than or equal to the real number x. This
creates at most 2 edges out of 1.

newnodes.f This routine contains a loop over all edges. For each edge i which
is to be divided into two sub-edges the following actions are taken:

• determine the coordinates of the new node on the edge and store them in
a consecutively arranged field conewnodes(1..3,*) with the total number
of new nodes stored in the scalar nnewnodes. Let us assume that edge
i is the j-th edge to be subdivided, then the coordinates are stored in
conewnodes(1..3,j)

• determine a base element to which the edge belongs (an arbitrary element
of the shell of the edge) and store the number in ibasenewnodes(j)

• store the edge number on which the nodes lies (i.e. here i) in field
iedgnewnodes(*), i.e. iedgnewnodes(j)=i.

• determine the value of the h-field in the new node by interpolation within
the unrefined mesh and store it in hnewnodes(j)
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After leaving newnodes a random contribution is added to the coordinates
of each new node while moving them towards the center of gravity of their
base element (=perturbation of the nodal position from a surface position to a
subsurface position). This ensures that each new node lies within a tetrahedral
element and not on its faces or edges. This facilitates the insertion of the new
nodes in the existing mesh and is particularly important for the newly created
external surface nodes. Indeed, the insertion procedure explained in [25] works
only for nodes not lying on the external surface. The insertion of the new nodes
is done one by one after reordering them in an aleatoric way.

cavityext.f The insertion of each node is performed in cavityext in the fol-
lowing way:

• determine the cavity for the new node

– start from the base element

– add elements one by one through adjacency; only element whose
circumcircle enclose the new node are taken into account

– check for nodes within the cavity; if any, remove the element to which
they belong from the cavity

– restore the unperturbed coordinates of the new node

– connect the new node with each of the faces bordering the cavity and
check the quality of the ensueing element. If

∗ the volume is not extremely small AND

∗ at least one height (a tetrahedral element has 4 heights) which
is very small compared to the desired element size at the new
node’s position AND

∗ the face bordering the cavity is external,

then the cavity element bordering this face is removed, provided it is
not the base element.

– revert to the perturbed coordinates of the new node

– check that the cavity is convex in the sense that each cavity face
is visible from the new node, else the element bordering the face is
removed from the cavity

– restore the unperturbed coordinates

• remove the cavity elements

• create new elements connecting the new node with each of the cavity faces
provided the resulting volume is not extremely small. If it is, no element is
created and the sign of the face is inverted thus marking the zero volume
elements

• if any element has a very small volume or at least one very small height
the original mesh of the cavity is restored
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• since elements have been deleted and created the base element numbers
of the nodes still te be inserted may not be correct any more: perform a
check on these nodes and correct the base element numbers if necessary.

• label the newly generated faces and edges as external or not. Sub-edges of
the edge on which the new node was inserted inherit the label from field
iexternaledg

• for negative cavity faces:

– loop over all their edges and check whether they are still needed (i.e.
still belong to another face)

– remove the face

START OF THE REFINEMENT OF THE INTERNAL EDGES.

The procedure to refine the internal edges is similar to the one for the external
edges. Here too routines edgedivide.f and newnodes.f are called. The new nodes
are perturbed similarly as for the external edges and reordered in an aleatoric
way. Just the insertion of the nodes in cavity.f is more simple:

cavity.f It is done in the following way:

• determine the cavity for the new node

– start from the base element

– add elements one by one through adjacency; only element whose
circumcircle enclose the new node are taken into account

– check for nodes within the cavity; if any, remove the element to which
they belong from the cavity

– check that the cavity is convex in the sense that each cavity face
is visible from the new node, else the element bordering the face is
removed from the cavity

• remove the cavity elements

• create new elements connecting the new node with each of the cavity faces

• if any element has a very small volume or at least one very small height
the original mesh of the cavity is restored

• since elements have been deleted and created the base element numbers
of the nodes still te be inserted may not be correct any more: perform a
check on these nodes and correct the base element numbers if necessary.

END OF MAJOR LOOP.
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After inserting nodes in several loops the following final tasks are performed:

• project the external nodes on the external edges and/or faces. If an edge
i on which the node lies is part of an external edge of the unrefined mesh
(i.e. iexternedg(i)¿0) then a projection is performed on this external edge.
If not, the node is projected on an external face. To this end the faces
to which the node belongs are determined. For each of these faces j a
check is performed whether the face is external (i.e. iexternfa(j)¿0). If
so, a projection is performed on the correct external face of the unrefined
mesh. To this end a loop is performed starting with face iexternfa(j) using
the adjacency relationships stored in fields ifacexted and iedgeextfa, until
the correct face is found (i.e. the condition that the projection lies inside
the face). While applying the adjacency relations field isharp is used to
assure that sharp edges are not crossed.

• generate, if requested, middle nodes and project the external midnodes on
the external edges and/or faces. This is done in a similar way as for the
vertex nodes.
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11.14 List of variables and their meaning

Table 24: Variables in CalculiX.

variable meaning
FILE NAMES (132 characters long)
jobnamec(1) jobname
jobnamec(2) INPUT file on *VIEWFACTOR card
jobnamec(3) OUTPUT file on *VIEWFACTOR card
jobnamec(4) INPUT file on *SUBMODEL card (global model)
jobnamec(5) FILENAME on *SUBSTRUCTURE MATRIX OUTPUT

card (storage file for stiffness matrix)
jobnamec(6) FILE on *TEMPERATURE card
REARRANGEMENT OF THE ORDER IN THE INPUT DECK
ifreeinp next blank line in field inp
ipoinp(1,i) index of the first column in field inp containing information

on a block of lines in the input deck corresponding to fun-
damental key i; a fundamental key is a key for which the
order in the input file matters (the fundamental keys are
listed in file keystart.f)

ipoinp(2,i) index of the last column in field inp containing informa-
tion on a block of lines in the input deck corresponding to
fundamental key i;

inp a column i in field inp (i.e. inp(1..3,i)) corresponds to a
uninterrupted block of lines assigned to one and the same
fundamental key in the input deck. inp(1,i) is its first line
in the input deck, inp(2,i) its last line and inp(3,i) the next
column in inp corresponding to the same fundamental key;
it takes the value 0 if none other exists.

MATERIAL DESCRIPTION
nmat # materials
matname(i) name of material i
no *ELECTRO-
MAGNETICS
calculation
nelcon(1,i) # (hyper)elastic constants for material i (negative kode for

nonlinear elastic constants)
nelcon(2,i) # temperature data points for the elastic constants of ma-

terial i
elcon(0,j,i) temperature at (hyper)elastic temperature point j of mate-

rial i
elcon(k,j,i) (hyper)elastic constant k at elastic temperature point j of

material i
*ELECTROMAGNETICS
calculation
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variable meaning
nelcon(1,i) # magnetic permeability constants for material i (always

two)
nelcon(2,i) # temperature data points for the magnetic permeability

constants of material i
elcon(0,j,i) temperature at magnetic permeability temperature point j

of material i
elcon(1,j,i) magnetic permeability at magnetic permeability tempera-

ture point j of material i
elcon(2,j,i) domain of material i
general
nrhcon(i) # temperature data points for the density of material i
rhcon(0,j,i) temperature at density temperature point j of material i
rhcon(1,j,i) density at the density temperature point j of material i
nshcon(i) # temperature data points for the specific heat of material

i
shcon(0,j,i) temperature at temperature point j of material i
shcon(1,j,i) specific heat at constant pressure at the temperature point

j of material i
shcon(2,j,i) dynamic viscosity at the temperature point j of material i
shcon(3,1,i) specific gas constant of material i
no *ELECTRO-
MAGNETICS
calculation
nalcon(1,i) # of expansion constants for material i
nalcon(2,i) # of temperature data points for the expansion coefficients

of material i
alcon(0,j,i) temperature at expansion temperature point j of material i
alcon(k,j,i) expansion coefficient k at expansion temperature point j of

material i
*ELECTROMAGNETICS
calculation
nalcon(1,i) # of electrical conductivity constants for material i (always

1)
nalcon(2,i) # of temperature data points for the electrical conductivity

constants of material i
alcon(0,j,i) temperature at electrical conductivity temperature point j

of material i
alcon(1,j,i) electrical conductivity coefficient at electrical conductivity

temperature point j of material i
general
ncocon(1,i) # of conductivity constants for material i
ncocon(2,i) # of temperature data points for the conductivity coeffi-

cients of material i
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variable meaning
cocon(0,j,i) temperature at conductivity temperature point j of material

i
cocon(k,j,i) conductivity coefficient k at conductivity temperature point

j of material i
orname(i) name of orientation i
orab(1..6,i) coordinates of points a and b defining the new orientation
orab(7,i) -1: cylindrical local system

1: rectangular local system
norien # orientations
isotropic harden-
ing
nplicon(0,i) # temperature data points for the isotropic hardening curve

of material i
nplicon(j,i) # of stress - plastic strain data points at temperature j for

material i
plicon(0,j,i) temperature data point j of material i
plicon(2*k-1,j,i) stress corresponding to stress-plastic strain data point k at

temperature data point j of material i
plicon(2*k-1,j,i) for springs: force corresponding to force-displacement data

point k at temperature data point j of material i
plicon(2*k-1,j,i) for penalty contact: pressure corresponding to pressure-

overclosure data point k at temperature data point j of
material i

plicon(2*k,j,i) plastic strain corresponding to stress-plastic strain data
point k at temperature data point j of material i
for springs: displacement corresponding to force-
displacement data point k at temperature data point j of
material i
for penalty contact: overclosure corresponding to pressure-
overclosure data point k at temperature data point j of
material i

kinematic hard-
ening
nplkcon(0,i) # temperature data points for the kinematic hardening

curve of material i
nplkcon(j,i) # of stress - plastic strain data points at temperature j for

material i
plkcon(0,j,i) temperature data point j of material i
plkcon(2*k-1,j,i) stress corresponding to stress-plastic strain data point k at

temperature data point j of material i
for penalty contact: conductance corresponding to
conductance-pressure data point k at temperature data
point j of material i
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plkcon(2*k,j,i) plastic strain corresponding to stress-plastic strain data

point k at temperature data point j of material i
for penalty contact: pressure corresponding to
conductance-pressure data point k at temperature
data point j of material i

kode=-1 Arrudy-Boyce
-2 Mooney-Rivlin
-3 Neo-Hooke
-4 Ogden (N=1)
-5 Ogden (N=2)
-6 Ogden (N=3)
-7 Polynomial (N=1)
-8 Polynomial (N=2)
-9 Polynomial (N=3)
-10 Reduced Polynomial (N=1)
-11 Reduced Polynomial (N=2)
-12 Reduced Polynomial (N=3)
-13 Van der Waals (not implemented yet)
-14 Yeoh
-15 Hyperfoam (N=1)
-16 Hyperfoam (N=2)
-17 Hyperfoam (N=3)
-50 deformation plasticity
-51 incremental plasticity (no viscosity)
-52 viscoplasticity
< -100 user material routine with -kode-100 user defined constants

with keyword *USER MATERIAL
PROCEDURE DESCRIPTION
iperturb(1) = -1 : linear iteration in a nonlinear calculation

= 0 : linear
= 1 : second order theory for frequency/buckling/Green
calculations following a static step (PERTURBATION se-
lected)
≥ 2 : Newton-Raphson iterative procedure is active
= 3 : nonlinear material (linear or nonlinear geometric
and/or heat transfer)

iperturb(2) 0 : linear geometric (NLGEOM not selected)
1 : nonlinear geometric (NLGEOM selected)

nmethod 1 : static (linear or nonlinear)
2 : frequency(linear)
3 : buckling (linear)
4 : dynamic (linear or nonlinear)
5 : steady state dynamics
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6 : Coriolis frequency calculation
7 : flutter frequency calculation
8 : magnetostatics
9 : magnetodynamics (inductive heating)
10 : electromagnetic eigenvalue problems
11 : superelement creation
12 : sensitivity analysis

irstrt(1) 0: no restart calculation
-1: RESTART,READ active; overwritten by write fre-
quency while reading the restart file
n>0: write frequency; either read from a restart
file with RESTART,READ or specified explicitly on a
RESTART,WRITE card.

irstrt(2) 0: no OVERLAY while writing a restart file
1: OVERLAY while writing a restart file

iout governs the output and the calculation of the solution in
results.c
-2: v is assumed to be known and is used to calculate
strains, stresses..., no result output; corresponds to iout=-
1 with in addition the calculation of the internal energy
density
-1: v is assumed to be known and is used to calculate
strains, stresses..., no result output; is used to take changes
in SPC’s and MPC’s at the start of a new increment or
iteration into account
0: v is calculated from the system solution and strains,
stresses.. are calculated, no result output
1: v is calculated from the system solution and
strains,stresses.. are calculated, requested results output
2: v is assumed to be known and is used to calculate strains,
stresses..., requested results output

GEOMETRY DESCRIPTION
nk highest node number
co(i,j) coordinate i of node j
inotr(1,j) transformation number applicable in node j
inotr(2,j) a SPC in a node j in which a transformation applies corre-

sponds to a MPC. inotr(2,j) contains the number of a new
node generated for the inhomogeneous part of the MPC

TOPOLOGY DESCRIPTION
ne highest element number
mi(1) max # of integration points per element (max over all ele-

ments)
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variable meaning
mi(2) max degree of freedom per node (max over all nodes) in

fields like v(0:mi(2))...
if 0: only temperature DOF
if 3: temperature + displacements
if 4: temperature + displacements/velocities + pressure

kon(i) field containing the connectivity lists of the elements in suc-
cessive order
for 1d and 2d elements (no composites) the 3d-expansion
is stored first, followed by the topology of the original 1d
or 2d element, for a shell composite this is followed by the
topology of the expansion of each layer

For element i
ipkon(i) (location in kon of the first node in the element connectiv-

ity list of element i)-1; for expanded elements the expanded
connectivity comes first followed by the original 1d/2d con-
nectivity

lakon(i) element label
C3D4: linear tetrahedral element (F3D4 for 3D-fluids)
C3D6: linear wedge element (F3D6 for 3D-fluids)
C3D6 E: expanded plane strain 3-node element = CPE3
C3D6 S: expanded plane stress 3-node element = CPS3
C3D6 A: expanded axisymmetric 3-node element = CAX3
C3D6 L: expanded 3-node shell element = S3
C3D8: linear hexahedral element (F3D8 for 3D-fluids)
C3D8I: linear hexahedral element with incompatible modes
C3D8 E: expanded plane strain 4-node element = CPE4
C3D8 S: expanded plane stress 4-node element = CPS4
C3D8 A: expanded axisymmetric 4-node element = CAX4
C3D8I L: expanded 4-node shell element = S4
C3D8I B: expanded 2-node beam element = B31
C3D8R: linear hexahedral element with reduced integration
C3D8R E: expanded plane strain 4-node element with re-
duced integration = CPE4R
C3D8R S: expanded plane stress 4-node element with re-
duced integration = CPS4R
C3D8R A: expanded axisymmetric 4-node element with re-
duced integration = CAX4R
C3D8R L: expanded 4-node shell element with reduced in-
tegration = S4R
C3D8R B: expanded 2-node beam element with reduced
integration = B31R
C3D10: quadratic tetrahedral element
C3D15: quadratic wedge element
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C3D15 E: expanded plane strain 6-node element = CPE6
C3D15 S: expanded plane stress 6-node element = CPS6
C3D15 A: expanded axisymmetric 6-node element = CAX6
C3D15 L: expanded 6-node shell element = S6
C3D15 LC: expanded composite 6-node shell element = S6
C3D20: quadratic hexahedral element
C3D20 E: expanded plane strain 8-node element = CPE8
C3D20 S: expanded plane stress 8-node element = CPS8
C3D20 A: expanded axisymmetric 8-node element = CAX8
C3D20 L: expanded 8-node shell element = S8
C3D20 B: expanded 3-node beam element = B32
C3D20R: quadratic hexahedral element with reduced inte-
gration
C3D20RE: expanded plane strain 8-node element with re-
duced integration = CPE8R
C3D20RS: expanded plane stress 8-node element with re-
duced integration = CPS8R
C3D20RA: expanded axisymmetric 8-node element with re-
duced integration = CAX8R
C3D20RL: expanded 8-node shell element with reduced in-
tegration = S8R
C3D20RLC: expanded composite 8-node shell element with
reduced integration = S8R
C3D20RB: expanded 3-node beam element with reduced
integration = B32R
GAPUNI: 2-node gap element
ESPRNGA1 : 2-node spring element
EDSHPTA1 : 2-node dashpot element
ESPRNGC3 : 4-node contact spring element
ESPRNGC4 : 5-node contact spring element
ESPRNGC6 : 7-node contact spring element
ESPRNGC8 : 9-node contact spring element
ESPRNGC9 : 10-node contact spring element
ESPRNGF3 : 4-node advection spring element
ESPRNGF4 : 5-node advection spring element
ESPRNGF6 : 7-node advection spring element
ESPRNGF8 : 9-node advection spring element
network elements (D-type):]
DATR : absolute to relative
DCARBS : carbon seal
DCARBSGE : carbon seal GE (proprietary)
DCHAR : characteristic
DGAPFA : gas pipe Fanno adiabatic
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DGAPFAA : gas pipe Fanno adiabatic Albers (proprietary)
DGAPFAF : gas pipe Fanno adiabatic Friedel (proprietary)
DGAPFI : gas pipe Fanno isothermal
DGAPFIA : gas pipe Fanno isothermal Albers (propri-
etary)
DGAPFIF : gas pipe Fanno isothermal Friedel (propri-
etary)
DLABD : labyrinth dummy (proprietary)
DLABFSN : labyrinth flexible single
DLABFSP : labyrinth flexible stepped
DLABFSR : labyrinth flexible straight
DLABSN : labyrinth single
DLABSP : labyrinth stepped
DLABSR : labyrinth straight
DLDOP : oil pump (proprietary)
DLICH : channel straight
DLICHCO : channel contraction
DLICHDO : channel discontinuous opening
DLICHDR : channel drop
DLICHDS : channel discontinuous slope
DLICHEL : channel enlargement
DLICHRE : channel reservoir
DLICHSG : channel sluice gate
DLICHSO : channel sluice opening
DLICHST : channel step
DLICHWE : channel weir crest
DLICHWO : channel weir slope
DLIPIBE : (liquid) pipe bend
DLIPIBR : (liquid) pipe branch (not available yet)
DLIPICO : (liquid) pipe contraction
DLIPIDI : (liquid) pipe diaphragm
DLIPIEL : (liquid) pipe enlargement
DLIPIEN : (liquid) pipe entrance
DLIPIGV : (liquid) pipe gate valve
DLIPIMA : (liquid) pipe Manning
DLIPIMAF : (liquid) pipe Manning flexible
DLIPIWC : (liquid) pipe White-Colebrook
DLIPIWCF : (liquid) pipe White-Colebrook flexible
DLIPU : liquid pump
DLPBEIDC : (liquid) restrictor bend Idelchik circular
DLPBEIDR : (liquid) restrictor bend Idelchik rectangular
DLPBEMA : (liquid) restrictor own (proprietary)
DLPBEMI : (liquid) restrictor bend Miller
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DLPBRJG : (liquid) (liquid) branch joint GE
DLPBRJI1 : (liquid) branch joint Idelchik1
DLPBRJI2 : (liquid) (liquid) branch joint Idelchik2
DLPBRSG : (liquid) (liquid) branch split GE
DLPBRSI1 : (liquid) branch split Idelchik1
DLPBRSI2 : (liquid) branch split Idelchik2
DLPC1 : (liquid) orifice Cd=1
DLPCO : (liquid) restrictor contraction
DLPEL : (liquid) restrictor enlargement
DLPEN : (liquid) restrictor entry
DLPEX : (liquid) restrictor exit
DLPLOID : (liquid) restrictor long orifice Idelchik
DLPLOLI : (liquid) restrictor long orifice Lichtarowicz
DLPUS : (liquid) restrictor user
DLPVF : (liquid) vortex free
DLPVS : (liquid) vortex forced
DLPWAOR : (liquid) restrictor wall orifice
DMRGF : Moehring centrifugal
DMRGP : Moehring centripetal
DORBG : orifice Bragg (proprietary)
DORBT : bleed tapping
DORC1 : orifice Cd=1
DORMA : orifice proprietary, rotational correction Albers
(proprietary)
DORMM : orifice McGreehan Schotsch, rotational correc-
tion McGreehan and Schotsch
DORPA : orifice Parker and Kercher, rotational correction
Albers (proprietary)
DORPM : orifice Parker and Kercher, rotational correction
McGreehan and Schotsch
DORPN : preswirl nozzle
DREBEIDC : restrictor bend Idelchik circular
DREBEIDR : restrictor bend Idelchik rectangular
DREBEMA : restrictor own (proprietary)
DREBEMI : restrictor bend Miller
DREBRJG : branch joint GE
DREBRJI1 : branch joint Idelchik1
DREBRJI2 : branch joint Idelchik2
DREBRSG : branch split GE
DREBRSI1 : branch split Idelchik1
DREBRSI2 : branch split Idelchik2
DRECO : restrictor contraction
DREEL : restrictor enlargement
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DREEN : restrictor entrance
DREEX : restrictor exit
DRELOID : restrictor long orifice Idelchik
DRELOLI : restrictor long orifice Lichtarowicz
DREUS : restrictor user
DREWAOR : restrictor wall orifice
DRIMS : rim seal (proprietary)
DRTA : relative to absolute
DSPUMP : scavenge pump (proprietary)
DVOFO : vortex forced
DVOFR : vortex free
Uxxxxyzz : user element with type number xxxx, maximum
degree of freedom in any node y and number of nodes zz

ielorien(j,i) orientation number of layer j
ielmat(j,i) material number of layer j
ielprop(i) pointer to the position in field prop af-

ter which the properties for element i start
(prop(ielprop(i)+1),prop(ielprop(i)+2)...); for networks
and general beam sections

nuel number of different user element types
For user element
i
iuel(1,i) type number of the user element
iuel(2,i) number of itegration points
iuel(3,i) max degree of freedom in any of the nodes
iuel 4,i) number of nodes belonging to the element
SETS AND SURFACES
nset number of sets (including surfaces)
ialset(i) member of a set or surface: this is a

- node for a node set or nodal surface
- element for an element set
- number made up of 10*(element number)+facial number
for an element face surface
if ialset(i)=-1 it means that all nodes or elements (depend-
ing on the kind of set) in between ialset(i-2) and ialset(i-1)
are also member of the set

For set i
set(i) name of the set; this is the user defined name

+ N for node sets
+ E for element sets
+ S for nodal surfaces
+ T for element face surfaces

istartset(i) pointer into ialset containing the first set member
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iendset(i) pointer into ialset containing the last set member
TIE CONSTRAINTS
ntie number of tie constraints
For tie constraint
i
tieset(1,i) name of the tie constraint;

for contact constraints (which do not have a name) the
adjust nodal set name is stored, if any, and a C is appended
at the end (C is replaced by - for deactivated contact pairs)
for multistage constraints a M is appended at the end
for a contact tie a T is appended at the end
for submodels (which do not have a name) a fictitious name
SUBMODELi is used, where i is a three-digit consecutive
number and a S is appended at the end
for sensitivity sets a D is appended at the end (for design
variables)

tieset(2,i) dependent surface name + S
tieset(3,i) independent surface name

+ S for nodal surfaces
+ T for element face surfaces

tietol(1,i) tie tolerance; used for cyclic symmetry ties
special meaning for contact pairs:
> 0 for large sliding
< 0 for small sliding
if |tietol| ≥ 2, adjust value = |tietol|-2

tietol(2,i) for contact pairs: number of the relevant interaction defi-
nition (is treated as a material)
for ties: -1 means ADJUST=NO, +1 means AD-
JUST=YES (default)

tietol(3,i) only for contact pairs: the clearance defined in a *CLEAR-
ANCE card

CONTACT
ncont total number of triangles in the triangulation of all inde-

pendent surfaces
ncone total number of slave nodes in the contact formulation
For triangle i
koncont(1..3,i) nodes belonging to the triangle
koncont(4,i) element face to which the triangle belongs: 10*(element

number) + face number
cg(1..3,i) global coordinates of the center of gravity
straight(1..4,i) coefficients of the equation of the plane perpendicular to

the triangle and containing its first edge (going through
the first and second node of koncont)
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straight(5..8,i) idem for the second edge
straight(9..12,i) idem for the third edge
straight(13..16,i) coefficients of the equation of the plane containing the tri-

angle
For contact tie
constraint i
itietri(1,i) first triangle in field koncont of the master surface corre-

sponding to contact tie constraint i
itietri(2,i) last triangle in field koncont of the master surface corre-

sponding to contact tie constraint i
SHELL (2D) AND BEAM (1D) VARIABLES (INCLUDING PLANE STRAIN,
PLANE STRESS AND AXISYMMETRIC ELEMENTS)
iponor(2,i) two pointers for entry i of kon. The first pointer points

to the location in xnor preceding the normals of en-
try i, the second points to the location in knor pre-
ceding the newly generated dependent nodes of entry i.
The entry i relates to the unexpanded version of the
element and, for element j, assumed to be stored at
kon(ipkon(j)+1)...kon(ipkon(j)+m), where m is the num-
ber of 2d nodes belonging to the element

xnor(i) field containing the normals in nodes on the elements they
belong to

knor(i) field containing the extra nodes needed to expand the shell
and beam elements to volume elements

thickn(2,i) thicknesses (one for shells, two for beams) in node i
thicke(j,i) thicknesses (one (j=1) for non-composite shells, two (j=1,2)

for beams and n (j=1..n) for composite shells consisting of
n layers) in element nodes. The entries correspond to the
nodal entries in field kon

offset(2,i) offsets (one for shells, two for beams) in element i
iponoel(i) pointer for node i into field inoel, which stores the 1D and

2D elements belonging to the node.
inoel(3,i) field containing an element number, a local node number

within this element and a pointer to another entry (or zero
if there is no other).

inoelfree next free field in inoel
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rig(i) integer field indicating whether node i is a rigid node

(nonzero value) or not (zero value). In a rigid node or knot
all expansion nodes except the ones not in the midface of
plane stress, plane strain and axisymmetric elements are
connected with a rigid body MPC. If node i is a rigid node
rig(i) is the number of the rotational node of the knot; if the
node belongs to axisymmetric, plane stress and plane strain
elements only, no rotational node is linked to the knot and
rig(i)=-1

AMPLITUDES
nam # amplitude definitions
amta(1,j) time of (time,amplitude) pair j
amta(2,j) amplitude of (time,amplitude) pair j
namtot total # of (time,amplitude) pairs
For amplitude i
amname(i) name of the amplitude
namta(1,i) location of first (time,amplitude) pair in field amta
namta(2,i) location of last (time,amplitude) pair in field amta
namta(3,i) in absolute value the amplitude it refers to; if

abs(namta(3,i))=i it refers to itself. If abs(namta(3,i))=j,
amplitude i is a time delay of amplitude j the value of
which is stored in amta(1,namta(1,i)); in the latter case
amta(2,namta(1,i)) is without meaning; If namta(3,i)>0
the time in amta for amplitude i is step time, else it is
total time.

TRANSFORMS
ntrans # transform definitions
trab(1..6,i) coordinates of two points defining the transform
trab(7,i) =-1 for cylindrical transformations

=1 for rectangular transformations
SINGLE POINT CONSTRAINTS
nboun # SPC’s
For SPC i
nodeboun(i) SPC node
ndirboun(i) SPC direction
typeboun(i) SPC type (SPCs can contain the nonhomogeneous part of

MPCs)
A=acceleration
B=prescribed boundary condition
M=midplane
R=rigidbody
U=usermpc
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xboun(i) magnitude of constraint at end of a step
xbounold(i) magnitude of constraint at beginning of a step
xbounact(i) magnitude of constraint at the end of the present increment
xbounini(i) magnitude of constraint at the start of the present incre-

ment
iamboun(i) amplitude number

for submodels the step number is inserted
ikboun(i) ordered array of the DOFs corresponding to the SPC’s

(DOF=8*(nodeboun(i)-1)+ndirboun(i))
ilboun(i) original SPC number for ikboun(i)
MULTIPLE POINT CONSTRAINTS
labmpc(i) label of MPC i
j=ipompc(i) starting location in nodempc and coefmpc of MPC i
nodempc(1,j) node of first term of MPC i
nodempc(2,j) direction of first term of MPC i
k=nodempc(3,j) next entry in field nodempc for MPC i (if zero: no more

terms in MPC)
coefmpc(j) first coefficient belonging to MPC i
nodempc(1,k) node of second term of MPC i
nodempc(2,k) direction of second term of MPC i
coefmpc(k) coefficient of second term of MPC i
ikmpc (i) ordered array of the dependent DOFs correspond-

ing to the MPC’s DOF=8*(nodempc(1,ipompc(i))-
1)+nodempc(2,ipompc(i))

ilmpc (i) original MPC number for ikmpc(i)
memmpc upper value of sum of number of terms in all MPC’s
mpcend last occupied entry in nodempc and coefmpc
maxlenmpc maximum number of terms in any MPC
icascade 0 : MPC’s did not change since the last iteration

1 : MPC’s changed since last iteration : dependency check
in cascade.c necessary
2 : at least one nonlinear MPC had DOFs in common with
a linear MPC or another nonlinear MPC. dependency check
is necessary in each iteration

POINT LOADS
nforc # of point loads
For point load i
nodeforc(1,i) node in which force is applied
nodeforc(2,i) sector number, if force is real; sector number + # sectors

if force is imaginary (only for modal dynamics and steady
state dynamics analyses with cyclic symmetry)

ndirforc(i) direction of force
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xforc(i) magnitude of force at end of a step
xforcold(i) magnitude of force at start of a step
xforcact(i) actual magnitude
iamforc(i) amplitude number
idefforc(i) 0: no force was defined for this node and direction on the

same sector before within the actual step
1: at least one force was defined for this node and direction
on the same sector before within the actual step

ikforc(i) ordered array of the DOFs corresponding to the point loads
(DOF=8*(nodeboun(i)-1)+ndirboun(i))

ilforc(i) original SPC number for ikforc(i)
FACIAL DISTRIBUTED LOADS
nload # of facial distributed loads
For distributed
load i
nelemload(1,i) element to which distributed load is applied
nelemload(2,i) node for the environment temperature (only for heat trans-

fer analyses); sector number, if load is real; sector number
+ # sectors if load is imaginary (only for modal dynamics
and steady state dynamics analyses with cyclic symmetry)

sideload(i) load label; indicated element side to which load is applied
xload(1,i) magnitude of load at end of a step or, for heat transfer

analyses, the convection (*FILM) or the radiation coeffi-
cient (*RADIATE)

xload(2,i) the environment temperature (only for heat transfer anal-
yses

xloadold(1..2,i) magnitude of load at start of a step
xloadact(1..2,i) actual magnitude of load
iamload(1,i) amplitude number for xload(1,i)

for submodels the step number is inserted
iamload(2,i) amplitude number for xload(2,i)
idefload(i) 0: no load was defined on the same element with the same

label and on the same sector before within the actual step
1: at least one load was defined on the same element with
the same label and on the same sector before within the
actual step

MASS FLOW RATE
nflow # of network elements
TEMPERATURE LOADS
t0(i) initial temperature in node i at the start of the calculation
t1(i) temperature at the end of a step in node i
t1old(i) temperature at the start of a step in node i
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Table 24: (continued)

variable meaning
t1act(i) actual temperature in node i
iamt1(i) amplitude number
MECHANICAL BODY LOADS
nbody # of mechanical body loads
For body load i
ibody(1,i) code identifying the kind of body load

1: centrifugal loading
2: gravity loading with known gravity vector
3: generalized gravity loading
4: Coriolis (for steady state dynamics)

ibody(2,i) amplitude number for load i
ibody(3,i) load case number for load i
cbody(i) element number or element set to which load i applies
xbody(1,i) size of the body load
xbody(2..4,i) for centrifugal loading: point on the axis

for gravity loading with known gravity vector: normalized
gravity vector

xbody(5..7,i) for centrifugal loading: normalized vector on the rotation
axis

xbodyact(1,i) actual magnitude of load
xbodyact(2..7,i) identical to the corresponding entries in xbody
idefbody(i) 0: no body load was defined on the same set with the same

code and the same load case number before within the ac-
tual step
1: at least one body load was defined on the same set with
the same code and the same load case number before within
the actual step

For element i
ipobody(1,i) body load applied to element i, if any, else 0
ipobody(2,i) index referring to the line in field ipobody containing

the next body load applied to element i, i.e. ipo-
body(1,ipobody(2,i)), else 0

STRESS, STRAIN AND ENERGY FIELDS
eei(i,j,k) in general : Lagrange strain component i in integration

point j of element k (linear strain in linear elastic calcula-
tions)
for elements with DEFORMATION PLASTICITY prop-
erty: Eulerian strain component i in integration point j of
element k (linear strain in linear elastic calculations)

eeiini(i,j,k) Lagrange strain component i in integration point of element
k at the start of an increment

een(i,j) Lagrange strain component i in node j (mean over all adja-
cent elements linear strain in linear elastic calculations)
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Table 24: (continued)

variable meaning
stx(i,j,k) Cauchy or PK2 stress component i in integration point j of

element k at the end of an iteration (linear stress in linear
elastic calculations).
For spring elements stx(1..3,1,k) contains the relative dis-
placements for element k and stx(4..6,1,k) the contact
stresses

sti(i,j,k) PK2 stress component i in integration point j of element
k at the start of an iteration (linear stress in linear elastic
calculations)

stiini(i,j,k) PK2 stress component i in integration point j of element k
at the start of an increment

stn(i,j) Cauchy stress component i in node j (mean over all adjacent
elements; ”linear” stress in linear elastic calculations)

ener(j,k) strain energy in integration point j of element k;
ener(j,ne+k) kinetic energy in integration point j of element k; if k is a

contact spring element: friction energy (j=1)
enerini(j,k) strain energy in integration point of element k at the start

of an increment
enern(j) strain energy in node j (mean over all adjacent elements
THERMAL ANALYSIS
ithermal(1) 0 : no temperatures involved in the calculation
(in this manual also 1 : stress analysis with given temperature field
called ithermal) 2 : thermal analysis (no displacements)

3 : coupled thermal-mechanical analysis : temperatures
and displacements are solved for simultaneously
4 : uncoupled thermal-mechanical analysis : in a new in-
crement temperatures are solved first, followed by the dis-
placements

ithermal(2) used to determine boundary conditions for plane stress,
plane strain and axisymmetric elements
0 : no temperatures involved in the calculation
1 : no heat transfer nor coupled steps in the input deck
2 : no mechanical nor coupled steps in the input deck
3 : at least one mechanical and one thermal step or at least
one coupled step in the input deck

v(0,j) temperature of node j at the end of an iteration (for ither-
mal > 1)

vold(0,j) temperature of node j at the start of an iteration (for ither-
mal > 1)

vini(0,j) temperature of node j at the start of an increment (for
ithermal > 1)

fn(0,j) actual temperature at node j (for ithermal > 1)
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Table 24: (continued)

variable meaning
qfx(i,j,k) heat flux component i in integration point j of element k at

the end of an iteration
qfn(i,j) heat flux component i in node j (mean over all adjacent

elements)
DISPLACEMENTS AND SPATIAL/TIME DERIVATIVES
v(i,j) displacement of node j in direction i at the end of an itera-

tion
vold(i,j) displacement of node j in direction i at the start of an iter-

ation
vini(i,j) displacement of node j in direction i at the start of an in-

crement
ve(i,j) velocity of node j in direction i at the end of an iteration
veold(i,j) velocity of node j in direction i at the start of an iteration
veini(i,j) velocity of node j in direction i at the start of an increment
accold(i,j) acceleration of node j in direction i at the start of an iter-

ation
accini(i,j) acceleration of node j in direction i at the start of an incre-

ment
vkl(i,j) (i,j) component of the displacement gradient tensor at the

end of an iteration
xkl(i,j) (i,j) component of the deformation gradient tensor at the

end of an iteration
xikl(i,j) (i,j) component of the deformation gradient tensor at the

start of an increment
ckl(i,j) (i,j) component of the inverse of the deformation gradient

tensor
LINEAR EQUATION SYSTEM
nasym 0: symmetrical system

1: asymmetrical system
ad(i) element i on diagonal of stiffness matrix
au(i) element i in lower triangle of stiffness matrix
irow(i) row of element i in field au (i.e. au(i))
icol(i) number of subdiagonal nonzero’s in column i (only for sym-

metric matrices)
jq(i) location in field irow of the first subdiagonal nonzero in

column i (only for symmetric matrices)
adb(i) element i on diagonal of mass matrix, or, for buckling, of

the incremental stiffness matrix (only nonzero elements are
stored)

aub(i) element i in upper triangle of mass matrix, or, for buckling,
of the incremental stiffness matrix (only nonzero elements
are stored)
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variable meaning
neq[0] # of mechanical equations
neq[1] sum of mechanical and thermal equations
neq[2] neq[1] + # of single point constraints (only for modal cal-

culations)
nzl number of the column such that all columns with a higher

column number do not contain any (projected) nonzero off-
diagonal terms (≤ neq[1])

nzs[0] sum of projected nonzero mechanical off-diagonal terms
nzs[1] nzs[0]+sum of projected nonzero thermal off-diagonal terms
nzs[2] nzs[1] + sum of nonzero coefficients of SPC degrees of free-

dom (only for modal calculations)
nactdof(i,j) ¿0: actual degree of freedom (in the system of equations)

of DOF i of node j
¡0 and even: -nactdof(i,j)/2 is the SPC number applied to
this degree of freedom
¡0 and odd: (-nactdof(i,j)+1)/2 is the MPC number for
which this degree of freedom constitutes the dependent
term

inputformat =0: matrix is symmetric; lower triangular matrix is stored
in fields ad (diagonal), au (subdiagonal elements), irow, icol
and jq.
=1: matrix is not symmetric. Diagonal and subdiagonal
entries are stored as for inputformat=0; The superdiagonal
entries are stored at the end of au in exactly the same order
as the symmetric subdiagonal counterpart

INTERNAL AND EXTERNAL FORCES
fext(i) external mechanical forces in DOF i (due to point loads and

distributed loads, including centrifugal and gravity loads,
but excluding temperature loading and displacement load-
ing)

fextini(i) external mechanical forces in DOF i (due to point loads and
distributed loads, including centrifugal and gravity loads,
but excluding temperature loading and displacement load-
ing) at the end of the last increment

finc(i) external mechanical forces in DOF i augmented by con-
tributions due to temperature loading and prescribed dis-
placements; used in linear calculations only

f(i) actual internal forces in DOF i due to :
actual displacements in the independent nodes;
prescribed displacements at the end of the increment in the
dependent nodes;
temperatures at the end of the increment in all nodes

fini(i) internal forces in DOF i at the end of the last increment
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Table 24: (continued)

variable meaning
b(i) right hand side of the equation system : difference between

fext and f in nonlinear calcultions; for linear calculations,
b=finc.

fn(i,j) actual force at node j in direction i
INCREMENT PARAMETERS
tinc user given increment size (can be modified by the program

if the parameter DIRECT is not activated)
tper user given step size
dtheta normalized (by tper) increment size
theta normalized (by tper) size of all previous increments (not

including the present increment)
reltime theta+dtheta
dtime real time increment size
time real time size of all previous increments INCLUDING the

present increment
ttime real time size of all previous steps
DIRECT INTEGRATION DYNAMICS
alpha[0] parameter in the alpha-method of Hilber, Hughes and Tay-

lor
alpha[1] if > 1: a transformation from a local rotating system to

the global fixed system should be applied before starting
the calculation
else: no such transformation should be applied

bet,gam parameters in the alpha-method of Hilber, Hughes and Tay-
lor

iexpl =0 : implicit dynamics
=1 : explicit dynamics

mscalmethod < 0: no explicit dynamics
0: explicit dyn., no mass nor contact spring scaling
1: explicit dyn., mass scaling, no contact spring scaling
2: explicit dyn., no mass scaling, contact spring scaling
3: explicit dyn., mass scaling and contact spring scaling

smscale(i) scaling coefficient for element i
if i <= ne0: mass scaling coefficient
if i > ne0: contact spring scaling coefficient

FREQUENCY CALCULATIONS
mei[0] number of requested eigenvalues
mei[1] number of Lanczos vectors
mei[2] maximum number of iterations
mei[3] if 1: store eigenfrequencies, eigenmodes, mass matrix and

possibly stiffness matrix in .eig file, else 0
fei[0] tolerance (accuracy)
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variable meaning
fei[1] lower value of requested frequency range
fei[2] upper value of requested frequency range
CYCLIC SYMMETRY CALCULATIONS
mcs number of cyclic symmetry parts
ics one-dimensional field; contains all independent nodes, one

part after the other, and sorted within each part
rcs one-dimensional field; contains the corresponding radial co-

ordinates
zcs one-dimensional field; contains the corresponding axial co-

ordinates
For cyclic sym-
metry part i
cs(1,i) number of segments in 360◦

cs(2,i) minimum nodal diameter
cs(3,i) maximum nodal diameter
cs(4,i) number of nodes on the independent side
cs(5,i) number of sections to be plotted
cs(6..12,i) coordinates of two points on the cyclic symmetry axis
cs(13,i) number of the element set (for plotting purposes)
cs(14,i) total number of independent nodes in all previously defined

cyclic symmetry parts
cs(15,i) cos(angle) where angle = 2*π/cs(1,mcs)
cs(16,i) sin(angle) where angle = 2*π/cs(1,mcs)
cs(17,i) number of tie constraint
MODAL DYNAMICS AND STEADY STATE DYNAMICS CALCULATIONS

For Rayleigh damping (modal and steady state dy-
namics)

xmodal(1) αm (first Rayleigh coefficient)
xmodal(2) βm (second Rayleigh coefficient)

For steady state dynamics
xmodal(3) lower frequency bound fmin
xmodal(4) upper frequency bound fmax
xmodal(5) number of data points ndata + 0.5
xmodal(6) bias
xmodal(7) if harmonic: -0.5; if not harmonic: number of Fourier coef-

ficients + 0.5
xmodal(8) lower time bound tmin for one period (nonharmonic load-

ing)
xmodal(9) upper time bound tmax for one period (nonharmonic load-

ing)
For damping (modal and steady state dynamics)

xmodal(10) internal number of node set for which results are to be
calculated
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Table 24: (continued)

variable meaning
xmodal(11) for Rayleigh damping: -0.5

for direct damping: largest mode for which ζ is defined +0.5
For direct damping

xmodal(12.. values of the ζ coefficients
imddof(*) dofs which are retained (requested output, applied loads..)
nmddof number of dofs in imddof
imdnode(*) nodes which are retained (requested output, contact

nodes..)
nmdnode number of nodes in imdnode
imdboun(*) boundary conditions needed at retained nodes
nmdboun size of field imdboun
imdmpc(*) MPCs needed at retained nodes
nmdmpc size of field imdmpc
imdelem(*) elements which are retained (calculation of stresses at the

integration points....)
nmdelem size of field imdelem
iznode(*) nodes in imdnode + nodes with loading (user and non-

user); only the results in the nodes in iznode are mapped
onto the other sectors

nznode size of field iznode
izdof(*) retained dofs: dofs in imddof + dofs in nodes with non-user

cloads and dloads; only those dofs are stored in field z
nzdof size of field izdof
OUTPUT IN .DAT FILE
prset(i) node or element set corresponding to output request i
prlab(i) label corresponding to output request i. It contains 6

characters. The first 4 are reserved for the field name,
e.g. ’U ’ for displacements, the fifth for the value of the
TOTALS parameter (’T’ for TOTALS=YES, ’O’ for TO-
TALS=ONLY and ’ ’ else) and the sixth for the value of
the GLOBAL parameter (’G’ for GLOBAL=YES and ’L’
for GLOBAL=NO).

nprint number of print requests
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Table 24: (continued)

variable meaning
OUTPUT IN .FRD FILE
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Table 24: (continued)

variable meaning
filab(i) label corresponding to output field i. It contains 6

characters for the kind of output and 81 characters
for the node set for which the output is requested,
if any. The first 4 are reserved for the field name.
The order is fixed: filab(1)=’U ’, filab(2)=’NT ’,fi-
lab(3)=’S ’,filab(4)=’E ’, filab(5)=’RF ’, filab(6)=’PEEQ’,
filab(7)=’ENER’, filab(8)=’SDV ’, filab(9)=’HFL ’, fi-
lab(10)=’RFL ’, filab(11)=’PU ’, filab(12)=’PNT ’,
filab(13)=’ZZS ’, filab(14)=’TT ’, filab(15)=’MF ’,
filab(16)=’PT ’, filab(17)=’TS ’, filab(18)=’PHS ’,
filab(19)=’MAXU’,filab(20)=’MAXS’, filab(21)=’V ’,fi-
lab(22)=’PS ’,filab(23)=’MACH’, filab(24)=’CP ’, fi-
lab(25)=’TURB’, filab(26)=’CONT ’ filab(27)=’CELS ’, fi-
lab(28)=’DEPT ’, filab(29)=’HCRI ’, filab(30)=’MAXE’,
filab(31)=’PRF ’, filab(32)=’ME ’, filab(33)=’HER, fi-
lab(34)=’VF ’, filab(35)=’PSF ’, filab(36)=’TSF ’, fi-
lab(37)=’PTF ’, filab(38)=’TTF ’, filab(39)=’SF ’, fi-
lab(40)=’HFLF’, filab(41)=’SVF ’, filab(42)=’ECD ’, fi-
lab(43)=’POT ’, filab(44)=’EMFE’, filab(45)=’EMFB’, fi-
lab(46)=’PCON’, filab(47)=SEN ’ and filab(48)=’RM ’
(the latter refers to mesh refinement). Results are stored
for the complete mesh. A field is not selected if the first
4 characters are blank, e.g. the stress is not stored if fi-
lab(3)(1:4)=’ ’. An exception to this rule is formed for
filab(1): here, only the first two characters are used and
should be either ’U ’ or ’ ’, depending on whether displace-
ments are requested are not. The third character takes the
value ’C’ if the user wishes that the contact elements in
each iteration of the last increment are stored in dedicated
files, else it is blank. The fourth character takes the value
’I’ if the user wishes that the displacements of the itera-
tions of the last increment are stored (used for debugging
in case of divergence), else it is blank. If the mesh contains
1D or 2D elements, the fifth character takes the value ’I’ if
the results are to be interpolated, ’M’ if the section forces
are requested instead of the stresses and ’E’ if the 1D/2D
element results are to be given on the expanded elements.
In all other cases the fifth character is blank: ’ ’. The
sixth character contains the value of the GLOBAL param-
eter (’G’ for GLOBAL=YES and ’L’ for GLOBAL=NO).
The entries filab(13)=’RFRES ’ and filab(14)=’RFLRES’
are reserved for the output of the residual forces and heat
fluxes in case of no convergence and cannot be selected by
the user: the residual forces and heat fluxes are automati-
cally stored if the calculation stops due to divergence.
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variable meaning
inum(i) =-1: network node

=1: structural node or 3D fluid node
CONVECTION NETWORKS
ntg number of gas nodes
For gas node i
itg(i) global node number
nactdog(j,i) if 6= 0 indicates that degree of freedom j of gas node i is is an

unknown; the nonzero number is the column number of the
DOF in the convection system of equations. The physical
significance of j depends on whether the node is a midside
node or corner node of a fluid element:
j=0 and corner node: total temperature
j=1 and midside node: mass flow
j=2 and corner node: total pressure
j=3 and midside node: geometry (e.g. α for a gate valve)

nacteq(j,i) if 6= 0 indicates that equation type j is active in gas node
i; the nonzero number is the row number of the DOF in
the convection system of equations. The equation type of
j depends on whether the node is a midside node or corner
node of a network element:
j=0 and corner node: conservation of energy
j=1 and corner node: conservation of mass
j=2 and midside node: convervation of momentum

ineighe(i) only for gas network nodes (no liquids):
if 0: itg(i) is a midside node
if -1: itg(i) is a chamber
if > 0: ineighe(i) is a gas pipe element itg(i) belongs to

v(j,i) value of degree of freedom j in node i (global numbering).
The physical significance of j depends on whether the node
is a midside node or corner node of a network element:
j=0 and corner node: total temperature
j=1 and midside node: mass flow
j=2 and corner node: total pressure
j=3 and corner node: static temperature
j=3 and midside node: geometry

nflow number of network elements
ieg(i) global element number corresponding to network element i
network if 0: no network

if 1: defined as purely thermal by the user on the *STEP
card (only unknowns: total temperature; simultaneous so-
lution)
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variable meaning
if 2: purely thermal (alternating solution (presence of Dx-
elements) or simultaneous (no Dx elements))
if 3: coupled thermodynamic network (alternating solution)
if 4: purely aerodynamic (total temperature is known ev-
erywhere; alternating solution)

THERMAL RADIATION
ntr number of element faces loaded by radiation = radiation

faces
iviewfile < 0: reading the viewfactors from file

≥ 0: calculating the viewfactors

| iviewfile | ≥ 2: write the viewfactors to file
< 2: do not write the viewfactors to file
= 3: stop after storing the viewfactors to file

For radiation
face i
kontri(1..3,j) nodes belonging to triangle j
kontri(4,j) radiation face number (> 0 and ≤ ntri)to which triangle j

belongs
nloadtr(i) distributed load number (> 0 and ≤ nload) corresponding

to radiation face i
ITERATION VARIABLES
istep step number
iinc increment number
iit iteration number

= -1 only before the first iteration in the first increment of
a step
= 0 before the first iteration in an increment which was
repeated due to non-convergence or any other but the first
increment of a step
> 0 denotes the actual iteration number

PHYSICAL CONSTANTS
physcon(1) Absolute zero
physcon(2) Stefan-Boltzmann constant
physcon(3) Newton Gravity constant
physcon(4) Static temperature at infinity (for 3D fluids)
physcon(5) Velocity at infinity (for 3D fluids)
physcon(6) Static pressure at infinity (for 3D fluids)
physcon(7) Density at infinity (for 3D fluids)
physcon(8) Typical size of the computational domain (for 3D fluids)
physcon(9) Turbulence parameter

if 0 ≤ physcon(9) < 1: laminar
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variable meaning
if 1 ≤ physcon(9) < 2: k-ǫ Model
if 2 ≤ physcon(9) < 3: q-ω Model
if 3 ≤ physcon(9) < 4: SST Model

physcon(11) number of eigenvectors used in the creation of a random
field

physcon(12) standard deviation used in the creation of a random field
physcon(13) correlation length used in the creation of a random field
physcon(14) shock smoothing coefficient (CFDFEM method)
COMPUTATIONAL FLUID DYNAMICS
vold(0,i) Static temperature in node i
vold(1..3,i) Velocity components in node i
vold(4,i) Pressure in node i
voldaux(0,i) Total energy density ρǫt in node i
voldaux(1..3,i) Momentum density components ρvi in node i
voldaux(4,i) Density ρ in node i
v(0,i) Total energy density correction in node i
v(1..3,i) Momentum density correction components in node i
v(4,i) For fluids: Pressure correction in node i

For gas: Density correction in node i
ELECTROMAGNETICS
vold(0,i) Static temperature in node i
vold(1..3,i) Magnetic vector potential A (domain 2 or 3) in node i
vold(4,i) Electric scalar potential V (domain 2) in node i
vold(5,i) Magnetic scalar potential P (domain 1) in node i
sti(1..3,j,k) Electric field in the A−V domain (domain 2) in integration

point j of element k
sti(4..6,j,k) Magnetic field in any domain in integration point j of ele-

ment k
neq[0] # of electromagnetic equations (covering the magnetic

scalar potential in domain 1, the magnetic vector potential
and electric scalar potential in domain 2 an the magnetic
vector potential in domain 3)

neq[1] sum of electromagnetic and thermal equations
nzs[0] sum of projected nonzero electromagnetic off-diagonal

terms
nzs[1] nzs[0]+sum of projected nonzero thermal off-diagonal terms
h0ref(1..3,i) magnetic intensity in infinite space due to the nominally

applied electrical potential across the coils
h0(1..3,i) magnetic intensity in infinite space due to the actually ap-

plied electrical potential across the coils
CONVERGENCE PARAMETERS
qa[0] q̄αi for the mechanical forces (average force)
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variable meaning
qa[1] q̄αi for the thermal forces (average flux)
qa[2] -1: no time increment decrease

>0: time increment multiplication factor (< 1) due to di-
vergence in a material routine

qa[3] maximum of the change of the viscoplastic strain within a
given increment over all integration points in all elements

qam[0] q̃αi for the mechanical forces
qam[1] q̃αi for the concentrated heat flux
ram[0] rαi,max for the mechanical forces
ram[1] rαi,max for the concentrated heat flux
ram[2] the node corresponding to ram[0]
ram[3] the node corresponding to ram[1]
ram[4] ram[0] (present iteration) + ram[0] (previous iteration
ram[5] number of contact elements (present iteration) - number of

contact elements (previous iteration)
uam[0] ∆uαi,max for the displacements
uam[1] ∆uαi,max for the temperatures
cam[0] cαi,max for the displacements
cam[1] cαi,max for the temperatures
cam[2] largest temperature change within the increment
cam[3] node corresponding to cam[0]
cam[4] node corresponding to cam[1]

for networks
uamt largest increment of gas temperature
camt[0] largest correction to gas temperature
camt[1] node corresponding to camt[0]
uamf largest increment of gas massflow
camf[0] largest correction to gas massflow
camf[1] node corresponding to camt[0]
uamp largest increment of gas pressure
camp[0] largest correction to gas pressure
camp[1] node corresponding to camt[0]
iflagact 0: number of contact elements did not significantly change

between present and prevous iteration
1: else (i.e. did significantly change)

THREE-DIMENSIONAL INTERPOLATION
cotet(1..3,i) coordinates of nodes i
kontet(1..4,i) nodes belonging to tetrahedron i
ipofa(i) entry in field inodfa pointing to a face for which node i is

the smallest number
inodfa(1..3,i) nodes j, k and l belonging to face i such that j < k < l
inodfa(4,i) number of another face for which inodfa(1,i) is the smallest

number. If no other exists the value is zero
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variable meaning
planfa(1..4,i) coefficients a, b, c and d of the plane equation

ax+by+cz+d=0 of face i
ifatet(1..4,i) faces belonging to tetrahedron i. The sign identifies the half

space to which i belongs if evaluating the plane equation of
the face

It is important to notice the difference between cam[1] and cam[2]. cam[1] is the
largest change within an iteration of the actual increment. If the corrections in
subsequent iterations all belonging to the same increment are 5,1,0.1, the value
of cam[1] is 5. cam[2] is the largest temperature change within the increment,
in the above example this is 6.1.

Table 25: Contents of the field tieset.

tieset(1) tieset(1) tieset(2) tieset(3) meaning
(1:80) (81:81)

Adjust node C Slave set Master set Contact
set

Tie name M Slave set Master set Multistage
Tie name P Slave set Master set Fluid periodic
Tie name Slave set Master set Cyclic symmetry
Type D Design variable Design variables

(COORDINATE or node set
ORIENTATION)

Tie name T Slave set Master set Tie
S (1:10) Number of (1:10) Number Submodel

node or face set of global
(11:11) type (’N’ for element set
nodal, ’T’ for face)

Tie name Z Slave set Master set Fluid cyclic

12 Verification examples.

The verification examples are simple examples suitable to test distinct fea-
tures. They can be used to check whether the installation of CalculiX is cor-
rect, or to find examples when using a new feature. All verification examples
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are stored in ccx 2.17.test.tar.bz2. The larger fluid examples can be found in
ccx 2.17.fluidtest.tar.bz2, the larger structural examples in ccx 2.17.structest.tar.bz2.
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